🔗 LogisticRegression
The LogisticRegression
class implements a simple L2-regularized two-class
logistic regression classifier for numerical data, by default using L-BFGS to
learn the model. The class offers easy configurability, and arbitrary
optimizers can be used to learn the model.
Logistic regression is useful for two-class classification (i.e. classes are 0
or 1
). For multi-class logistic regression, see
SoftmaxRegression
.
Simple usage example:
// Train a logistic regression model on random data and predict labels:
// All data and labels are uniform random; 5 dimensional data, 2 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(5, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 1));
arma::mat testDataset(5, 500, arma::fill::randu); // 500 test points.
mlpack::LogisticRegression lr; // Step 1: create model.
lr.Train(dataset, labels); // Step 2: train model.
arma::Row<size_t> predictions;
lr.Classify(testDataset, predictions); // Step 3: classify points.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 0) << " test points classified as class "
<< "0." << std::endl;
Quick links:
- Constructors: create
LogisticRegression
objects. Train()
: train model.Classify()
: classify with a trained model.- Other functionality for loading, saving, and inspecting.
- Examples of simple usage and links to detailed example projects.
- Template parameters for using different element types for a model.
See also:
🔗 Constructors
lr = LogisticRegression()
- Initialize the model without training.
- You will need to call
Train()
later to train the model before callingClassify()
.
lr = LogisticRegression(data, labels, lambda=0.0, [callbacks...])
lr = LogisticRegression(data, labels, initialPoint, lambda=0.0, [callbacks...])
- Train model, optionally specifying an initial set of weights for the optimization and callbacks.
lr = LogisticRegression(data, labels, optimizer, lambda=0.0, [callbacks...])
lr = LogisticRegression(data, labels, optimizer, initialPoint, lambda=0.0, [callbacks...])
- Train model with a custom ensmallen optimizer, optionally specifying an initial set of weights to start the optimization from and callbacks for the optimizer.
Constructor Parameters:
name | type | description | default |
---|---|---|---|
data |
arma::mat |
Column-major training matrix. | (N/A) |
labels |
arma::Row<size_t> |
Training labels, either 0 or 1 . Should have length data.n_cols . |
(N/A) |
initialPoint |
arma::rowvec |
Initial model weights to start optimization from. Should have length data.n_rows + 1 . The first element is the bias. If not specified, a zero vector will be used. |
zero vector |
optimizer |
any ensmallen optimizer | Instantiated ensmallen optimizer for differentiable functions or differentiable separable functions. | ens::L_BFGS() |
lambda |
double |
L2 regularization penalty parameter. Must be nonnegative. | 0.0 |
callbacks... |
any set of ensmallen callbacks | Optional callbacks for the ensmallen optimizer, such as e.g. ens::ProgressBar() , ens::Report() , or others. |
(N/A) |
As an alternative to passing lambda
or initialPoint
, these can be set with a
standalone method. The following functions can be used before calling
Train()
:
lr.Lambda() = l;
will set the value of the L2 regularization penalty parameter tol
.lr.Parameters() = initialPoint;
will set the initial point for the training optimization toinitialPoint
.
Note: Setting lambda
too small may cause the model to overfit; however,
setting it too large may cause the model to underfit. Automatic hyperparameter
tuning can be used to find a good value of lambda
instead of a
manual setting.
🔗 Training
If training is not done as part of the constructor call, it can be done with one
of the following versions of the Train()
member function:
lr.Train(data, labels)
lr.Train(data, labels, lambda=0.0, [callbacks...])
- Train model, optionally specifying callbacks for the default L-BFGS optimizer.
lr.Train(data, labels, optimizer)
lr.Train(data, labels, optimizer, lambda=0.0, [callbacks...])
- Train model with a custom ensmallen optimizer, optionally specifying callbacks.
Types of each argument are the same as in the table for constructors above.
Notes:
-
Training is incremental. Successive calls to
Train()
will not reinitialize the model, unless the given data has different dimensionality. To reinitialize the model, callReset()
(see Other Functionality). -
To set the initial point of the optimization, call
Parameters()
; see Other Functionality. -
Train()
returns adouble
with the final logistic regression loss value (including L2 penalty term) of the trained model.
