mlpack core class documentation
Underlying the implementations of mlpackβs machine learning algorithms are mlpack core support classes, each of which are documented on this page.
- Core math utilities: utility classes for mathematical purposes
- Distributions: probability distributions
- Metrics: distance metrics for geometric algorithms
- Kernels: Mercer kernels for kernel-based algorithms
π Core math utilities
mlpack provides a number of additional mathematical utility classes and functions on top of Armadillo.
-
Aliases: utilities to create and manage aliases (
MakeAlias()
,ClearAlias()
,UnwrapAlias()
). -
Range
: simple mathematical range (i.e.[0, 3]
) -
ColumnCovariance()
: compute covariance of column-major data -
ColumnsToBlocks
: reshape data points into a block matrix for visualization (useful for images) -
Distribution utilities:
Digamma()
,Trigamma()
-
RandVector()
: generate random vector on the unit sphere using the Box-Muller transform -
Logarithmic utilities:
LogAdd()
,AccuLog()
,LogSumExp()
,LogSumExpT()
. MultiplyCube2Cube()
: multiply each slice in a cube by each slice in another cubeMultiplyMat2Cube()
: multiply a matrix by each slice in a cubeMultiplyCube2Mat()
: multiply each slice in a cube by a matrix-
Quantile()
: compute the quantile function of the Gaussian distribution - RNG and random number utilities: extended scalar random number generation functions
RandomBasis()
: generate a random orthogonal basisShuffleData()
: shuffle a dataset and associated labels
π Aliases
Aliases are matrix, vector, or cube objects that share memory with another matrix, vector, or cube. They are often used internally inside of mlpack to avoid copies.
Important caveats about aliases:
-
An alias represents the same memory block as the input. As such, changes to the alias object will also be reflected in the original object.
-
The
MakeAlias()
function is not guaranteed to return an alias; it only returns an alias if possible, and makes a copy otherwise. -
If
mat
goes out of scope or is destructed, thena
becomes invalid. You are responsible for ensuring an invalid alias is not used!
MakeAlias(a, mat, rows, cols, strict=true)
- Make
a
into an alias ofmat
with the given size. - If
strict
istrue
, the size ofa
cannot be changed. mat
anda
should have the same matrix type (e.g.arma::mat
,arma::fmat
,arma::sp_mat
).- If an alias cannot be created, the matrix will be copied. Sparse types cannot have aliases and will be copied.
- Make
MakeAlias(a, cube, rows, cols, slices, strict=true)
- Make
a
into an alias ofcube
with the given size. - If
strict
istrue
, the size ofa
cannot be changed. cube
anda
should have the same matrix type (e.g.arma::cube
,arma::fcube
).- If an alias cannot be created, the matrix will be copied.
- Make
MakeAlias(a, memptr, rows, cols, strict=true)
- Make
a
into an alias of the memory block starting atmemptr
of sizerows
bycols
. - The memory at
memptr
should be arranged in a column-major ordering. - If
strict
istrue
, the size ofa
cannot be changed. a
should be a dense matrix type (e.g.arma::mat
,arma::fmat
), andmemptr
should be a non-const pointer of the matrixβs element type (e.g.double*
,float*
).
- Make
MakeAlias(a, memptr, rows, cols, slices, strict=true)
- Make
a
into an alias of the memory block starting atmemptr
of sizerows
bycols
byslices
. - The memory at
memptr
should be arranged in a column-major ordering. - If
strict
istrue
, the size ofa
cannot be changed. a
should be a cube type (e.g.arma::cube
,arma::fcube
), andmemptr
should be a non-const pointer of the matrixβs element type (e.g.double*
,float*
).
- Make
ClearAlias(a)
- If
a
is an alias, reseta
to an empty matrix, without modifying the aliased memory.a
is no longer an alias after this call.
- If
UnwrapAlias(a, in)
- If
in
is a matrix type (e.g.arma::mat
), makea
into an alias ofin
. - If
in
is not a matrix type, but instead, e.g., an Armadillo expression, filla
with the results of the evaluated expressionin
. - This can be used in place of, e.g.,
a = in
, to avoid a copy when possible. a
should be a matrix type that matches the type of the expression or matrixin
.
- If
π Range
The Range
class represents a simple mathematical range (i.e. [0, 3]
),
with the bounds represented as double
s.
Constructors
r = Range()
- Construct an empty range.
r = Range(p)
- Construct the range
[p, p]
.
- Construct the range
r = Range(lo, hi)
- Construct the range
[lo, hi]
.
- Construct the range
Accessing and modifying range properties
r.Lo()
andr.Hi()
return the lower and upper bounds of the range asdouble
s.- A range is considered empty if
r.Lo() > r.Hi()
. - These can be used to modify the bounds, e.g.,
r.Lo() = 3.0
.
- A range is considered empty if
-
r.Width()
returns the span of the range (i.e.r.Hi() - r.Lo()
) as adouble
. r.Mid()
returns the midpoint of the range as adouble
.
Working with ranges
- Given two ranges
r1
andr2
,r1 | r2
returns the union of the ranges,r1 |= r2
expandsr1
to include the ranger2
,r1 & r2
returns the intersection of the ranges (possibly an empty range),r1 &= r2
shrinksr1
to the intersection ofr1
andr2
,r1 == r2
returnstrue
if the two ranges are strictly equal (i.e. lower and upper bounds are equal),r1 != r2
returnstrue
if the two ranges are not strictly equal,r1 < r2
returnstrue
ifr1.Hi() < r2.Lo()
,r1 > r2
returnstrue
ifr1.Lo() > r2.Hi()
, andr1.Contains(r2)
returnstrue
if the ranges overlap at all.
