
mlpack:

A Vision for an Efficient Prototype-to-Deployment Machine

Learning Library

March 15, 2021

For well over a decade, mlpack has provided efficient implementations of machine learning al-
gorithms in C++ for use both by industry practitioners and researchers. In recent years, modern
trends in the data science software ecosystem have focused on ease of prototyping, and this has
resulted in a significant problem: the complexities of the Python ecosystem mean that deployment
of Python-based data science workflows is often a laborious and complicated task. This problem also
exists with other popular frameworks used for machine learning. In part, this is why the job data
engineer or machine learning engineer exists. But mlpack only requires a modern C++ compiler,
meaning deployment is easy, lightweight, and flexible. This guides our vision for the future: we can
focus on developing mlpack into a library where both prototyping and deployment are easy, thus
alleviating lots of the pain associated with deployment or productization of typical modern machine
learning workflows.

This document gives a quick history of how mlpack got to where it is today (or at least at the
time of this writing), then discusses the problems with current machine learning tools, and finally
provides details and a high-level roadmap for making this vision a reality. All of this roadmap is
pointed at making the following statement true:

mlpack is a library dedicated to demonstrating the advantages and
simplicity of a native-C++ data science workflow.

1 A Quick History

Over the past few decades, the field of machine learning has seen an explosion of interest and
excitement, with hundreds or even thousands of algorithms developed for different tasks every year.
But a primary problem faced by the field is the ability to scale to larger and larger data—since
it is known that training on larger datasets typically produces better results [34]. Therefore, the
development of new algorithms for the continued growth of the field depends largely on good tooling
and libraries that enable researchers and practitioners to quickly prototype and develop solutions [60].
Simultaneously, useful libraries must also be efficient and well-implemented. Up to this point, these
reasons have been the motivation for our development of mlpack in C++.

mlpack was originally created in 2007 as “FASTLib/MLPACK”: a way to showcase the dual-
tree algorithms [31] that were being developed at Georgia Tech. At that time, Python was not yet
a popular choice for data science (and the term ‘data science’ was not in particularly widespread
usage), and scikits.learn (as it was called at that time) [44] had just been created as a Google

1



(a) 2007–2014. (b) 2014–2016. (c) 2016–current.

Figure 1: Logos over the years.

Summer of Code project. C and C++ were popular languages to use for machine learning algorithms:
the Shogun project [61], Shark [37], and Elefant [62] were all implemented in C++, and libraries
like LIBLINEAR [30] and LIBSVM [8] chose C as their implementation language. It was only in the
subsequent years, with the advent of Jupyter notebooks [40] and other tools that aided usability,
that Python became the dominant language for machine learning.

Despite the rise of Python, C++ implementations provided by mlpack still regularly and sig-
nificantly outperform competitors [15, 16, 19, 2, 28]. This led to mlpack positioning itself in 2010
as a library providing a wide variety of efficient, low-overhead implementations of machine learning
algorithms—both standard and cutting-edge algorithms [10]. The choice was also made to depend
on the Armadillo C++ linear algebra library, due to its support for compile-time optimization via
template metaprogramming [56].

Indeed, in the years that followed, many new machine learning algorithms (often tree-based)
were prototyped and/or implemented as part of mlpack: minimum spanning tree computation [41],
fast max-kernel search [24, 23], density estimation trees [49], rank-approximate nearest neighbor
search [50], furthest neighbor search [21, 17], kernel density estimation [32], k-means [45, 13, 29, 35],
and other improvements for tree-based algorithms [22, 12, 11, 51]. Those years also led to several
other development efforts, including:

• an automatic benchmarking system [28]: https://github.com/mlpack/benchmarks),

• an optimization framework now known as ensmallen [14, 20, 6]: https://github.com/

mlpack/ensmallen,

• a visualization toolkit, mlboard: https://github.com/mlpack/mlboard),

• a repository of examples: https://github.com/mlpack/examples,

• a repository of pre-built models: https://github.com/mlpack/models,

• a Probot-based Github bot: https://github.com/mlpack/mlpack-bot, and

• continuous integration configuration: https://github.com/mlpack/jenkins-conf,

as well as several other efforts internal to the mlpack codebase (a collaborative filtering toolkit [2],
a neural network implementation, a reinforcement learning toolkit, an ONNX converter, automatic
bindings for other languages, and so forth). More about mlpack’s development practices and goals
during this era can be found in a few documents from that period [27, 18, 10].