🔗 Classification
Once a LogisticRegression
model is trained, the Classify()
member function
can be used to make class predictions for new data.
size_t predictedClass = lr.Classify(point, decisionBoundary=0.5)
- (Single-point)
- Classify a single point, returning the predicted class (
0
or1
).
lr.Classify(point, prediction, probabilitiesVec, decisionBoundary=0.5)
- (Single-point)
- Classify a single point and compute class probabilities.
- The predicted class is stored in
prediction
. - The probability of class
i
can be accessed withprobabilitiesVec[i]
.
lr.Classify(data, predictions, decisionBoundary=0.5)
- (Multi-point)
- Classify a set of points.
- The prediction for data point
i
can be accessed withpredictions[i]
.
lr.Classify(data, predictions, probabilities, decisionBoundary=0.5)
- (Multi-point)
- Classify a set of points and compute class probabilities.
- The prediction for data point
i
can be accessed withpredictions[i]
. - The probability of class
j
for data pointi
can be accessed withprobabilities(j, i)
.
Classification Parameters:
usage | name | type | description |
---|---|---|---|
single-point | point |
arma::vec |
Single point for classification. |
single-point | prediction |
size_t& |
size_t to store class prediction into. |
single-point | probabilitiesVec |
arma::vec& |
arma::vec& to store class probabilities into; will have length 2. |
 |  |  |  |
multi-point | data |
arma::mat |
Set of column-major points for classification. |
multi-point | predictions |
arma::Row<size_t>& |
Vector of size_t s to store class prediction into; will be set to length data.n_cols . |
multi-point | probabilities |
arma::mat& |
Matrix to store class probabilities into (number of rows will be equal to 2; number of columns will be equal to data.n_cols ). |
 |  |  |  |
all | decisionBoundary |
double |
If the logistic function value for a point is greater than decisionBoundary , it is classified as class 1 . Defaults to 0.5 . |
🔗 Other Functionality
-
A
LogisticRegression
model can be serialized withdata::Save()
anddata::Load()
. -
lr.Parameters()
will return anarma::rowvec
filled with the weights of the model. This vector has length equal to the dimensionality plus one, and the first element is the bias. -
lr.Lambda()
will return the L2 regularization penalty parameter. -
lr.ComputeAccuracy(data, labels, decisionBoundary=0.5)
will return the accuracy of the model on the givendata
with the givenlabels
. The returned accuracy is between 0 and 100. -
lr.ComputeError(data, labels)
will return the loss of the logistic regression objective function on the givendata
with the givenlabels
. -
lr.Reset()
will reset the weights of the model to zeros.
For complete functionality, the source code can be consulted. Each method is fully documented.
🔗 Simple Examples
See also the simple usage example for a trivial usage
of the LogisticRegression
class.
Train a logistic regression model using a custom SGD-like optimizer with callbacks.
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);
mlpack::LogisticRegression lr;
lr.Lambda() = 0.1;
// Create AMSGrad optimizer with custom step size and batch size.
ens::AMSGrad optimizer(0.01 /* step size */, 16 /* batch size */);
optimizer.MaxIterations() = 100 * dataset.n_cols; // Allow 100 epochs.
// Print a progress bar and an optimization report when training is finished.
lr.Train(dataset, labels, optimizer, ens::ProgressBar(), ens::Report());
// Now predict on test labels and compute accuracy.
// See https://datasets.mlpack.org/satellite.test.csv.
arma::mat testDataset;
mlpack::data::Load("satellite.test.csv", testDataset, true);
// See https://datasets.mlpack.org/satellite.test.labels.csv.
arma::Row<size_t> testLabels;
mlpack::data::Load("satellite.test.labels.csv", testLabels, true);
std::cout << std::endl;
std::cout << "Accuracy on training set: "
<< lr.ComputeAccuracy(dataset, labels) << "\%." << std::endl;
std::cout << "Accuracy on test set: "
<< lr.ComputeAccuracy(testDataset, testLabels) << "\%." << std::endl;
std::cout << "Objective on training set: "
<< lr.ComputeError(dataset, labels) << "." << std::endl;
std::cout << "Objective on test set: "
<< lr.ComputeError(testDataset, testLabels) << "." << std::endl;
Train a logistic regression model with SGD and save the model every epoch using a custom ensmallen callback:
// This callback saves the model into "model-<epoch>.bin" after every epoch.
class ModelCheckpoint
{
public:
ModelCheckpoint(mlpack::LogisticRegression<>& model) : model(model) { }
template<typename OptimizerType, typename FunctionType, typename MatType>
bool EndEpoch(OptimizerType& /* optimizer */,
FunctionType& /* function */,
const MatType& /* coordinates */,
const size_t epoch,
const double /* objective */)
{
const std::string filename = "model-" + std::to_string(epoch) + ".bin";
mlpack::data::Save(filename, "lr_model", model, true);
return false; // Do not terminate the optimization.