- Given a range
r
and adouble
scalard
,r * d
returns a new range[d * r.Lo(), d * r.Hi()]
,r *= d
scalesr.Lo()
andr.Hi()
byd
, andr.Contains(d)
returnstrue
ifd
is contained in the range.
- To use ranges with different element types (e.g.
float
), use the typeRangeType<float>
or similar.
Example:
mlpack::Range r1(5.0, 6.0); // [5, 6]
mlpack::Range r2(7.0, 8.0); // [7, 8]
mlpack::Range r3 = r1 | r2; // [5, 8]
mlpack::Range r4 = r1 & r2; // empty range
bool b1 = r1.Contains(r2); // false
bool b2 = r1.Contains(5.5); // true
bool b3 = r1.Contains(r3); // true
bool b4 = r3.Contains(r4); // false
// Create a range of `float`s and a range of `int`s.
mlpack::RangeType<float> r5(1.0f, 1.5f); // [1.0, 1.5]
mlpack::RangeType<int> r6(3, 4); // [3, 4]
Range
is used by:
π ColumnCovariance()
ColumnCovariance(X, normType=0)
X
: a column-major data matrixnormType
: either0
or1
(see below)
-
Computes the covariance of the data matrix
X
. -
Equivalent to
arma::cov(X.t(), normType)
, but avoids computing the transpose and is thus slightly more efficient. normType
controls the type of normalization done when computing the covariance:0
will normalize withX.n_cols - 1
, providing the best unbiased estimation of the covariance matrix (if the columns are from a normal distribution);1
will normalize withX.n_cols
, providing the second moment about the mean of the columns.
- Any dense matrix type can be used so long as it supports the Armadillo API
(e.g.,
arma::mat
,arma::fmat
, etc.).
Example:
// Generate a random data matrix with 100 points in 5 dimensions.
arma::mat data(5, 100, arma::fill::randu);
// Compute the covariance matrix of the column-major matrix.
arma::mat cov = mlpack::ColumnCovariance(data);
cov.print("Covariance of random matrix:");
π ColumnsToBlocks
The ColumnsToBlocks
class provides a way to transform data points (e.g.
columns in a matrix) into a block matrix format, primarily useful for
visualization as an image.
As a simple example, given a matrix with four columns A
, B
, C
, and D
,
ColumnsToBlocks
can transform this matrix into the form
[[m m m m m]
[m A m B m]
[m m m m m]
[m C m D m]
[m m m m m]]
where m
is a margin, and where each column may itself be reshaped into a
block.
Constructors
ctb = ColumnsToBlocks(rows, cols)
- Create a
ColumnsToBlocks
object that will reshape the input matrix into blocks of shaperows
bycols
. - Each input column will be reshaped into a square (e.g.
ctb.BlockHeight()
andctb.BlockWidth()
are set to0
).
- Create a
ctb = ColumnsToBlocks(rows, cols, blockHeight, blockWidth)
- Create a
ColumnsToBlocks
object that will reshape the input matrix into blocks of shaperows
bycols
. - Each individual column will also be reshaped into a block of shape
blockHeight
byblockWidth
.
- Create a
Properties
ctb.Rows(rows)
will set the number of rows in the block output torows
.ctb.Rows()
will return asize_t
with the current setting.
ctb.Cols(cols)
will set the number of columns in the block output tocols
.ctb.Cols()
will return asize_t
with the current setting.
ctb.BlockHeight(blockHeight)
will set the number of rows in each individual block toblockHeight
.ctb.BlockHeight()
will return asize_t
with the current setting.- If
ctb.BlockHeight()
is0
, each input column will be reshaped into a square; if this is not possible, an exception will be thrown.
ctb.BlockWidth()
will set the number of columns in each individual block toblockWidth
.ctb.BlockWidth()
will return asize_t
with the current setting.- If
ctb.BlockWidth()
is0
, each input column will be reshaped into a square; if this is not possible, an exception will be thrown.
ctb.BufSize(bufSize)
will set the number of margin elements tobufSize
.ctb.BufSize()
will return asize_t
with the current setting.- The default setting is
1
.
ctb.BufValue(bufValue)
will set the element used for margins tobufValue
.ctb.BufValue()
will return asize_t
with the current setting.- The default setting is
-1.0
.
π Scaling values
ColumnsToBlocks
also has the capability of linearly scaling values of the
inputs to a given range.
ctb.Scale(true)
enables scaling values.- By default scaling is disabled.
ctb.Scale(false)
will disable scaling.ctb.Scale()
will return abool
indicating whether scaling is enabled.
ctb.MinRange(value)
sets the lower bound of the scaling range tovalue
.ctb.MinRange()
returns the current value as adouble
.
ctb.MaxRange(value)
sets the upper bound of the scaling range tovalue
.ctb.MaxRange()
returns the current value as adouble
.- Must be greater than
ctb.MinRange()
, ifctb.Scale() == true
.
Note: the margin element (ctb.BufValue()
) is considered during the
scaling process.
Transforming into block format
ctb.Transform(input, output)
will perform the columns-to-blocks transformation on the given matrixinput
, storing the result in the matrixoutput
.- An exception will be thrown if
input.n_rows
is not equal toctb.BlockHeight() * ctb.BlockWidth()
(if neither of those are0
). - If either
ctb.BlockHeight()
orctb.BlockWidth()
is0
, each column will be reshaped into a square, and an exception will be thrown ifinput.n_rows
is not a perfect square (i.e. ifsqrt(input.n_rows)
is not an integer).
