
s.c.r.e.a.m.
System for the Creation of Random Electronic

Adaptive Music

The Orange Lunchbox Brigade
Ryan Curtin

Chad D. Kersey

ECE4884-L04: Prof. David V. Anderson

June 1, 2008

Contents

1 Introduction 2

1.1 Background of Experimental and Random Music 2

1.2 Background of Electronic Music . 3

1.3 Motivation . 3

1.4 Objectives of s.c.r.e.a.m. 4

2 Project Description and Goals 4

2.1 List of Design Goals for the s.c.r.e.a.m. Framework 4

2.2 List of Design Goals for the Simple Implementation of the s.c.r.e.a.m. 5

3 Technical Speci�cations 6

3.1 Modularity . 6

3.2 Simultaneous Playback and Recording . 6

3.3 Output Dependence on Environmental Sensor Data 7

4 Design Approach and Details 7

4.1 Design Approach for the s.c.r.e.a.m. Framework 7

4.2 Design Approach for the Simple s.c.r.e.a.m. Implementation 8

4.3 Interprocess Communication . 9

4.4 Architecture and Functionality of the Brain 10

4.5 Coding and Standards . 11

4.6 Alternatives and Tradeo�s . 12

5 Schedule, Tasks, and Milestones 12

6 Project Demonstration 14

7 Marketing and Cost Analysis 15

7.1 Possible Target Customers . 15

i

7.2 Marketing Ideas . 16

7.3 Cost Analysis . 16

8 Summary 16

ii

Executive Summary

The System for the Creation of Random Electronic Adaptive Music (s.c.r.e.a.m.) is a

framework for the generation and synthesis of random music. Based on the experimental

work of John Cage, Karlheinz Stockhausen, and others who questioned and helped reformu-

late the de�nition of music, the system allows for the generation of any possible genre of

music.

The s.c.r.e.a.m. will interpret prede�ned probabilistic models and use them to in�uence

the structure of the music it creates. These models can be easily con�gured, so that the type

of music the system creates can be easily modi�ed. The s.c.r.e.a.m. is made up of several

smaller components; this modularity allows for further easy modi�cation of the system's

functionality. The framework allows for an arbitrary number of instruments to be used;

the instruments themselves are open-ended and therefore any collection of sounds can be

implemented as an instrument. This allows for almost endless possibilities. The system also

allows for an arbitrary number of environmental sensors that can modify the music.

The framework of the s.c.r.e.a.m. will be written in mainly C and C++, conforming to

C99 and ISO C++ standards. It will be structured as a set of extensible libraries, furthering

modularity and allowing easy design modi�cation.

This project seeks to create the s.c.r.e.a.m. and a simple implementation of it. This

simple implementation will use the s.c.r.e.a.m. framework to create simple music of a single

genre using a small number of instruments. It will have a few environmental sensors; one

of these will be a microphone that can add sounds from the environment into the music.

Once completed, the �nished project will produce simple musical output that can be easily

recognized as music.

1

1 Introduction

1.1 Background of Experimental and Random Music

Experimental, or avant-garde, music is a very loose term for music that lies at or outside the

boundary of traditional music. Artists who have ventured into this category include John

Cage, Karlheinz Stockhausen, Philip Glass, Pierre Boulez, and many others. John Cage,

probably the most well-known experimental musician, experimented in �chance music� [1],

which refers to music where di�erent elements, such as a particular note, are determined

purely by chance. Cage was also proli�c for his other works of experimental music; the most

famous of these was his piece titled 4'33�, which was 273 seconds of silence. More important

than the music developed by composers like Cage, Stockhausen, and others, though, were

the ideas behind their music; Cage, speci�cally, expressed the opinion that music could be

any collection of sounds, and commonly gave performances where random audience noise was

meant to be the actual music. These ideas can be summed up simply in a couple quotations

by Cage and Stockhausen:

�The �rst question I ask myself when something doesn't seem to be beautiful is,

`why do I think it's not beautiful?' And very shortly you discover that there is

no reason.�

John Cage

�I became aware that all sounds can make meaningful language.�

Karlheinz Stockhausen

�I no longer limit myself.�

Karlheinz Stockhausen

2

1.2 Background of Electronic Music

In the past �fty years, electronic music has become a mainstream concept. After the introduc-

tion of instruments like the electronic keyboard in the 1960s, musicians like Jean-Michel Jarre

and Karlheinz Stockhausen began to experiment with electronically-created music [2, 3]. In

the late 1960s and 1970s, synthesizers like the Moog and Minimoog provided a much cheaper

way for musicians to incorporate electronic sounds in music, and they were quickly adopted

and used by such artists and groups as The Monkees, The Beatles, Miles Davis, and Herbie

Hancock, in addition to countless others. Now, in 2008, electronic instruments can be found

in nearly every musical setting, from esoteric avant-garde studio productions to commercial

jingles and advertisements to video game music.

1.3 Motivation

With the recent advent of powerful computing systems, Cage's ideas of �chance music� can

be implemented on a much greater scale than �ipping coins to determine melodies. Over

the last twenty years, several musical systems implemented on computers incorporating a

random element have been designed and put into action. The iMUSE system, created by

LucasArts developers Michael Land and Peter McConnell in the early 1990s [4], was a music

system for video games that synchronized the music with visual action. Dr. Ulf Berggren,

of Uppsala Universitat, developed a system that used a random process to create random

sonatas modeled after those of Mozart [5]. A few patents have been �led on music generation

systems, but no commercial music generation systems exist [6, 7, 8].

Although exploratory work has been done in the �eld of random music generation, none

of these systems provide a truly abstract system for creating any type of random music. Dr.

Berggren's system generates sonatas; this is a small subset of a single genre of music. While

this sonata-generation system is useful, a more useful system would be one that was not

restricted to generating sonatas, but instead could generate any kind of music.

3

1.4 Objectives of s.c.r.e.a.m.

The System for the Creation of Random Electronic Adaptive Music (s.c.r.e.a.m.) exists to

�ll this void. The project seeks to create a framework for a completely open-ended random

music generation system. This system is meant to be able to generate any genre of music

and have as few boundaries as possible limiting what is generated. The system is also meant

to be adaptive; it should include the ability of the music to adapt to its environment using

external sensors. The system is meant to be as modular as possible, so that each component

of the system can be interchanged with another at will. Overall, s.c.r.e.a.m. is an open-ended

tool aspiring to the ideals of experimental musicians like John Cage, Karlheinz Stockhausen,

and others.

However, it should be noted that the s.c.r.e.a.m. is a framework, and unless it is im-

plemented and con�gured properly, it will not produce anything that sounds like today's

de�nition of music. Therefore, this project encompasses the construction of the s.c.r.e.a.m.

framework, as well as a simple implementation to demonstrate its usefulness and abilities.

2 Project Description and Goals

The s.c.r.e.a.m., as its name implies, is a system for the automatic generation of random

music that is a�ected by its environment. While the s.c.r.e.a.m. itself is merely a framework

and not an implementation, this project seeks to design the framework as well as provide

an implementation. A list of straightforward design goals for the s.c.r.e.a.m., given that the

objectives are the construction of the framework and a simple implementation.

2.1 List of Design Goals for the s.c.r.e.a.m. Framework

The s.c.r.e.a.m. framework should:

1. Accept environmental input from sensors as input

4

2. Produce fully synthesized music as output

3. Randomly modify music over time; its output should `evolve'

4. Use sensor input to modify its output

5. Parse con�guration �les for the probabilistic models that are used to generate music

6. Be able to produce output for any possible `instrument'

7. Be as modular as possible, so each possible component can easily be rewritten and

expanded upon

8. Be as con�gurable as possible, so as to allow for any possible type of music

2.2 List of Design Goals for the Simple Implementation of the

s.c.r.e.a.m.