}
private:
mlpack::LogisticRegression<>& model;
};
With that callback available, the code to train the model is below:
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);
mlpack::LogisticRegression lr;
// Create AdaDelta optimizer with a small step size and batch size of 1.
ens::AdaDelta adaDelta(0.001, 1);
adaDelta.MaxIterations() = 100 * dataset.n_cols; // 100 epochs maximum.
// Use the custom callback and an L2 penalty parameter of 0.01.
lr.Train(dataset, labels, adaDelta, 0.01, ModelCheckpoint(lr),
ens::ProgressBar());
// Now files like model-1.bin, model-2.bin, etc. should be saved on disk.
Load an existing logistic regression model and print some information about it.
mlpack::LogisticRegression lr;
// This assumes that a model called "lr_model" has been saved to the file
// "model-1.bin" (as in the previous example).
mlpack::data::Load("model-1.bin", "lr_model", lr, true);
// Print the dimensionality of the model and some other statistics.
std::cout << "The dimensionality of the model in model-1.bin is "
<< (lr.Parameters().n_elem - 1) << "." << std::endl;
std::cout << "The bias parameter for the model is " << lr.Parameters()[0]
<< "." << std::endl;
arma::vec point(lr.Parameters().n_elem - 1, arma::fill::randu);
std::cout << "The predicted class for a random point, using a decision boundary"
<< " of 0.2, is " << lr.Classify(point, 0.2) << "." << std::endl;
Perform incremental training on multiple datasets with multiple calls to
Train()
.
// Generate two random datasets.
arma::mat firstDataset(5, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> firstLabels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 1));
arma::mat secondDataset(5, 1500, arma::fill::randu); // 1500 points.
arma::Row<size_t> secondLabels =
arma::randi<arma::Row<size_t>>(1500, arma::distr_param(0, 1));
// Train a model on the first dataset with an L2 regularization penalty
// parameter of 0.01.
mlpack::LogisticRegression lr(firstDataset, firstLabels, 0.01);
// Now compute the objective on the second dataset and print it.
std::cout << "Objective on second dataset: "
<< lr.ComputeError(secondDataset, secondLabels) << "." << std::endl;
// Train for a second round on the second dataset.
lr.Train(secondDataset, secondLabels);
// Now compute the objective on the second dataset again and print it.
// (Note that it may not be all that much better because this is random data!)
std::cout << "Objective on second dataset after second training: "
<< lr.ComputeError(secondDataset, secondLabels) << "." << std::endl;
🔗 Advanced Functionality: Different Element Types
The LogisticRegression
class has one template parameter that can be used to
control the element type of the model. The full signature of the class is:
LogisticRegression<MatType>
MatType
specifies the type of matrix used for training data and internal
representation of model parameters. Any matrix type that implements the
Armadillo API can be used. The example below trains a logistic regression model
on sparse 32-bit floating point data.
// Create random, sparse 100-dimensional data.
arma::sp_fmat dataset;
dataset.sprandu(100, 5000, 0.3);
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(5000, arma::distr_param(0, 1));
// Train with L2 regularization penalty parameter of 0.1.
mlpack::LogisticRegression<arma::sp_fmat> lr(dataset, labels, 0.1);
// Now classify a test point.
arma::sp_fvec point;
point.sprandu(100, 1, 0.3);
size_t prediction;
arma::fvec probabilitiesVec;
lr.Classify(point, prediction, probabilitiesVec);
std::cout << "Prediction for random test point: " << prediction << "."
<< std::endl;
std::cout << "Class probabilities for random test point: "
<< probabilitiesVec.t();
Note: if MatType
is a sparse object (e.g. sp_fmat
), the internal
parameter representation will be a dense vector containing elements of the
same type (e.g. frowvec
). This is because L2-regularized logistic regression,
even when training on sparse data, does not necessarily produce sparse models.