- An exception will be thrown if
Examples
Reshape two 4-element vectors into one row of two blocks.
// This matrix has two columns.
arma::mat input;
input = { { -1.0000, 0.1429 },
{ -0.7143, 0.4286 },
{ -0.4286, 0.7143 },
{ -0.1429, 1.0000 } };
input.print("Input columns:");
arma::mat output;
mlpack::ColumnsToBlocks ctb(1, 2);
ctb.Transform(input, output);
// The columns of the input will be reshaped as a square which is
// surrounded by padding value -1 (this value could be changed with the
// BufValue() method):
// -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
// -1.0000 -1.0000 -0.4286 -1.0000 0.1429 0.7143 -1.0000
// -1.0000 -0.7143 -0.1429 -1.0000 0.4286 1.0000 -1.0000
// -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
output.print("Output using 2x2 block size:");
// Now, let's change some parameters; let's have each input column output not
// as a square, but as a 4x1 vector.
ctb.BlockWidth(1);
ctb.BlockHeight(4);
ctb.Transform(input, output);
// The output here will be similar, but each maximal input is 4x1:
// -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
// -1.0000 -1.0000 -1.0000 0.1429 -1.0000
// -1.0000 -0.7143 -1.0000 0.4286 -1.0000
// -1.0000 -0.4286 -1.0000 0.7143 -1.0000
// -1.0000 -0.1429 -1.0000 1.0000 -1.0000
// -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
output.print("Output using 4x1 block size:");
Load simple images and reshape into blocks.
// Load some favicons from websites associated with mlpack.
std::vector<std::string> images;
// See the following files:
// - https://datasets.mlpack.org/images/mlpack-favicon.png
// - https://datasets.mlpack.org/images/ensmallen-favicon.png
// - https://datasets.mlpack.org/images/armadillo-favicon.png
// - https://datasets.mlpack.org/images/bandicoot-favicon.png
images.push_back("mlpack-favicon.png");
images.push_back("ensmallen-favicon.png");
images.push_back("armadillo-favicon.png");
images.push_back("bandicoot-favicon.png");
mlpack::data::ImageInfo info;
info.Channels() = 1; // Force loading in grayscale.
arma::mat matrix;
mlpack::data::Load(images, matrix, info, true);
// Now `matrix` has 4 columns, each of which is an individual image.
// Let's save that as its own image just for visualization.
mlpack::data::ImageInfo outInfo(matrix.n_cols, matrix.n_rows, 1);
mlpack::data::Save("favicons-matrix.png", matrix, outInfo, true);
// Use ColumnsToBlocks to create a 2x2 block matrix holding each image.
mlpack::ColumnsToBlocks ctb(2, 2);
ctb.BufValue(0.0); // Use 0 for the margin value.
ctb.BufSize(2); // Use 2-pixel margins.
arma::mat blocks;
ctb.Transform(matrix, blocks);
mlpack::data::ImageInfo blockOutInfo(blocks.n_cols, blocks.n_rows, 1);
mlpack::data::Save("favicons-blocks.png", blocks, blockOutInfo, true);
The resulting images (before and after using ColumnsToBlocks
) are shown below.
Before:
After:
See also
π Distribution utilities
Digamma(x)
returns the logarithmic derivative of the gamma function (see Wikipedia).x
should have typedouble
.- The return type is
double
.
Trigamma(x)
returns the trigamma function at the valuex
.x
should have typedouble
.- The return type is
double
.
- Both of these functions are used internally by the
GammaDistribution
class.
Example:
const double d1 = mlpack::Digamma(0.25);
const double d2 = mlpack::Digamma(1.0);
const double t1 = mlpack::Trigamma(0.25);
const double t2 = mlpack::Trigamma(1.0);
std::cout << "Digamma(0.25): " << d1 << "." << std::endl;
std::cout << "Digamma(1.0): " << d2 << "." << std::endl;
std::cout << "Trigamma(0.25): " << t1 << "." << std::endl;
std::cout << "Trigamma(1.0): " << t2 << "." << std::endl;
π RandVector()
-
RandVector(v)
generates a random vector on the unit sphere (i.e. with an L2-norm of 1) and stores it inv
(anarma::vec
). -
The Box-Muller transform is used to generate the vector.
-
v
is not resized, and should have size equal to the desired dimensionality whenRandVector()
is called.
Example:
// Generate a random 10-dimensional vector.
arma::vec v;
v.set_size(10);
RandVector(v);
v.print("Random 10-dimensional vector: ");
std::cout << "Random 10-dimensional vector: " << std::endl;
std::cout << v.t();
std::cout << "L2-norm of vector (should be 1): " << arma::norm(v, 2) << "."
<< std::endl;
π Logarithmic utilities
mlpack contains a few functions that are useful for working with logarithms, or vectors containing logarithms.
-
LogAdd(x, y)
for scalarsx
andy
(e.g.double
,float
,int
, etc.) will returnlog(e^x + e^y)
. -
AccuLog(v)
, given a vectorv
containing log values, will return the scalar log-sum of those values:log(e^(v[0]) + e^(v[1]) + ... + e^(v[v.n_elem - 1]))
.
LogSumExp(m, out)
, given a matrixm
(arma::mat
) containing log values, will compute the scalar log-sum of each column, storing the result in the column vectorout
(typearma::vec
).out
will be set to sizem.n_cols
.out[i]
will be equal toAccuLog(m.col(i))
.- Different element types can be used for
m
andout
(e.g.arma::fmat
andarma::fvec
).