However, it has now been over a decade since mlpack’s design goals have been visited in detail,
and the machine learning software world has changed significantly.

2



Figure 2: The typical prototype-to-deployment lifecycle for data science. Typical tools (bottom row)
focus only on certain steps of the data science pipeline, meaning that multiple tools must be used
together to cover every step of the machine learning lifecycle. mlpack (top row), in C++, can cover
all of these steps with minimal overhead and complexity. In the future, we can improve mlpack’s
support for the deployment process, resulting in mlpack being able to provide a feature-complete
prototype and deployment pipeline.

2 The Current State of Data Science

As machine learning has grown in importance, it is increasingly applied to problems in various
domains; one example is the recent success shown by AlphaFold for protein structure prediction [57].
Other examples include applications in earth sciences [47, 59], telecommunications [9], and even
agriculture [39]. The diversity of problems to which machine learning can be applied is truly huge;
some fascinating examples even include plasma wave classification onboard satellites [64], exoplanet
identification [58, 25, 46], and automated lunar rockfall mapping [7].

Resulting from this widespread applicability, an enormous collection of machine learning libraries
are now available, including well-known libraries such as scikit-learn [44], PyTorch [43], and
TensorFlow [1]. Numerous support libraries are also available; to name a few just in the field of
natural language processing, HuggingFace’s transformers [63], SpaCy [36], and gensim [55] are
widely used. Of course, Python is not the only ecosystem in which machine learning is done: the
R project [48] and the Julia project [5] are popular alternatives. Importantly, all of these tools and
ecosystems focus on making it very simple to prototype and tune a machine learning model, often
inside of an interactive notebook environment such as that provided by the Jupyter project [40].

But a successful application of machine learning to a particular problem generally involves not just

3



modeling, but the entire data science process shown in Figure 2. Most mainstream machine learning
libraries, including the examples above, focus specifically on steps 2 through 6 (data ingestion
through model evaluation), with limited facilities for deployment. When it is time to deploy the
prototype—for instance, to a standalone server or an embedded device—machine learning code inside
of a Jupyter notebook is not easily deployable.

Often, the process of deployment is handled by the researcher handing over their notebook
prototype to a data engineer or machine learning engineer, whose job it is to deploy the model [33].
Sometimes, the entire prototype may need to be rewritten in a different language or using different
tools more amenable to the deployment environment. While some tools in the Python ecosystem
support deployment tasks, e.g., compiling TensorFlow programs to specific devices [38], this process
is often tedious and may require systems knowledge that the original researcher who assembled the
prototype may not possess.

This has led to a machine learning software landscape where prototyping and deployment are
decoupled, with different packages focusing on each individual task. That leads to an inefficient
situation where translation may be required between different toolkits when going from prototyping
to deployment1. The bottom row of Figure 2 shows the steps of the machine learning pipeline that
existing popular machine learning tools are focused on.

One of the primary reasons that the transition from prototype to deployment can be so difficult—
especially when deploying to embedded devices—is the complexity of the environments typically used
for machine learning prototypes. Python, the most popular language for data science tasks [52],
has significant overhead, and a deployment target would need to have a Python interpreter and
all dependencies available (this could require over a gigabyte of storage, plus noticeable memory
overhead at runtime). This is a serious issue for resource-constrained environments, where a full-
fledged Python interpreter may not be feasible. In addition, dependency management may become
a significant issue, as it may be difficult to reconcile the required versions of dependencies for the
prototype and the available versions of dependencies in the deployment environment. Often, the
prototype may even be packaged in a heavyweight Docker container [42], which is of course not an
option in an embedded setting and is inefficient even when it is feasible.

However, virtually every possible deployment environment has one thing in common: a C++
compiler can easily compile device-specific code with no need for the overhead of an interpreter.
Thus, if the data science prototype was originally written in C++, the difficult parts of deployment
would be alleviated: the C++ code could be compiled for use on any device without the need for
significant changes. Dependency issues could be avoided via static linking (if needed).

