
Scientific/Technical/Management Plan
NASA expects over 100PB of data projected to be generated in its space science missions each year
[42]. But since most of this data are generated on spacecraft, there is a bottleneck: it is expensive
and sometimes infeasible to return the data to ground-based systems for processing. Given the
NASA Strategic Plan’s focus on the use of computationally expensive machine learning and artificial
intelligence techniques [41], the use of lightweight and efficient data analysis techniques directly
on the spacecraft is necessary. The importance of this is highlighted by the existence of research
groups like JPL’s MLIA [40] and the commercial AI solutions of companies like BAE [9], OCE
Technology [44], and Edge Impulse [15].

However, in this setting, the machine learning software ecosystem is lacking. The specific
hardware needs of spaceflight applications prevents the use of many common machine learning
packages, and the balkanized complexity of the modern spaceflight hardware ecosystem makes
deployment of machine learning models difficult due to poor/nonexistent documentation and dis-
coverability of solutions.

Following both Recommendations 10 (novel computational techniques) and 11 (community
education) of the 2024 SMD Strategy for Data Management and Computing for Groundbreaking
Science [42], we propose a solution to this problem: the lightweight mlpack C++ machine learning
library [21], already used in spaceflight applications [27, 28], is a promising and popular solu-
tion for low-resource machine learning deployments. mlpack uses the standard C++ compilation
toolchain, and does not have onerous dependency requirements, which makes its integration in
complex spaceflight applications trivial. We will extend the scope of low-resource devices that
mlpack supports, enabling researchers to deploy mlpack to almost any commonly-used spaceflight
computer. More importantly, we will focus on education and onboarding by developing tutorials,
case studies, and seminars demonstrating the use of mlpack on resource-constrained devices, giving
researchers an easy starting point for their particular task.

Prototyping
◦ Feature engineering, data collection
◦ Modeling and model selection
◦ Model evaluation and visualization

Typical non-constrained deployment
◦ Package prototype as-is and deploy
◦ Possible implementation language adaptation

Low-resource deployment (spaceflight, IoT, embedded, etc.)
◦ Reimplement in target language (C/C++)
◦ Quantize/compress for low-resource environment
◦ Adapt and optimize for hardware compatibility
◦ Cross-compile code for device deployment
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Figure 1: The data science workflow for low-resource and embedded devices (for example, spacecraft). When
deploying to low-resource devices instead of typical targets such as cloud environments or Docker containers, the
process is significantly more complex. Software that was used for prototyping often cannot be used in the deployment
environment, necessitating time-consuming rewrites that are specific to the deployment hardware.
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Figure 2: High-level solutions such as Python, R, Julia, and GNU Octave require heavyweight language runtimes.
This causes the size of any machine learning solution to be orders of magnitude larger than a simple C++-based solution
using mlpack. Here, we have measured the size of a Docker container containing only the code necessary to perform
inference using a simple pretrained logistic regression model. The model size is 200KB and predicts the language of
given input text using extracted features from that text.

Deployment difficulties for spaceflight machine learning
Researchers and practitioners have extremely limited time, and so it is very important to provide
a simple set of tools that allow an idea to be quickly turned into production-ready code. This is
a large part of what propelled Python to become the dominant language for machine learning: a
focus on ease-of-use and adaptable examples [16, 52, 48]. But in the setting of resource-constrained
machine learning, few simple tools exist, for several reasons:

• Standard solutions are not suitable for spaceflight computers. Typical Python-based
solutions that scientists may be familiar with, such as PyTorch [46], TensorFlow [2], and
scikit-learn [47] (to name only a few) are designed for prototyping and have too much overhead
for low-resource deployments, due to the heavyweight Python runtime environment. Even
popular non-Python solutions such as Julia [14], R [50], and MATLAB [30] (or the open-
source equivalent, GNU Octave [23]) cannot be used, for the same reason. Figure 2 shows the
total size of a machine learning deployment for a simple pretrained logistic regression model
(of size 200KB). The Perseverance Mars Rover’s computer has only 128MB RAM [51], and
the James Webb Space Telescope uses a RAD750 with 44MB RAM [36]. As such, only the
smaller mlpack application could be used for on-device machine learning.