The simple implementation of the s.c.r.e.a.m. should:

1. Generate simplistic music of a single, well-established genre

2. Produce output recognizable as music

3. Use a small number of `instruments', or sound collections, to synthesize the music

4. Be clearly a�ected by its environment and sensor input

5. Include a microphone that uses an adaptive �lter (described below)

The aforementioned microphone functions as a microphone that captures samples of the

external environment and plays them back in the music. It will need to use an adaptive �lter

to �lter out its own output from the voice sensor's input; otherwise, the system will produce

feedback and be unstable.

5

3 Technical Speci�cations

3.1 Modularity

The long-term goals of this project are not to create a particular kind of musical application,

but to create a framework in which many di�erent kinds of musical applications can be

developed. To make this a reality, the components of the system should be as basic as

possible and have well-de�ned interfaces between them. This is so that in the future it will

be possible to combine already-built components in new ways and create new components

to interface with these. Then, many di�erent kinds of musical tools can be created with

minimum e�ort.

This will be realized primarily by creating the project as a collection of small programs

that talk to each other through various kinds of binary FIFOs, which could be pipes, �les,

or network sockets. Good software design practices must also be adhered to; documentation

of every detail of the framework must be extensive and accurate. This modular approach

with extensive documentation will help to ensure and extend the usefulness of the system.

3.2 Simultaneous Playback and Recording

The simple implementation of the s.c.r.e.a.m. proposed for this project includes a micro-

phone. This sensor would record sound from the environment, and play it back through the

system. However, problems arise when this input is in the same environment that the sys-

tem's output is being played into. The system's output will produce an unstable feedback

loop, which is certainly undesirable. The solution choosen to combat this problem is an

adaptive �lter, which will eliminate the system's output from the voice sensor's input and

remove the unstable feedback e�ects.

6

3.3 Output Dependence on Environmental Sensor Data

To truly tailor the music to its surroundings, a simple microcontroller-based sensor module

that communicates with the host computer via a serial port will be developed. The numerical

textual data this creates will be processed by the system and in�uence the music being

produced according to precon�gured probability models.

One environmental sensor has already been created and used by one of the project's

engineers in the past [9]. This sensor is a humidity sensor, and will be retooled for use as a

s.c.r.e.a.m. sensor.

4 Design Approach and Details

4.1 Design Approach for the s.c.r.e.a.m. Framework

The design of the s.c.r.e.a.m. framework, as discussed earlier, is intended to be as modular

as possible. This design paradigm lets a developer replace one component of the s.c.r.e.a.m.

with another, with minimal e�ort. Following this design idea, a top-level abstraction of the

s.c.r.e.a.m. can be seen in Figure 1.

Inst. Synth.

Effects

Inst. Synth.

Inst. Synth.

Inst. Synth.

Brain

Mixer

Mixer

���
���
���

���
���
���

Sensor
Module

. . .

. . .

. . .

.

. . .

Figure 1: Top-level abstraction of s.c.r.e.a.m.

It can be seen in Figure 1 that the �brain� is the controlling unit of the entire system. It

7

accepts input from any number of sensor modules, and the sensor inputs a�ect the output

of the brain. The brain determines the structure of the music (components including cur-

rent chord, current musical structure, form, tempo, and suggested rhythms) and sends this

information to each instrument (denoted �Inst.�). The number of instruments is arbitrary.

Once each instrument uses the information given by the brain to determine what rhythms

and tones it is going to play, it sends this information to its synthesizer (denoted �Synth.�)

and it is turned into PCM audio. This can then be sent to either an e�ects processing mod-

ule (denoted �E�ects�) or directly to an output mixer. An e�ects processing module would

modify the PCM audio stream in any way, and output the modi�ed PCM audio to either

another e�ects processing module or a mixer. A mixer's function is simple; it takes all the

PCM audio inputs it is getting and turns them into one composite PCM output. Then, this

output can either be saved to a �le, played over speakers, or any number of other possibilities.

Any number of mixers in a single system is possible. This has interesting implications; for

example, one brain could be simultaneously controlling four isolated music performances.