3 A Vision For The Future

mlpack is uniquely positioned to solve the problems detailed in the previous section. Today, it is
an efficient, easy-to-use C++ machine learning library. But with a little bit of modification and
planning, mlpack’s development could aim towards realizing a better vision that what’s available
today: a unified C++ development environment for data science prototyping and deployment, which
can help remove lots of the pain felt both in industry and academia when trying to move from a
proof-of-concept to a product.

1It’s hard to find an easy citation or hard data, but buy a drink for any industry data scientist and they’re highly
likely to have stories of machine learning projects that failed because converting the prototype to deployment couldn’t
be done, usually because the operations side of the company did not have tooling or expertise to adapt and deploy a
notebook-format Python model, and the data science side was unable to provide something the operations side could
work with.

4



notebook image

Figure 3: Prototyping: a screenshot of mlpack usage in an interactive xeus-cling notebook. The
notebook functions just like a user would expect a Python notebook to function; cells can be run,
then modified and re-run, just as expected.

Removing the deployment barrier is a matter of building upon the decades of work that have
already been invested into the common set of tools used for low-level systems work, while retaining
the fast prototyping interface that is so important for data science.

So, prototyping and development can be done in a familiar environment for data scientists via
the use of xeus-cling interactive C++ Jupyter notebooks2. These C++ notebooks are capable
of the same plotting and exploration functionality that is so important for prototyping, and due to
the nature of C++ being compiled, will generally be more performant than an equivalent Python
notebook. An example of a C++ notebook with mlpack code can be seen in Figure 3.

Then, this exact C++ code can be easily exported from the notebook and directly compiled
for deployment. This workflow is suitable for both large-scale deployments on powerful servers,
and low-power applications where minimizing computational overhead matters. Not only that, the
workflow is simple—there is no need to spend significant amounts of time consulting deployment
documentation that is specific to a toolkit or a library (for instance, TensorFlow’s XLA [38] is a
great example of a very complex but very specific system for model deployment), because a user can
simply invoke a standard set of tools (e.g., a properly-configured C++ compiler). An example of
this is shown in Figure 4. Given the ubiquity of C++, it is even straightforward to embed C++ code
inside of applications written in other languages, as most programming languages have packages to
wrap C++ libraries [4, 26].

Next, we lay out a high-level plan for turning the vision into reality. We highlight nine different
high-level areas that will need work inside and outside of mlpack to successfully realize a prototype-
to-production pipeline with mlpack in C++. Here, we try to keep the goals high-level; individual
details and status for each goal can be found on Github (https://github.com/mlpack/mlpack/)
or the mlpack website (https://www.mlpack.org/).

2See https://github.com/jupyter-xeus/xeus-cling.

5



Figure 4: Deployment: compilation and (truncated) run of the mnist simple mlpack example.
The ./mnist simple binary could be easily deployed now; it would be easy to statically link or
cross-compile depending on the needs of the deployment. This example code simply trains the
model, but it would be easy to write a program that operates as a server that waits for test data,
then issues a prediction.

1. Interactive notebook prototyping support. Via the xeus-cling project, users can easily
develop their models in the same way that they might with a standard Python notebook using
Python tools. This environment is interactive via the incremental cling compiler, and so it can
give quick feedback to users. We already have notebooks deployed on the mlpack homepage at
https://www.mlpack.org/, but there is still more to do: for instance, we could integrate notebook
kernels more closely with our documentation, so that wherever a code snippet is displayed on our
website, there can also be a ‘Run’ button to test it.

2. GPU/accelerator support via bandicoot. Modern machine learning applications are quite
computationally intensive and therefore often make use of accelerator devices such as GPUs. Bandi-
coot, under development at https://gitlab.com/conradsnicta/bandicoot-code/, is meant to
provide an API-equivalent alternative to Armadillo where computation is performed on CUDA or
OpenCL devices. We should help get Bandicoot release-ready, and once that is done, the use of
templates by mlpack and ensmallen should allow easy substitution of Bandicoot types for Armadillo
types—but there will likely be some refactoring necessary. Given the speedups Armadillo regularly
shows over other CPU-based linear algebra toolkits due in part to its template metaprogramming
infrastructure, we can likely expect that when using Bandicoot under mlpack or ensmallen, we can
see significant speedups over other GPU-based machine learning toolkits.

