🔗 LinearRegression
The LinearRegression
class implements a standard L2-regularized linear
regression model for numerical data, trained by direct decomposition of the
training data. The class offers configurable functionality and template
parameters to control the data type used for storing the model.
Simple usage example:
// Train a linear regression model on random numeric data and make predictions.
// All data and responses are uniform random; this uses 10 dimensional data.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(10, 1000, arma::fill::randu); // 1000 points.
arma::rowvec responses = arma::randn<arma::rowvec>(1000);
arma::mat testDataset(10, 500, arma::fill::randu); // 500 test points.
mlpack::LinearRegression lr; // Step 1: create model.
lr.Train(dataset, responses); // Step 2: train model.
arma::rowvec predictions;
lr.Predict(testDataset, predictions); // Step 3: use model to predict.
// Print some information about the test predictions.
std::cout << arma::accu(predictions > 0.7) << " test points predicted to have"
<< " responses greater than 0.7." << std::endl;
std::cout << arma::accu(predictions < 0) << " test points predicted to have "
<< "negative responses." << std::endl;
Quick links:
- Constructors: create
LinearRegression
objects. Train()
: train model.Predict()
: predict with a trained model.- Other functionality for loading, saving, and inspecting.
- Examples of simple usage and links to detailed example projects.
- Template parameters for using different element types for a model.
See also:
🔗 Constructors
lr = LinearRegression()
lr = LinearRegression(data, responses, lambda=0.0, intercept=true)
lr = LinearRegression(data, responses, weights, lambda=0.0, intercept=true)
- Train model, optionally with instance weights.
Constructor Parameters:
name | type | description | default |
---|---|---|---|
data |
arma::mat |
Column-major training matrix. | (N/A) |
responses |
arma::rowvec |
Training responses (e.g. values to predict). Should have length data.n_cols . |
(N/A) |
weights |
arma::rowvec |
Weights for each training point. Should have length data.n_cols . |
(N/A) |
lambda |
double |
L2 regularization penalty parameter. | 0.0 |
intercept |
bool |
Whether to fit an intercept term in the model. | bool |
As an alternative to passing lambda
, it can be set with the standalone
Lambda()
method: lr.Lambda() = l;
will set the value of lambda
to l
for
the next time Train()
is called.
Note: setting lambda
too small may cause the model to overfit; however,
setting it too large may cause the model to underfit. Automatic hyperparameter
tuning can be used to find a good value of lambda
instead of a
manual setting.
🔗 Training
If training is not done as part of the constructor call, it can be done with the
Train()
function:
lr.Train(data, responses, lambda=0.0, intercept=true)
lr.Train(data, responses, weights, lambda=0.0, intercept=true)
- Train model on the given data, optionally with instance weights.
Types of each argument are the same as in the table for constructors above.
Notes:
-
Training is not incremental. A second call to
Train()
will retrain the model from scratch. -
Train()
returns the mean squared error (MSE) of the model on the training set as adouble
.
🔗 Prediction
Once a LinearRegression
model is trained, the Predict()
member function
can be used to make predictions for new data.
double predictedValue = lr.Predict(point)
- (Single-point)
- Make a prediction for a single point, returning the predicted value.
lr.Predict(data, predictions)
- (Multi-point)
- Make predictions for a set of points.
- The prediction for data point
i
can be accessed withpredictions[i]
.
Prediction Parameters:
usage | name | type | description |
---|---|---|---|
single-point | point |
arma::vec |
Single point for prediction. |
 |  |  |  |
multi-point | data |
arma::mat |
Set of column-major points for classification. |
multi-point | predictions |
arma::rowvec& |
Vector of double s to store predictions into. Will be set to length data.n_cols . |
🔗 Other Functionality
-
A
LinearRegression
model can be serialized withdata::Save()
anddata::Load()
. -
lr.Intercept()
will return abool
indicating whether the model was trained with an intercept term. -
lr.Parameters()
will return anarma::vec&
with the model parameters. This will have length equal to the dimensionality of the model iflr.Intercept()
isfalse
, and length equal to the dimensionality of the model plus one iflr.Intercept()
istrue
. If an intercept was fitted, the intercept term is the first element oflr.Parameters()
. -
lr.ComputeError(data, responses)
will return adouble
containing the mean squared error (MSE) of the model ondata
, given that the true responses areresponses
.