The modularity of this system allows for nearly endless possibilities for the output of

the system. With any number of possible instruments, completely di�erent musical ensem-

bles can be constructed; for instance, the system could be using the instruments of an entire

orchestra, or, on the other hand, it could be using only an accordion and a kazoo. The instru-

ments do not even have to be known instruments; they are just a collection of synthesizable

sounds, so any conceivable set of sounds can be used as an instrument.

4.2 Design Approach for the Simple s.c.r.e.a.m. Implementation

The proposed simple implementation of the s.c.r.e.a.m. will follow the top-level abstraction

found in Figure 1. The system will have only one mixer. It will accept PCM audio from

a minimal set of instruments, being controlled by one brain con�gured to produce simple

output that is recognizable as music.

The system will also have a voice sensor with an adaptive �lter, used for simultaneous

8

playback and recording, as discussed earlier. A simple design abstraction for the adaptive

�lter system to be used with the voice sensor can be seen in Figure 2.

Instrument

Filter Coefficients

��
��
��

��
��
��

Controller

����������������

Figure 2: Schematic of adaptive �lter system.

In this �lter design, the output of the system is fed back into the �lter. The �lter

coe�cients are then determined such that when the �lter is convoluted with the microphone's

input, the music output is �ltered out of the microphone's input.

4.3 Interprocess Communication

Because the modular approach chosen for s.c.r.e.a.m., multiple small programs are being

created instead of one large multithreaded application. This approach prevents the rapid

sharing of data structures in memory and creates the necessity for an interprocess com-

munication system. Many methods have been devised over the years to handle di�erent

kinds of communication between processes on the same or di�erent systems, in real time or

asynchronously.

Since the system is meant to be as close to real time as permissible while still maintaining

its modular and network transparent architecture, any method chosen for interprocess com-

munication should make minimum latency a high priority. While shared memory has the

least latency, it also is the least easily extended to network architectures and asynchronous

operation. Named pipes allow a convenient method for local interprocess communication,

9

and can be substituted with �les when an asynchronous method is desired. Also, they are

easily tunneled through network sockets, allowing network transparent operation.

A simple library, scream_ipc, has been designed to handle interprocess communication

though named pipes, sockets, and �les. By creating a data type, scream_pipe_t, that rep-

resents an individual bidirectional data link, and two functions that operate on this, named

pipe_send and pipe_receive, it becomes possible to write backends that operate using

sockets, named pipes, pre-generated �les, or any other method that may be implemented

in the future. This is in line with the modular approach of the s.c.r.e.a.m. framework; a

developer could easily rewrite the code of the scream_ipc library to modify its behavior

without needing to rewrite any of the other components of the s.c.r.e.a.m. framework.

4.4 Architecture and Functionality of the Brain

Most of the modules in the s.c.r.e.a.m. are fairly straightforward. The mixer mixes music;

instruments take musical information and produce music; sensors take environmental data

and send this information to the brain. However, the brain itself is a complicated structure.

On the most basic level, using the speci�cations put forth in the top-level abstraction,

the brain takes environmental data and past output and uses those to generate musical

information, which it sends to each individual instrument.

However, this concept must be elaborated on for this project's implementation of the

brain. The planned implementation will use detailed probabilistic models to compose and

modify the music. These models will be contained in simple text �les, and will contain

probabilities of the form

P (Xn|C1C2...Cn) = x

This gives the probability of the event Xn given any number of conditions C1 through

Cn. However, the list of probabilities is of an arbitrary length, so a full probability tree for

10

each event Xn and condition Cn cannot be created. Therefore, the brain will need to use

statistical inference to estimate the probabilities it has not been given.

This method of statistical inference allows for incredibly simple as well as intensely com-

plicated probabilistic models de�ned in con�guration �les.