LogSumExpT(m, out)
, given a matrixm
(typearma::mat
) containing log values, will compute the scalar log-sum of each row, storing the result in the column vectorout
(typearma::vec
)out
will be set to sizem.n_rows
.out[i]
will be equal toAccuLog(m.row(i))
.- Different element types can be used for
m
andout
(e.g.arma::fmat
andarma::fvec
).
LogSumExp<eT, true>(m, out)
performs an incremental sum, otherwise identical toLogSumExp()
.- The input values of
out
are not ignored. out[i]
will be equal tolog(e^(out[i]) + e^(AccuLog(m.col(i))))
.eT
represents the element type ofm
andout
(e.g.,double
ifm
isarma::mat
andout
isarma::vec
).
- The input values of
LogSumExpT<eT, true>(m, out)
performs an incremental sum, otherwise identical toLogSumExpT()
.- The input values of
out
are not ignored. out[i]
will be equal tolog(e^(out[i]) + e^(AccuLog(m.row(i))))
.eT
represents the element type ofm
andout
(e.g.,double
ifm
isarma::mat
andout
isarma::vec
).
- The input values of
π MultiplyCube2Cube()
z = MultiplyCube2Cube(x, y, transX=false, transY=false)
- Inputs
x
andy
are cubes (e.g.arma::cube
), and must have the same number of slices z
is a cube whose slices are the slices ofx
andy
multipliedtransX
andtransY
indicate whether each slice ofx
andy
should be transposed before multiplication.
- Inputs
-
If
transX
andtransY
arefalse
, thenz.slice(i) = x.slice(i) * y.slice(i)
. -
If
transX
isfalse
andtransY
istrue
, thenz.slice(i) = x.slice(i) * y.slice(i).t()
. - The inner dimensions of
x
andy
must match for multiplication, or an exception will be thrown.
Example usage:
// Generate two random cubes.
arma::cube x(10, 100, 5, arma::fill::randu); // 5 matrices, each 10x100.
arma::cube y(12, 100, 5, arma::fill::randu); // 5 matrices, each 12x100.
arma::cube z = mlpack::MultiplyCube2Cube(x, y, false, true);
// Output size should be 10x12x5.
std::cout << "Output size: " << z.n_rows << "x" << z.n_cols << "x" << z.n_slices
<< "." << std::endl;
π MultiplyMat2Cube()
z = MultiplyMat2Cube(x, y, transX=false, transY=false)
- Input
x
is a matrix andy
is a cube (e.g.arma::cube
). z
is a cube whose slices arex
multiplied by the slices ofy
.transX
andtransY
indicate whetherx
and each slice ofy
should be transposed before multiplication.
- Input
-
If
transX
andtransY
arefalse
, thenz.slice(i) = x * y.slice(i)
. -
If
transX
isfalse
andtransY
istrue
, thenz.slice(i) = x * y.slice(i).t()
. - The inner dimensions of
x
andy
must match for multiplication, or an exception will be thrown.
Example usage:
// Generate random inputs.
arma::mat x(10, 100, arma::fill::randu); // Random 10x100 matrix.
arma::cube y(12, 100, 5, arma::fill::randu); // 5 matrices, each 12x100.
arma::cube z = mlpack::MultiplyMat2Cube(x, y, false, true);
// Output size should be 10x12x5.
std::cout << "Output size: " << z.n_rows << "x" << z.n_cols << "x" << z.n_slices
<< "." << std::endl;
π MultiplyCube2Mat()
z = MultiplyCube2Mat(x, y, transX=false, transY=false)
- Input
x
is a cube (e.g.arma::cube
) andy
is a matrix. z
is a cube whose slices are the slices ofx
multiplied withy
.transX
andtransY
indicate whether each slice ofx
andy
should be transposed before multiplication.
- Input
-
If
transX
andtransY
arefalse
, thenz.slice(i) = x.slice(i) * y
. -
If
transX
istrue
andtransY
isfalse
, thenz.slice(i) = x.slice(i).t() * y
. - The inner dimensions of
x
andy
must match for multiplication, or an exception will be thrown.
Example usage:
// Generate two random cubes.
arma::cube x(12, 50, 5, arma::fill::randu); // 5 matrices, each 12x50.
arma::mat y(12, 60, arma::fill::randu); // Random 12x60 matrix.
arma::cube z = mlpack::MultiplyCube2Mat(x, y, true, false);
// Output size should be 50x60x5.
std::cout << "Output size: " << z.n_rows << "x" << z.n_cols << "x" << z.n_slices
<< "." << std::endl;
π Quantile()
-
Compute the quantile function of the Gaussian distribution at the given probability.
double q = Quantile(p, mu=0.0, sigma=1.0)
q
is the computed quantile.p
is the probability to compute the quantile of (between 0 and 1).mu
is the (optional) mean of the Gaussian distribution.sigma
is the (optional) standard deviation of the Gaussian distribution.- All arguments are
double
s.
- See also Quantile function on Wikipedia.
Example usage:
// 70% of points from N(0, 1) are less than q1 = 0.524.
double q1 = mlpack::Quantile(0.7);
// 90% of points from N(0, 1) are less than q2 = 1.282.
double q2 = mlpack::Quantile(0.9);
// 50% of points from N(1, 1) are less than q3 = 1.0.
double q3 = mlpack::Quantile(0.5, 1.0); // Quantile of 1.0 for N(1, 1) is 1.0.