• On-device learning is often unsupported. There are numerous solutions for neural net-
work inference on low-resource devices; TFLite [59], TFLite-micro [22], ExecuTorch [49],
the ONNX Runtime [11], and ArmNN [7] all allow neural network inference on a wide
variety of devices. On-device learning is not possible with these toolkits; only inference
is supported. But, in a spaceflight application, training or fine-tuning is often necessary or
desired functionality [57, 62, 18, 12].
Furthermore, standard classical machine learning algorithms such as decision trees, nearest
neighbor search, and other common algorithms are not easily implementable in the neural
network paradigm, and the tools above cannot be used for them. Even common preprocessing
tools that may be used as a first step before a machine learning solution, such as PCA [56],
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or simple data scaling and normalization, are not available and if a workflow needs these
components, they must be manually implemented.

• Spaceflight processors are not standard hardware. Space-rated computers often have
non-standard ISAs (instruction set architectures), typically due to the need for radiation-hard
equipment. The popular RAD750, which contains a PowerPC CPU, is used in over 100
satellites [10], and numerous other COTS spaceflight computing solutions contain PowerPC
CPUs [29, 39]. The LEON line of SPARC CPUs [25] was recently selected for the SpaceLo-
gistics MRV and MEP [17], and is used in the ESA’s Galileo satellites [24]. Older space-grade
CPUs like the Mongoose-V, which uses the MIPS ISA [58], are still in use on missions like
TIMED [34] and New Horizons [35].
But software availability for these architectures is limited; most languages’ package managers
do not support PowerPC, SPARC or MIPS. Most packages on the Python Package Index
(PyPI) [1] do not provide packages for these architectures, making deployment of Python-
based applications to these architectures especially cumbersome or even entirely infeasible.

• Tooling for embedded hardware is opaque, difficult, and sometimes not open-source.
The most widely used hardware accelerators, Nvidia GPUs, are programmed with the closed-
source CUDA language [43], and the majority of machine learning toolkits have robust
support for these devices. Outside of the CUDA world, the software landscape is much
more complicated. Other GPUs are often programmed with incompatible vendor-specific
languages, such as AMD’s HIP/ROCm [13], Intel’s oneAPI [32], or Apple’s Metal [4].
Often, machine learning libraries do not have direct support for this wide array of technolo-
gies. For example, to use TensorFlow with HIP/ROCm, the primary option is the use of a
custom Docker container that contains a fork of TensorFlow maintained by AMD [3]. Use
outside of a Docker container may require custom compilation. Similarly, PyTorch does not
support Intel oneAPI directly, but instead a separate Intel-maintained extension to PyTorch
must be built and installed manually [31].
The landscape for low-resource and embedded CPUs is similarly fragmented. For example,
ARM’s Cortex processors contain specific extensions for numerical computing, and these are
supported via ARM’s CMSIS library [6] and its associated neural network support library
(CMSIS-NN) [8], which provides fast implementations of neural network operations. But,
CMSIS-NN is not integrated with any common machine learning toolkit, and the ARM-
provided documentation suggests a by-hand reimplementation of neural networks using
low-level functions [5]. This necessitates a time-consuming and tedious manual conversion.

Easing spaceflight machine learning deployments with mlpack
These problems create a challenging landscape for the deployment of machine learning models
on spacecraft. Currently, these problems are often solved by complex solutions specific to each
individual use case, but this is not a good approach; it is much better to instead use simple,
easy-to-use, composable tools that tap into researchers’ existing knowledge. This is the UNIX
philosophy [54, 53] that underlies so much of modern computing. Libraries like mlpack use
this ideal of simplistic, modular design to ease onboarding for new users and to provide painless
integration with existing software development processes.
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We propose to lower the barrier for spaceflight deployments of machine learning further, by
improving the accessibility and discoverability of mlpack and related projects in the C++ data
science ecosystem. We will take a two-pronged approach:
(1) Robust support for a variety of spaceflight-grade hardware solutions. Although mlpack has
support for cross-compilation to a wide variety of devices, for some computing platforms used in
spaceflight applications, it does not provide a turn-key solution, and it may not take advantage of all
possible hardware accelerations. We will rectify this by adding out-of-the-box configuration tooling
for common spaceflight computing platforms, and supporting specific hardware accelerations on
both CPUs and GPUs:

• Improved CMake toolchain support for cross-compilation. Currently mlpack provides direct
support for a collection of boards including Raspberry Pis, Nvidia Jetsons, and RISC systems.
Cross-compilation for these devices requires only specifying a single CMake flag. We will
expand the set of directly supported devices to include a collection of COTS spaceflight
computing solutions, including those mentioned earlier.