🔗 Simple Examples
See also the simple usage example for a trivial usage
of the LinearRegression
class.
Train a linear regression model in the constructor on weighted data, compute the
objective function with ComputeError()
, and save the model.
// See https://datasets.mlpack.org/admission_predict.csv.
arma::mat data;
mlpack::data::Load("admission_predict.csv", data, true);
// See https://datasets.mlpack.org/admission_predict.responses.csv.
arma::rowvec responses;
mlpack::data::Load("admission_predict.responses.csv", responses, true);
// Generate random instance weights for each point, in the range 0.5 to 1.5.
arma::rowvec weights(data.n_cols, arma::fill::randu);
weights += 0.5;
// Train a linear regression model, fitting an intercept term and using an L2
// regularization parameter of 0.3.
mlpack::LinearRegression lr(data, responses, weights, 0.3, true);
// Now compute the MSE on the training set.
std::cout << "MSE on the training set: " << lr.ComputeError(data, responses)
<< "." << std::endl;
// Finally, save the model with the name "lr".
mlpack::data::Save("lr_model.bin", "lr", lr, true);
Load a saved linear regression model and print some information about it, then make some predictions individually for random points.
mlpack::LinearRegression lr;
// Load the model named "lr" from "lr_model.bin".
mlpack::data::Load("lr_model.bin", "lr", lr, true);
// Print some information about the model.
const size_t dimensionality =
(lr.Intercept() ? (lr.Parameters().n_elem - 1) : lr.Parameters().n_elem);
std::cout << "Information on the LinearRegression model in 'lr_model.bin':"
<< std::endl;
std::cout << " - Model has intercept: "
<< (lr.Intercept() ? std::string("yes") : std::string("no")) << "."
<< std::endl;
if (lr.Intercept())
{
std::cout << " - Intercept weight: " << lr.Parameters()[0] << "."
<< std::endl;
}
std::cout << " - Model dimensionality: " << dimensionality << "." << std::endl;
std::cout << " - Lambda value: " << lr.Lambda() << "." << std::endl;
std::cout << std::endl;
// Now make a prediction for three random points.
for (size_t t = 0; t < 3; ++t)
{
arma::vec randomPoint(dimensionality, arma::fill::randu);
const double prediction = lr.Predict(randomPoint);
std::cout << "Prediction for random point " << t << ": " << prediction << "."
<< std::endl;
}
See also the following fully-working examples:
- Salary prediction with
LinearRegression
- Avocado price prediction with
LinearRegression
- California housing price prediction with
LinearRegression
🔗 Advanced Functionality: Different Element Types
The LinearRegression
class has one template parameter that can be used to
control the element type of the model. The full signature of the class is:
LinearRegression<ModelMatType>
ModelMatType
specifies the type of matrix used for the internal representation
of model parameters. Any matrix type that implements the Armadillo API can be
used.
Note that the Train()
and Predict()
functions themselves are templatized and
can allow any matrix type that has the same element type. So, for instance, a
LinearRegression<arma::mat>
can accept an arma::sp_mat
for training.
The example below trains a linear regression model on sparse 32-bit floating point data, but uses a dense 32-bit floating point vector to store the model itself.
// Create random, sparse 100-dimensional data.
arma::sp_fmat dataset;
dataset.sprandu(100, 5000, 0.3);
// Generate noisy responses from random data.
arma::fvec trueWeights(100, arma::fill::randu);
arma::frowvec responses = trueWeights.t() * dataset +
0.01 * arma::randu<arma::frowvec>(5000) /* noise term */;
mlpack::LinearRegression<arma::fmat> lr;
lr.Lambda() = 0.01;
lr.Train(dataset, responses);
// Compute the MSE on the training set and a random test set.
arma::sp_fmat testDataset;
testDataset.sprandu(100, 1000, 0.3);
arma::frowvec testResponses = trueWeights.t() * testDataset +
0.01 * arma::randu<arma::frowvec>(1000) /* noise term */;
std::cout << "MSE on training set: "
<< lr.ComputeError(dataset, responses) << "." << std::endl;
std::cout << "MSE on test set: "
<< lr.ComputeError(testDataset, testResponses) << "." << std::endl;
Note: dense objects should be used for ModelMatType
, since in general an
L2-regularized linear regression model will not be sparse.