// 10% of points from N(1, 0.1) are less than q4 = 0.871.
double q4 = mlpack::Quantile(0.1, 1.0, 0.1);
std::cout << "Quantile(0.7): " << q1 << "." << std::endl;
std::cout << "Quantile(0.9): " << q2 << "." << std::endl;
std::cout << "Quantile(0.5, 1.0): " << q3 << "." << std::endl;
std::cout << "Quantile(0.1, 1.0, 0.1): " << q4 << "." << std::endl;
π RNG and random number utilities
On top of the random number generation support that Armadillo provides via randu(), randn(), and randi(), mlpack provides a few additional thread-safe random number generation functions for generating random scalar values.
RandomSeed(seed)
will set the random seed of mlpackβs RNGs and Armadilloβs RNG toseed
.- This internally calls
arma::arma_rng::set_seed()
. - In a multithreaded application, each threadβs RNG will be deterministically
set to a different value based on
seed
.
- This internally calls
-
Random()
returns a randomdouble
uniformly distributed between0
and1
, not including 1. -
Random(lo, hi)
returns a randomdouble
uniformly distributed betweenlo
andhi
, not includinghi
. -
RandBernoulli(p)
samples from a Bernoulli distribution with parameterp
: with probabilityp
,1
is returned; with probability1 - p
,0
is returned. -
RandInt(hiExclusive)
returns a randomint
uniformly distributed in the range[0, hiExclusive)
. -
RandInt(lo, hiExclusive)
returns a randomint
uniformly distributed in the range[lo, hiExclusive)
. -
RandNormal()
returns a randomdouble
normally distributed with mean0
and standard deviation1
. RandNormal(mean, stddev)
returns a randomdouble
normally distributed with meanmean
and standard deviationstddev
.
Examples:
mlpack::RandomSeed(123); // Set a specific random seed.
const double r1 = mlpack::Random(); // In the range [0, 1).
const double r2 = mlpack::Random(3, 4); // In the range [3, 4).
const double r3 = mlpack::RandBernoulli(0.25); // P(1) = 0.25.
const int r4 = mlpack::RandInt(10); // In the range [0, 10).
const int r5 = mlpack::RandInt(5, 10); // In the range [5, 10).
const double r6 = mlpack::RandNormal(); // r6 ~ N(0, 1).
const double r7 = mlpack::RandNormal(2.0, 3.0); // r7 ~ N(2, 3).
std::cout << "Random(): " << r1 << "." << std::endl;
std::cout << "Random(3, 4): " << r2 << "." << std::endl;
std::cout << "RandBernoulli(0.25): " << r3 << "." << std::endl;
std::cout << "RandInt(10): " << r4 << "." << std::endl;
std::cout << "RandInt(5, 10): " << r5 << "." << std::endl;
std::cout << "RandNormal(): " << r6 << "." << std::endl;
std::cout << "RandNormal(2, 3): " << r7 << "." << std::endl;
π RandomBasis()
The RandomBasis()
function generates a random d-dimensional orthogonal basis.
RandomBasis(basis, d)
fills the matrixbasis
withd
orthogonal vectors, each of dimensiond
.basis.col(i)
represents thei
th basis vector.basis
will have sized
rows byd
cols.
- The random basis is generated using the QR decomposition.
Example:
arma::mat basis;
// Generate a 10-dimensional random basis.
mlpack::RandomBasis(basis, 10);
// Each two vectors are orthogonal.
std::cout << "Dot product of basis vectors 2 and 4: "
<< arma::dot(basis.col(2), basis.col(4))
<< " (should be zero or very close!)." << std::endl;
π ShuffleData()
Shuffle a column-major dataset and associated labels/responses, optionally with weights. This preserves the connection of each data point to its label (and optionally its weight).
ShuffleData(inputData, inputLabels, outputData, outputLabels)
- Randomly permute data points and labels from
inputData
andinputLabels
intooutputData
andoutputLabels
. outputData
will be set to the same size asinputData
.outputLabels
will be set to the same size asinputLabels
.inputData
can be a dense matrix, a sparse matrix, or a cube, with any element type. (That is,inputData
may have typearma::mat
,arma::fmat
,arma::sp_mat
,arma::cube
, etc.)inputLabels
must be a dense vector type but may hold any element type (e.g.arma::Row<size_t>
,arma::uvec
,arma::vec
, etc.).outputData
must have the same type asinputData
, andoutputLabels
must have the same type asinputLabels
.
- Randomly permute data points and labels from
ShuffleData(inputData, inputLabels, inputWeights, outputData, outputLabels, outputWeights)
- Identical to the previous overload, but also handles weights via
inputWeights
andoutputWeights
. inputWeights
must be a dense vector type but may hold any element type (e.g.arma::rowvec
,arma::frowvec
,arma::vec
, etc.)outputWeights
must have the same type asinputWeights
.
- Identical to the previous overload, but also handles weights via
Note: when inputData
is a cube (e.g. arma::cube
or similar), the
columns of the cube will be shuffled.
Example usage:
// See https://datasets.mlpack.org/iris.csv.
arma::mat dataset;
mlpack::data::Load("iris.csv", dataset, true);
// See https://datasets.mlpack.org/iris.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("iris.labels.csv", labels, true);
// Now shuffle the points in the iris dataset.
arma::mat shuffledDataset;
arma::Row<size_t> shuffledLabels;
mlpack::ShuffleData(dataset, labels, shuffledDataset, shuffledLabels);
std::cout << "Before shuffling, the first point was: " << std::endl;
std::cout << " " << dataset.col(0).t();
std::cout << "with label " << labels[0] << "." << std::endl;
std::cout << std::endl;
std::cout << "After shuffling, the first point is: " << std::endl;
std::cout << " " << shuffledDataset.col(0).t();
std::cout << "with label " << shuffledLabels[0] << "." << std::endl;
// Generate random weights, then shuffle those also.
arma::rowvec weights(dataset.n_cols, arma::fill::randu);
arma::rowvec shuffledWeights;
mlpack::ShuffleData(dataset, labels, weights, shuffledDataset, shuffledLabels,
shuffledWeights);
std::cout << std::endl << std::endl;
std::cout << "Before shuffling with weights, the first point was: "
<< std::endl;
std::cout << " " << dataset.col(0).t();
std::cout << "with label " << labels[0] << " and weight " << weights[0] << "."