4.5 Coding and Standards

C and C++ have been chosen as the primary programming languages for the project, with

Bash shell scripts being used to assemble the components into a working system at runtime

and tear down the components at exit. The target compilers for the C and C++ code

will be the GNU Compiler Collection (gcc) version 4, though conformity to C99 and ISO

C++ standards for the code, to maximize portability, is highly desirable. Building will be

entirely automated with GNU Make, and revision control will be handled by the Concurrent

Versioning System (CVS).

It is intended that the s.c.r.e.a.m. framework will use as few third-party or external

libraries as possible. Therefore, the only third-party libraries to be linked against by the

vast majority of the s.c.r.e.a.m. code should be the C and C++ standard libraries and

POSIX system libraries. However, it would still be useful to use a third-party library for

�nal-stage audio output and mixing. Candidates for a library to be used for this are the

JACK Audio Connection Kit (JACK) and the Simple Directmedia Layer (SDL). Through

abstractions in the s.c.r.e.a.m. code, changing the audio output library being used should

be a trivial task.

The coding standards being followed will have the same strict commitment to modularity

as the system as a whole. Any calls to third-party library functions will be wrapped with

functions or classes that hide any pecularities of the third-party system behind a common

abstraction that can be maintained even if the back-end library is changed.

Portability is also a concern; as a result, the data types of all interfaces will be expressed

in terms of types de�ned in stdint.h, which de�nes types in terms of signedness and bit

11

width (for example, uint8_t is de�ned as an 8-bit unsigned integer). stdint.h was chosen

because it is part of the standard C and C++ libraries. However, stdint.h makes no

guarantee of byte order. This could lead to complications with network interaction between

machines with di�erent endiannesses. This incompatibility is noted, but ignored due to the

overwhelmingly Intel-centric development environment. A solution to this problem would be

to convert all integer data in all data structures transmitted and received into network order;

however, this process adds considerable overhead and complexity to an otherwise seamless

task, so it will not be done.

4.6 Alternatives and Tradeo�s

There is a signi�cant number of tradeo�s involved in creating a system the size of the

s.c.r.e.a.m., many of which a�ect the design of the project deeply. The fundamental spec-

i�cations of the design were an e�ective guide in determining which path to take at each

step of the design process. From the inception of the ideas behind the s.c.r.e.a.m., the goal

has been a modular and loosely cooperating collection of independent processes and not a

single monolithic process. The ability to operate transparently over network connections

further fed into the decision to create s.c.r.e.a.m. as a constellation of programs instead of

a single program, and was a primary factor in the decision to use �rst-in-�rst-out (FIFO)

data structures for interprocess communication.

5 Schedule, Tasks, and Milestones

The work �ow described in Figure 3 breaks down the development of the s.c.r.e.a.m. into

weeks and tasks. Weeks are assigned capital letters beginning with the week of January

20 and skipping the week of March 16, which is assigned an asterisk instead. The �nal

two weeks are referred to by symbols and will not be used for active project development.

Lowercase letters are assigned to tasks, which are either independent or lumped into one of

12

f.

i.

j.

l.

h.

g.

e.

d.

c.

b.

a.

k.

n.

m.

Week: B C D E FA LG H * I J K + #

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����������
����������
����������

����������
����������
����������

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������������
��������������
��������������

��������������
��������������
��������������

�����
�����
�����

�����
�����
�����

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

In
frastru

ctu
re

In
tellig

en
ce

S
en

so
rs

T
ask

Figure 3: Work�ow for s.c.r.e.a.m. development.

three broad categories. These tasks are:

a. De�ne and document all interfaces.

b. Develop basically functional interprocess communication library.

c. Develop an audio output library.

d. Develop a simple sample-based synthesizer.

e. Devise a format for sample sets for the sample-based synthesizer.

f. Develop a synthesizer that plays sound from the microphone without feedback.

g. Develop a minimal instrumentalist.

h. Develop a theoretical basis for the brain.

i. De�ne a �le format for the brain's probability tables.

j. Write a minimal probability table for the brain.

k. Develop and code the brain.

13

l. Add hooks for sensor input to the brain.

m. Build a simple sensor with a serial interface on a protoboard.

n. Test and adjust the prototypical system.