3. Adaptable examples and documentation. A library is only as good as its documentation,
and therefore we should aim to demonstrate many real-world usages of mlpack that users can base
their own code off of. As a bonus, examples are easy to benchmark and compare with other libraries,
showing the speedups inherent in the C++-based approach. We can expand on the examples al-
ready available in the examples repository (https://www.github.com/mlpack/examples/), and
even include example usages of mlpack in other languages. It would even be useful to include some
examples of ensmallen usage without mlpack.

4. Improved compilation time and memory usage. A big problem with using mlpack today

6



is that it requires a lot of resources when compiling (often, 4GB+ of memory is used to compile the
tests). Part of the reason for this is heavy usage of boost and complicated design patterns like the
visitor paradigm [3]. We should replace these, preferring instead to use simple dependencies and
simple design patterns where possible. For instance, in many places, visitors can be replaced with
virtual inheritance. Another tool for reducing memory usage and compilation time is to profile the
compilation process; this should help expose the parts of mlpack that are difficult for the compiler,
and we can then decide how to simplify them. It should (hopefully) be a reasonable goal to say that
compiling an mlpack program should not take more than 1GB of memory.

5. Better support for cross-compilation and lightweight deployment. Users may be de-
ploying mlpack in a wide variety of situations, and we want to have good support for all of these
settings. Thus, we should update our CMake configuration and documentation to make it easy
for users to, e.g., compile an mlpack program for a Raspberry Pi or any other embedded device.
This also probably means bolstering our support for statically compiling programs that use mlpack,
and reducing the size of the compiled code. Goal (4) above is a step in this direction, but we can
go further than that and also make mlpack header-only to ease deployment significantly. (Note
that Armadillo depends on a BLAS/LAPACK library, which will not be header only, so users will
still have to do some linking, but it should only be against BLAS/LAPACK.) We can even include
examples in our examples repository of how to deploy to a low-resource device.

6. Utilities for non-numeric data. Most machine learning algorithms are derived to operate on
some matrix containing real numeric data, but most real-world data is not made up on only numeric
data. This is often handled by conversion and encoding; for instance, many ecosystems have the
concept of a ‘dataframe’ that allows loading arbitrary data types and then seamlessly passing them
off as numeric data to machine learning algorithms. We have some support for this already via
data::Load(), which can provide a data::DatasetInfo that automatically maps string data to
integers. But a more capable dataframe class might be useful; one example in C++ is xframe, from
the XTensor package3. We could extend our support to provide something like xframe, or we could
adapt mlpack so that it can work with xframe dataframes. In any case, it is an important goal that
working with non-numeric data in mlpack feels straightforward, as it does in many other machine
learning ecosystems.

7. Pre-trained state-of-the-art models. We currently have the models repository at https:

//github.com/mlpack/models/. This repository contains ready-to-use implementations of compli-
cated models such as Darknet [54] and YOLO [53], so that users who want to deploy this type of
model don’t need to handwrite it. It could be very useful to include more types of popular mod-
els (for instance, BERT and variants), and even provide pretrained weights and datasets for these
models, so that users don’t need to go through the computationally expensive training process.

8. Automatically-generated bindings: unfortunately, no matter how nice of an interface we
provide, there are many people who (justifiably) think that C++ is too complicated and difficult a
language to use. We can meet these users where they are, by providing an interface in their language
of choice. Currently, we have an automatic binding generation system that provides bindings of
mlpack methods to Python, R, Julia, the command-line, and Go (and there is a PR open for Java

3See https://github.com/xtensor-stack/xframe/.