<< std::endl;
std::cout << std::endl;
std::cout << "After shuffling with weights, the first point is: " << std::endl;
std::cout << " " << shuffledDataset.col(0).t();
std::cout << "with label " << shuffledLabels[0] << " and weight "
<< shuffledWeights[0] << "." << std::endl;
π Distributions
mlpack has support for a number of different distributions, each supporting the
same API. These can be used with, for instance, the
HMM
class.
DiscreteDistribution
: multidimensional categorical distribution (generalized Bernoulli distribution)GaussianDistribution
: multidimensional Gaussian distribution
π DiscreteDistribution
DiscreteDistribution
represents a multidimensional categorical distribution
(or generalized Bernoulli distribution) where integer-valued vectors (e.g.
[0, 3, 4]
) are associated with specific probabilities in each dimension.
Example: a 3-dimensional DiscreteDistribution
will have a specific
probability value associated with each integer value in each dimension. So, for
the vector [0, 3, 4]
, P(0)
in dimension 0 could be, e.g., 0.3
, P(3)
in
dimension 1 could be, e.g., 0.4
, and P(4)
in dimension 2 could be, e.g.,
0.6
. Then, P([0, 3, 4])
would be 0.3 * 0.4 * 0.6 = 0.072
.
Constructors
d = DiscreteDistribution(numObservations)
- Create a one-dimensional discrete distribution with
numObservations
different observations in the one and only dimension.numObservations
is of typesize_t
.
- Create a one-dimensional discrete distribution with
d = DiscreteDistribution(numObservationsVec)
- Create a multidimensional discrete distribution with
numObservationsVec.n_elem
dimensions andnumObservationsVec[i]
different observations in dimensioni
. numObservationsVec
is of typearma::Col<size_t>
.
- Create a multidimensional discrete distribution with
d = DiscreteDistribution(probabilities)
- Create a multidimensional discrete distribution with the given probabilities.
probabilities
should have typestd::vector<arma::vec>
, andprobabilities.size()
should be equal to the dimensionality of the distribution.probabilities[i]
is a vector such thatprobabilities[i][j]
contains the probability ofj
in dimensioni
.
Access and modify properties of distribution
-
d.Dimensionality()
returns asize_t
indicating the number of dimensions in the multidimensional discrete distribution. -
d.Probabilities(i)
returns anarma::vec&
containing the probabilities of each observation in dimensioni
.d.Probabilities(i)[j]
is the probability ofj
in dimensioni
.- This can be used to modify probabilities:
d.Probabilities(0)[1] = 0.7
sets the probability of observing the value1
in dimension0
to0.7
. - Note: when setting probabilities manually, be sure that the sum of probabilities in a dimension is 1!
Compute probabilities of points
d.Probability(observation)
returns the probability of the given observation as adouble
.observation
should be anarma::vec
of sized.Dimensionality()
.observation[i]
should take integer values between0
andd.Probabilities(i).n_elem - 1
.
d.Probability(observations, probabilities)
computes the probabilities of many observations.observations
should be anarma::mat
with number of rows equal tod.Dimensionality()
;observations.n_cols
is the number of observations.probabilities
will be set to sizeobservations.n_cols
.probabilities[i]
will be set tod.Probability(observations.col(i))
.
-
d.LogProbability(observation)
returns the log-probability of the given observation as adouble
. d.LogProbability(observations, probabilities)
computes the log-probabilities of many observations.
Sample from the distribution
d.Random()
returns anarma::vec
with a random sample from the multidimensional discrete distribution.
Fit the distribution to observations
d.Train(observations)
- Fit the distribution to the given observations.
observations
should be anarma::mat
with number of rows equal tod.Dimensionality()
;observations.n_cols
is the number of observations.observations(j, i)
should be an integer value between0
and the number of observations for dimensioni
.
d.Train(observations, observationProbabilities)
- Fit the distribution to the given observations, as above, but also provide probabilities that each observation is from this distribution.
observationProbabilities
should be anarma::vec
of lengthobservations.n_cols
.observationProbabilities[i]
should be equal to the probability thatobservations.col(i)
is fromd
.
Example usage:
// Create a single-dimension Bernoulli distribution: P([0]) = 0.3, P([1]) = 0.7.
mlpack::DiscreteDistribution bernoulli(2);
bernoulli.Probabilities(0)[0] = 0.3;
bernoulli.Probabilities(0)[1] = 0.7;
const double p1 = bernoulli.Probability(arma::vec("0")); // p1 = 0.3.
const double p2 = bernoulli.Probability(arma::vec("1")); // p2 = 0.7.
// Create a 3-dimensional discrete distribution by specifying the probabilities
// manually.
arma::vec probDim0 = arma::vec("0.1 0.3 0.5 0.1"); // 4 possible values.
arma::vec probDim1 = arma::vec("0.7 0.3"); // 2 possible values.
arma::vec probDim2 = arma::vec("0.4 0.4 0.2"); // 3 possible values.
std::vector<arma::vec> probs { probDim0, probDim1, probDim2 };
mlpack::DiscreteDistribution d(probs);
arma::vec obs("2 0 1");
const double p3 = d.Probability(obs); // p3 = 0.5 * 0.7 * 0.4 = 0.14.