The major milestones in the development of the s.c.r.e.a.m. are the moments when new

combinations of components can be tested and heard. The �rst such milestone will be in the

week of February 17 when the sample-based synthesizer is ready for testing with a simple

instrumentalist to drive it. After that, in the week of February 24, the playback of sound

processed from a microphone input without audible feedback will provide another checkpoint.

By the weekend of March 2, the s.c.r.e.a.m. should make its �rst completely autonomous

sounds. From then on, the development team's only goals are to improve the quality of the

music produced and provide more ways for it to be controlled.

6 Project Demonstration

Demonstration and evaluation of the s.c.r.e.a.m. is simple and complicated at the same

time. To prove that the system works and is functional, one merely needs to run it and

listen to the output, and from there, determine if it is music. However, in-depth evaluation

of the s.c.r.e.a.m. is not so easy. Since the system depends heavily on random values, testing

particular pieces of the system is unreliable. If, for example, the e�ect of the sensors on

the music wanted to be shown, one might consider changing the sensor's input drastically.

Unfortunately, though, this might not always change the music, since the system could

randomly decide to ignore the sensor's input at that point in time.

Instead, quantitative evaluation of the s.c.r.e.a.m. as a whole requires probability analysis

over time. Metrics would need to be designed to measure the music, and would need to be

recorded over time. Sensor stimuli would also need to be recorded and measured over time.

This process is tedious and di�cult, and therefore will not be attempted in this project to

evaluate the system.

14

A better approach to evaluating the system is instead to examine each individual com-

ponent. For example, to evaluate the brain, the musical data being sent to each instrument

should be observed. Again, this will be hard to make conclusions about because it depends

on a random element. However, components like the synthesizers and the mixer should be

much easier to evaluate, since there is no random element in those particular components.

Therefore, this method of examining each module in the s.c.r.e.a.m. will be used to evaluate

its performance.

Qualitative evaluation of the system, though, will be performed by the simple act of

listening to the output. If this output satis�es the design goals established earlier for this

project's particular implementation of the s.c.r.e.a.m., then the project can be classi�ed as

successful.

7 Marketing and Cost Analysis

As a project with primarily aesthetic goals, the s.c.r.e.a.m. does not strive to be marketable

in the same sense that an ingot of copper or a loaf of bread are marketable, or even in

the same sense that a violin is marketable. What the s.c.r.e.a.m. provides is unique form

of expression and a set of tools to accomplish that expression, most of which exist only as

software, and are thus freed from any of the physical restrictions associated with tangible

items.

7.1 Possible Target Customers

The opportunity to experience the s.c.r.e.a.m. on some level is an inalienable right granted

to anyone with a functioning set of ears. Anyone who listens to the sound generated by the

s.c.r.e.a.m. is devoting a portion of their resources to processing this data, and is therefore

the only kind of customer the s.c.r.e.a.m. has a desire to create. Others may take it upon

themselves to obtain the source code and create their own derivative works based on the

15

s.c.r.e.a.m., thus devoting their resources to enhancing the project. These customers are

on a di�erent level, and obtaining them requires a method of spreading knowledge of the

project.

7.2 Marketing Ideas

The primary method of marketing the s.c.r.e.a.m. is simply allowing people to hear the

music it produces. The easiest way to do that is to perform it; devote computing resources

to it and allow it to play on speakers that are within earshot of large numbers of people.

If people who are capable hear it and understand its source, they will want to obtain the

s.c.r.e.a.m. for themselves and perhaps even augment it. Therefore, if it is successful, the

most powerful marketing tool for the s.c.r.e.a.m. is the s.c.r.e.a.m. itself.

7.3 Cost Analysis

Free sample parts that were already on hand will be used to create a sensor system on a

breadboard that had already been obtained for other purposes. Computers that would have

already been running anyway will be used for project development and testing. Therefore,

the cost of the physical components used to make up the s.c.r.e.a.m. rests at an easy zero

dollars.