7



support). There are several ways in which these bindings could be improved: the interface provided
to other languages often does not feel ‘native’—typically, a single function is provided that can do
training, prediction or both, as opposed to providing a class with functions in it. Also, mlpack models
in other languages are typically black boxes: if you train a model in Python, you cannot access its
weights from Python. Support could be added for model introspection in other languages, perhaps
via JSON serialization in cereal. In addition, while it is quite easy to convert a Python usage of
mlpack directly into, e.g., a Julia usage of mlpack, it is a little less clear how to take a Python usage
and convert it to C++ for easy deployment. So we can also aim to improve the documentation for
that process, or even provide utilities that can automatically convert mlpack calls in other languages
to C++.

9. Efficient implementations—both in terms of runtime and memory. This was the original
goal of mlpack, and it still applies today: provide efficient implementations of machine learning
algorithms. The tools and techniques to do this haven’t changed; profilers can be used to identify
slow sections of code and improve them, and low-level implementation tricks can be used to get
additional speed or throughput (SIMD instructions, OpenMP parallelization, etc.). We should
continue to aim to improve the speed of our implementations; this allows us to produce benchmarks
comparing mlpack favorably to alternatives, which in turn makes the argument for a C++-native
data science approach even stronger.

Of course, that is not a comprehensive list, and it’s easy to think of other high-level development
goals that could help us execute on this vision. For those goals we have listed, though, each of
the following sections elaborate and detail individual bullet points. While previously, mlpack was
focused primarily on providing efficient implementations of machine learning algorithms as kind of a
C++ ‘swiss army knife’, we can now change our focus to making the following statement ring true:

mlpack is a library dedicated to demonstrating the advantages and
simplicity of a native-C++ data science workflow.

8



References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16), pages 265–283, 2016.

[2] S. Agrawal, R.R. Curtin, S.K. Ghaisas, and M.R. Gupta. Collaborative filtering via matrix
decomposition in mlpack. In Proceedings of the ICML 2015 Workshop on Machine Learning
Open Source Software, 2015.

[3] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley Longman Publishing Co., Inc., USA, 2001.

[4] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. Cython: The best
of both worlds. Computing in Science Engineering, 13(2):31–39, March 2011.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah. Julia: A fresh approach to numerical
computing, 2015.

[6] S. Bhardwaj, R.R. Curtin, M. Edel, Y. Mentekidis, and C. Sanderson. ensmallen: a flexible
C++ library for efficient function optimization. In Proceedings of the Workshop on Systems
and ML and Open Source Software at NeurIPS 2018, 2018.

[7] V. T. Bickel, C. Lanaras, A. Manconi, S. Loew, and U. Mall. Automated detection of lunar
rockfalls using a convolutional neural network. IEEE Transactions on Geoscience and Remote
Sensing, 57(6):3501–3511, 2019.

[8] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2(3):1–27, 2011.

[9] C. Cui, R. Arian, S. Guha, N. Peyghambarian, Q. Zhuang, and Z. Zhang. Wave-function
engineering for spectrally uncorrelated biphotons in the telecommunication band based on a
machine-learning framework. Physical Review Applied, 12(3):034059, 2019.

[10] R.R. Curtin. The Future of MLPACK. https://www.ratml.org/misc/mlpack_future.pdf.

[11] R.R. Curtin. Faster dual-tree traversal for nearest neighbor search. In International Conference
on Similarity Search and Applications, pages 77–89. Springer, 2015.

[12] R.R. Curtin. Improving dual-tree algorithms. PhD thesis, Georgia Institute of Technology, 8
2015.

[13] R.R. Curtin. A dual-tree algorithm for fast k-means clustering with large k. In Proceedings of
the 2017 SIAM International Conference on Data Mining, pages 300–308. SIAM, 2017.

[14] R.R. Curtin, S. Bhardwaj, M. Edel, and Y. Mentekidis. A generic and fast C++ optimization
framework. arXiv CoRR, abs/1711.06581, 2017.

[15] R.R Curtin, J.R. Cline, N.P. Slagle, M.L. Amidon, and A.G. Gray. MLPACK: A Scalable C++
Machine Learning Library. In BigLearning: Algorithms, Systems, and Tools for Learning at
Scale, 2011.