// Estimate a 10-dimensional discrete distribution.
// Each dimension takes values between 0 and 9.
arma::mat observations = arma::randi<arma::mat>(10, 1000,
arma::distr_param(0, 9));
// Create a distribution with 10 observations in each of the 10 dimensions.
mlpack::DiscreteDistribution d2(
arma::Col<size_t>("10 10 10 10 10 10 10 10 10 10"));
d2.Train(observations);
// Compute the probabilities of each point.
arma::vec probabilities;
d2.Probability(observations, probabilities);
std::cout << "Average probability: " << arma::mean(probabilities) << "."
<< std::endl;
π GaussianDistribution
GaussianDistribution
is a standard multivariate Gaussian distribution with
parameterized mean and covariance.
Constructors
g = GaussianDistribution(dimensionality)
- Create the distribution with the given dimensionality.
- The distribution will have a zero mean and unit diagonal covariance matrix.
g = GaussianDistribution(mean, covariance)
- Create the distribution with the given mean and covariance.
mean
is of typearma::vec
and should have length equal to the dimensionality of the distribution.covariance
is of typearma::mat
, and should be symmetric and square, with rows and columns equal to the dimensionality of the distribution.
Access and modify properties of distribution
-
g.Dimensionality()
returns the dimensionality of the distribution as asize_t
. -
g.Mean()
returns anarma::vec&
holding the mean of the distribution. This can be modified. -
g.Covariance()
returns aconst arma::mat&
holding the covariance of the distribution. To set a new covariance, useg.Covariance(newCov)
org.Covariance(std::move(newCov))
. -
g.InvCov()
returns aconst arma::mat&
holding the precomputed inverse of the covariance. -
g.LogDetCov()
returns adouble
holding the log-determinant of the covariance.
Compute probabilities of points
g.Probability(observation)
returns the probability of the given observation as adouble
.observation
should be anarma::vec
of sized.Dimensionality()
.
g.Probability(observations, probabilities)
computes the probabilities of many observations.observations
should be anarma::mat
with number of rows equal tod.Dimensionality()
;observations.n_cols
is the number of observations.probabilities
will be set to sizeobservations.n_cols
.probabilities[i]
will be set tog.Probability(observations.col(i))
.
-
g.LogProbability(observation)
returns the log-probability of the given observation as adouble
. g.LogProbability(observations, probabilities)
computes the log-probabilities of many observations.
Sample from the distribution
g.Random()
returns anarma::vec
with a random sample from the multidimensional discrete distribution.
Fit the distribution to observations
g.Train(observations)
- Fit the distribution to the given observations.
observations
should be anarma::mat
with number of rows equal tod.Dimensionality()
;observations.n_cols
is the number of observations.
g.Train(observations, observationProbabilities)
- Fit the distribution to the given observations, as above, but also provide probabilities that each observation is from this distribution.
observationProbabilities
should be anarma::vec
of lengthobservations.n_cols
.observationProbabilities[i]
should be equal to the probability thatobservations.col(i)
is fromd
.
Example usage:
// Create a Gaussian distribution in 3 dimensions with zero mean and unit
// covariance.
mlpack::GaussianDistribution g(3);
// Compute the probability of the point [0, 0.5, 0.25].
const double p = g.Probability(arma::vec("0 0.5 0.25"));
// Modify the mean in dimension 0.
g.Mean()[0] = 0.5;
// Set a random covariance.
arma::mat newCov(3, 3, arma::fill::randu);
newCov *= newCov.t(); // Ensure covariance is positive semidefinite.
g.Covariance(std::move(newCov)); // Set new covariance.
// Compute the probability of the same point [0, 0.5, 0.25].
const double p2 = g.Probability(arma::vec("0 0.5 0.25"));
// Create a Gaussian distribution that is estimated from random samples in 50
// dimensions.
arma::mat samples(50, 10000, arma::fill::randn); // Normally distributed.
mlpack::GaussianDistribution g2(50);
g2.Train(samples);
// Compute the probability of all of the samples.
arma::vec probabilities;
g2.Probability(samples, probabilities);
std::cout << "Average probability is: " << arma::mean(probabilities) << "."
<< std::endl;
π Metrics
mlpack includes a number of distance metrics for its distance-based techniques.
These all implement the same API, providing one
Evaluate()
method, and can be used with a variety of different techniques,
including:
Supported metrics:
LMetric
: generalized L-metric/Lp-metric, including Manhattan/Euclidean/Chebyshev distances- Implement a custom metric
π LMetric
The LMetric
template class implements a generalized
L-metric
(L1-metric, L2-metric, etc.). The class has two template parameters:
LMetric<Power, TakeRoot>
Power
is anint
representing the type of the metric; e.g.,2
would represent the L2-metric (Euclidean distance).Power
must be1
or greater.- If
Power
isINT_MAX
, the metric is the L-infinity distance (Chebyshev distance).
TakeRoot
is abool
(defaulttrue
) indicating whether the root of the distance should be taken.- If set to
false
, the metric will no longer satisfy the triangle inequality.
- If set to
Several convenient typedefs are available:
ManhattanDistance
(defined asLMetric<1>
)EuclideanDistance
(defined asLMetric<2>
)SquaredEuclideanDistance
(defined asLMetric<2, false>
)ChebyshevDistance
(defined asLMetric<INT_MAX>
)
The static Evaluate()
method can be used to compute the distance between two
vectors.
Note: The vectors given to Evaluate()
can have any type so long as the type
implements the Armadillo API (e.g. arma::fvec
, arma::sp_fvec
, etc.).