The Orange Lunchbox Brigade, a team of two engineers, will work tirelessly to

complete the s.c.r.e.a.m. by the set deadlines. As believers in their own product, they hedge

their ability to pro�t on its success. Because of this, they believe it is only fair for all pro�t

produced by s.c.r.e.a.m. to be split evenly between them.

8 Summary

The System for the Creation of Random Electronic Adaptive Music (s.c.r.e.a.m.) is an

open-ended system for the generation of random, environmentally-modi�ed music. Inspired

16

partially by the ideas of John Cage, Karlheinz Stockhausen, and other leading experimental

musicians, the system is meant to be able to create any sort of music, even that which is

currently considered outside the realm of traditional music.

By using a simple top-level abstraction, the s.c.r.e.a.m. framework can be split into four

basic parts: the brain, the instruments, the environmental sensors, and the mixer. The brain

uses the input sent by the environmental sensors as well as the previous output of the entire

system to decide on the structure, form, tempo, rhythm, and chordal structure of the music.

This information is given to each of the instruments, who in turn decide the exact notes and

rhythms that they will play, based on the sent information. These notes and rhythms are

then synthesized and sent to the mixer, which mixes all of the sounds to produce one sound

output.

It should be noted that any number of mixers, instruments, environmental sensors, and

even brains can be used. This allows for endless possibilities in instrumentation, performance,

and composition of the music.

The s.c.r.e.a.m. framework will be a collection of libraries written mainly in C and C++.

The code will conform as closely as possible to C99 and ISO C++ standards, to make the

system portable to almost any computing environment. Each module of the system (brain,

instruments, sensors, and mixers) will be a standalone process which communicates with all

the other processes.

However, this project also encompasses the simple implementation of the s.c.r.e.a.m.

framework. This implementation will create simple music of a speci�ed genre, using a few

simple instruments, one mixer, one brain, and a couple environmental sensors. A humidity

sensor has already been designed and could be used for this purpose. Another planned sensor

is a microphone; however, since the microphone will be in the same environment as the music

is being played in, an adaptive �lter must be used to cancel out any possible feedback e�ects

so that the system will not become unstable.

Overall, the s.c.r.e.a.m. framework will provide a limitless platform for the generation

17

of random music. Depending on the implementation of the system, it could be used to

create engul�ng orchestral works like Vivaldi's `The Four Seasons', or revolutionary artistic

works like Miles Davis' `Bitches Brew', or even bizarre experimental music like Karlheinz

Stockhausen's `Helikopter-Streichquartett'. However, the real beauty of the system lies in its

open-endedness; it is capable, in theory, of designing music far outside the bounds of what

human ears comprehend as music. The possibilities are endless.

18

References

[1] S. C. Funk, �John Cage: Avant-Garde Composer.� http://classicalmusic.suite101.

com/article.cfm/aleatoricperformance, Apr 2006.

[2] S. Surovec, �History of electronic music: - the early years.� http://nmnm.essortment.

com/musicelectronic_rccz.htm, 2002.

[3] K. Stockhausen, �O�cial Short Biography of Karlheinz Stockhausen.� http://www.

stockhausen.org/biography.html, 2004.

[4] �iMuse Island: What's iMuse?.� http://imuse.mixnmojo.com/what.shtml, 2004.

[5] U. Berggren, Ars combinatoria: Algorithmic construction of sonata movements by means

of building blocks derived from W. A. Mozart's piano sonatas. PhD thesis, Uppsala

Universitat, 1995.

[6] R. Curtin, �Automated music generation.� ECE4884-L04: Senior Design Project, Jan

2008.

[7] J. W. Wieder, �Generating music and sound that varies from playback to playback.� U.S.

Patent 7,319,185, Jan 2008.

[8] C. Browne, �System and method for automatic music generation using a neural network

architecture.� U.S. Patent 6,297,439, Aug 1999.

[9] C. D. Kersey, �Humidity sensor with threshold indicator (a last-minute redo).� ECE4175:

Embedded Microcontroller Design, Dec 2007.

19