9



[16] R.R. Curtin, J.R. Cline, N.P. Slagle, W.B. March, P. Ram, N.A. Mehta, and A.G. Gray.
MLPACK: A scalable C++ machine learning library. Journal of Machine Learning Research,
14(Mar):801–805, 2013.

[17] R.R. Curtin, J. Echauz, and A.B. Gardner. Exploiting the structure of furthest neighbor search
for fast approximate results. Information Systems, 80:124 – 135, 2019.

[18] R.R. Curtin and M. Edel. Designing and building the mlpack open-source machine learning
library, 2017.

[19] R.R. Curtin, M. Edel, M. Lozhnikov, Y. Mentekidis, S. Ghaisas, and S. Zhang. mlpack 3: a
fast, flexible machine learning library. Journal of Open Source Software, 3(26):726, 2018.

[20] R.R. Curtin, M. Edel, R.G. Prabhu, S. Basak, Z. Lou, and C. Sanderson. Flexible numerical
optimization with ensmallen, 2020.

[21] R.R. Curtin and A.B. Gardner. Fast approximate furthest neighbors with data-dependent
candidate selection. In Similarity Search and Applications, pages 221–235, 2016.

[22] R.R. Curtin, D. Lee, W. B. March, and P. Ram. Plug-and-play dual-tree algorithm runtime
analysis. Journal of Machine Learning Research, 16(101):3269–3297, 2015.

[23] R.R. Curtin and P. Ram. Dual-tree fast exact max-kernel search. Statistical Analysis and Data
Mining, 7(4):229–253, 2014.

[24] R.R. Curtin, P. Ram, and A.G. Gray. Fast exact max-kernel search, 2013.

[25] A. Dattilo, A. Vanderburg, C. J. Shallue, A. W. Mayo, P. Berlind, A. Bieryla, M. L. Calkins,
G. A. Esquerdo, M. E. Everett, S. B. Howell, D. W. Latham, N. J. Scott, and L. Yu. Identifying
exoplanets with deep learning. II. two new super-earths uncovered by a neural network in k2
data. The Astronomical Journal, 157(5):169, apr 2019.

[26] D. Eddelbuettel and J.J. Balamuta. Extending R with C++: A Brief Introduction to Rcpp. The
American Statistician, 72(1):28–36, 2018.

[27] M. Edel. mlpack open-source machine learning library and community. NIPS 2018 MLOSS
Workshop, 2018.

[28] M. Edel, A. Soni, and R.R. Curtin. An automatic benchmarking system. In NIPS 2014
Workshop on Software Engineering for Machine Learning, 2014.

[29] C. Elkan. Using the triangle inequality to accelerate k-means. In Proceedings of the 20th
international conference on Machine Learning (ICML-03), pages 147–153, 2003.

[30] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for
large linear classification. the Journal of machine Learning research, 9:1871–1874, 2008.

[31] A.G. Gray and A.W. Moore. ‘N-Body’ problems in statistical learning. In Advances in Neural
Information Processing Systems 14 (NIPS 2001), volume 4, pages 521–527, 2001.

[32] A.G. Gray and A.W. Moore. Nonparametric density estimation: Toward computational
tractability. In SIAM International Conference on Data Mining (SDM), pages 203–211, 2003.

[33] DHI Group. Dice tech job report: the fastest growing hubs, roles and skills. 2020.

10



[34] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE Intelligent
Systems, 24(2):8–12, March 2009.

[35] G. Hamerly. Making k-means even faster. In Proceedings of the 2010 SIAM international
conference on data mining, pages 130–140. SIAM, 2010.

[36] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd. spaCy: Industrial-strength Natural
Language Processing in Python, 2020.

[37] C. Igel, V. Heidrich-Meisner, and T. Glasmachers. Shark. Journal of machine learning research,
9(6), 2008.

[38] Alphabet Inc. XLA: Optimizing Compiler for Machine Learning. https://www.tensorflow.

org/xla, January 2021.

[39] A. Kamilaris and F.X. Prenafeta-Boldú. Deep learning in agriculture: A survey. Computers
and Electronics in Agriculture, 147:70–90, 2018.