Example usage:
// Create two vectors: [0, 1.0, 5.0] and [1.0, 3.0, 5.0].
arma::vec a("0.0 1.0 5.0");
arma::vec b("1.0 3.0 5.0");
const double d1 = mlpack::ManhattanDistance::Evaluate(a, b); // d1 = 3.0
const double d2 = mlpack::EuclideanDistance::Evaluate(a, b); // d2 = 2.24
const double d3 = mlpack::SquaredEuclideanDistance::Evaluate(a, b); // d3 = 5.0
const double d4 = mlpack::ChebyshevDistance::Evaluate(a, b); // d4 = 2.0
const double d5 = mlpack::LMetric<4>::Evaluate(a, b); // d5 = 2.03
const double d6 = mlpack::LMetric<3, false>::Evaluate(a, b); // d6 = 9.0
std::cout << "Manhattan distance: " << d1 << "." << std::endl;
std::cout << "Euclidean distance: " << d2 << "." << std::endl;
std::cout << "Squared Euclidean distance: " << d3 << "." << std::endl;
std::cout << "Chebyshev distance: " << d4 << "." << std::endl;
std::cout << "L4-distance: " << d5 << "." << std::endl;
std::cout << "Cubed L3-distance: " << d6 << "." << std::endl;
// Compute the distance between two random 10-dimensional vectors in a matrix.
arma::mat m(10, 100, arma::fill::randu);
const double d7 = mlpack::EuclideanDistance::Evaluate(m.col(0), m.col(7));
std::cout << std::endl;
std::cout << "Distance between two random vectors: " << d7 << "." << std::endl;
std::cout << std::endl;
// Compute the distance between two 32-bit precision `float` vectors.
arma::fvec fa("0.0 1.0 5.0");
arma::fvec fb("1.0 3.0 5.0");
const double d8 = mlpack::EuclideanDistance::Evaluate(fa, fb); // d8 = 2.236
std::cout << "Euclidean distance (fvec): " << d8 << "." << std::endl;
π Kernels
mlpack includes a number of Mercer kernels for its kernel-based techniques.
These all implement the same API, providing one
Evaluate()
method, and can be used with a variety of different techniques,
including:
Supported kernels:
GaussianKernel
: standard Gaussian/radial basis function/RBF kernel- Implement a custom kernel
π GaussianKernel
The GaussianKernel
class implements the standard Gaussian
kernel (also called
the radial basis function kernel or RBF kernel).
The Gaussian kernel is defined as:
k(x1, x2) = exp(-|| x1 - x2 ||^2 / (2 * bw^2))
where bw
is the bandwidth parameter of the kernel.
Constructors and properties
g = GaussianKernel(bw=1.0)
- Create a
GaussianKernel
with the given bandwidthbw
.
- Create a
g.Bandwidth()
returns the bandwidth of the kernel as adouble
.- To set the bandwidth, use
g.Bandwidth(newBandwidth)
.
- To set the bandwidth, use
Kernel evaluation
g.Evaluate(x1, x2)
- Compute the kernel value between two vectors
x1
andx2
. x1
andx2
should be vector types that implement the Armadillo API (e.g.,arma::vec
).
- Compute the kernel value between two vectors
g.Evaluate(distance)
- Compute the kernel value between two vectors, given that the distance
between those two vectors (
distance
) is already known. distance
should have typedouble
.
- Compute the kernel value between two vectors, given that the distance
between those two vectors (
Other utilities
g.Gradient(distance)
- Compute the (one-dimensional) gradient of the kernel function with respect
to the distance between two points, evaluated at
distance
.
- Compute the (one-dimensional) gradient of the kernel function with respect
to the distance between two points, evaluated at
g.Normalizer(dimensionality)
- Return the normalizing
constant of
the Gaussian kernel for points in the given dimensionality as a
double
.
- Return the normalizing
constant of
the Gaussian kernel for points in the given dimensionality as a
Example usage:
// Create a Gaussian kernel with default bandwidth.
mlpack::GaussianKernel g;
// Create a Gaussian kernel with bandwidth 5.0.
mlpack::GaussianKernel g2(5.0);
// Evaluate the kernel value between two 3-dimensional points.
arma::vec x1("0.5 1.0 1.5");
arma::vec x2("1.5 1.0 0.5");
const double k1 = g.Evaluate(x1, x2);
const double k2 = g2.Evaluate(x1, x2);
std::cout << "Kernel values: " << k1 << " (bw=1.0), " << k2 << " (bw=5.0)."
<< std::endl;
// Evaluate the kernel value when the distance between two points is already
// computed.
const double distance = 1.5;
const double k3 = g.Evaluate(distance);
// Change the bandwidth of the kernel to 2.5.
g.Bandwidth(2.5);
const double k4 = g.Evaluate(x1, x2);
std::cout << "Kernel value with bw=2.5: " << k4 << "." << std::endl;
// Evaluate the kernel value between x1 and all points in a random matrix.
arma::mat r(3, 100, arma::fill::randu);
arma::vec kernelValues(100);
for (size_t i = 0; i < r.n_cols; ++i)
kernelValues[i] = g.Evaluate(x1, r.col(i));
std::cout << "Average kernel value for random points: "
<< arma::mean(kernelValues) << "." << std::endl;
// Compute the kernel value between two 32-bit floating-point vectors.
arma::fvec fx1("0.5 1.0 1.5");
arma::fvec fx2("1.5 1.0 0.5");
const double k5 = g.Evaluate(fx1, fx2);
const double k6 = g2.Evaluate(fx1, fx2);