[40] T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J.B.
Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and Jupyter Develop-
ment Team. Jupyter notebooks—a publishing format for reproducible computational workflows.
In Positioning and Power in Academic Publishing: Players, Agents, and Agendas, pages 87–90,
2016.

[41] W.B. March, P. Ram, and A.G. Gray. Fast Euclidean minimum spanning tree: algorithm,
analysis, and applications. In Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’10), pages 603–612, 2010.

[42] J. Nickoloff. Docker in action. Manning Publications Co., 2016.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library, 2019.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and É. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[45] D. Pelleg and A.W. Moore. Accelerating exact k-means algorithms with geometric reasoning.
In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 277–281, 1999.

[46] R.V. Petrescu, R. Aversa, A. Apicella, and F.I. Petrescu. Nasa data used to discover eighth
planet circling distant star. Journal of Aircraft and Spacecraft Technology, 2(1):19–30, 2018.

[47] M. Pourshamsi, M. Garcia, M. Lavalle, and H. Balzter. A machine-learning approach to polinsar
and lidar data fusion for improved tropical forest canopy height estimation using nasa afrisar
campaign data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 11(10):3453–3463, 2018.

11



[48] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2020.

[49] P. Ram and A.G. Gray. Density estimation trees. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2011), pages 627–
635. ACM, 2011.

[50] P. Ram, D. Lee, W.B. March, and A.G. Gray. Linear-time algorithms for pairwise statistical
problems. In Advances in Neural Information Processing Systems 22 (NIPS 2009), volume 23,
2009.

[51] P. Ram, D. Lee, W.B. March, and A.G. Gray. Linear-time algorithms for pairwise statistical
problems. In NIPS, pages 1527–1535. Citeseer, 2009.

[52] S. Raschka, J. Patterson, and C. Nolet. Machine learning in python: Main developments and
technology trends in data science, machine learning, and artificial intelligence. Information,
11(4):193, 2020.

[53] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 779–788, 2016.

[54] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 7263–7271, 2017.

[55] R. Řeh̊uřek and P. Sojka. Software Framework for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50,
Valletta, Malta, May 2010. ELRA.

[56] C. Sanderson and R.R. Curtin. Armadillo: a template-based C++ library for linear algebra.
Journal of Open Source Software, 1:1–2, 2016.

[57] A.W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Ž́ıdek, A.W.R.
Nelson, and A. Bridgland. Improved protein structure prediction using potentials from deep
learning. Nature, 577(7792):706–710, 2020.

[58] C. J. Shallue and A. Vanderburg. Identifying exoplanets with deep learning: A five-planet
resonant chain around kepler-80 and an eighth planet around kepler-90. The Astronomical
Journal, 155(2):94, jan 2018.

[59] A. W. Smith, I. J. Rae, Claire Forsyth, D. M. Oliveira, M. Freeman, and D. Jackson. Prob-
abilistic forecasts of storm sudden commencements from interplanetary shocks using machine
learning. Social Work, 18, 2020.

[60] S. Sonnenburg, M.L. Braun, C.S. Ong, S. Bengio, L. Bottou, G. Holmes, Y. LeCun, K.R. Müller,
F. Pereira, C.E. Rasmussen, G. Rätsch, B. Schölkopf, A. Smola, P. Vincent, J. Weston, and
R. Williamson. The Need for Open Source Software in Machine Learning. Journal of Machine
Learning Research, 8:2443–2466, December 2007.

[61] S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder,
C. Gehl, and V. Franc. The SHOGUN machine learning toolbox. The Journal of Machine
Learning Research, 11:1799–1802, 2010.

12



[62] C. Webers, K. Gawande, A. Smola, C.H. Teo, J.Q. Shi, J. Yu, J. McAuley, L. Song, Q. Le, and
S. Guenter. Elefant release 0.4. 2009.

[63] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. HuggingFace’s Transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771, 2019.

[64] S. Yagitani, T. Toda, I. Nagano, K. Hashimoto, T. Okada, H. Matsumoto, and M. Tsutsui.
Neural network for plasma wave classification onboard satellite. In ISAP 1996 - International
Symposium on Antennas and Propagation, volume 3, pages 721–724, January 1996.

13