• BF16/FP16 support for mlpack and Armadillo. To support low-power machine learning, the
use of low-precision numeric formats is common, either with 16-bit IEEE754 (FP16) or the
more recent ‘brain floating point’ (BF16) formats [26, 33]. We will extend the Armadillo
linear algebra library [55] to include FP16/BF16 support, both via recent low-precision
extensions to OpenBLAS [61] and custom implemenations as needed. Due to mlpack’s
modularity [19], deployment of BF16 models will be trivial.

• Expanded GPU support via Bandicoot. mlpack already has support for some GPU machine
learning algorithms via the CUDA and OpenCL backends of the Bandicoot GPU linear
algebra library [20]. These implementations are tuned towards high-power desktop GPUs.
We will extend the support of Bandicoot to low-power GPUs such as the ARM Mali line,
by adding support for low-precision floating point types (FP16/BF16/FP8/BF8) and tuning
Bandicoot’s implementations for low-power GPUs.

(2) Demonstrations, examples, showcases, and documentation. When developing a solution,
practitioners often try to start with examples (for instance, a Stack Overflow snippet [60]), and
adapt them to the needs of their situation. As such, we will produce a significant number of turnkey
mlpack solutions that will enable users to quickly get started.

• Step-by-step deployment tutorials. To assist prospective users, we will develop at least five
end-to-end tutorials, structured as a narrative walkthrough of the process of deploying a
prototype to a low-resource device. Each tutorial will target different hardware and use
a different machine learning model class. All tutorials will be motivated by real-world
spaceflight machine learning applications, including existing spaceflight uses of mlpack [27,
28]. These will be made available as online posts (e.g. on Medium), video tutorials (e.g. on
Youtube), or standalone PDFs (e.g. on arXiv).

• Showcases and examples. Since some users prefer to start specifically with working code
and adapt as necessary, we will enhance the mlpack examples repository [38] to include at
least five additional fully-working examples demonstrating the use of mlpack on low-resource
devices. All code will be fully commented to allow fast adaptation.
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Task Time estimate

Improved CMake toolchain support 80 hours
BF16/FP16 support for Armadillo 450 hours
Expanded GPU support via Bandicoot 450 hours
Step-by-step deployment tutorials 300 hours
Showcases and examples 300 hours
User-facing documentation improvement 300 hours
Seminar preparation/delivery 80 hours

Total 2000 hours

Table 1: Expected time estimates for each proposed work item.

• User-facing documentation improvement. When adapting examples to a new use case, users
depend on high-quality API documentation to figure out how to change their code. We will
review mlpack’s existing API documentation, filling in any gaps for undocumented methods
and adding notes as necessary for embedded applications.

• Seminars for interested NASA practitioners. We will coordinate with NASA Field Centers
and Development Centers (e.g., JPL, GSFC, etc.) to identify groups who are using mlpack
already or who could benefit from mlpack, and provide in-person training sessions or webinars
to help them achieve their science goals. In addition to being a direct help to NASA groups,
we also expect to gather important information about relevant development directions and
needs that we can address in future work.

Timing and resource breakdown. We plan for two long-term mlpack contributors to perform the
work proposed, both at a rate of 0.5 FTE for one year, totaling 2000 hours of work. Table 1 shows
the expected time costs of each component of our proposal.

Project management. mlpack is a community-led open source project licensed under the per-
missive 3-clause BSD license [45], and accepts contributions from anyone. Significant decisions
are done by simple majority vote from project contributors. Development is done on Github, and
mlpack documentation and resources can be found on the mlpack website [37].

Impact and conclusion. The huge amount of data being generated by space science missions
necessitates data analysis and machine learning directly on spacecraft using low-power, resource-
constrained hardware. Expanding mlpack’s support to cover this wide range of devices and creating
ready-to-use turnkey examples and case studies directly enables scientists supporting the SMD to
deploy advanced machine leaare using.rning solutions to spaceflight computing systems. Our
proposal advances the accessibility and discoverability of mlpack and the wider low-resource C++
data science ecosystem, and directly develops open scientific analysis platforms, in line with the
TOPS goals of the SMD’s OSSI support. We envision—and are not far away from!—a landscape
where scientists do not have to navigate an ever-changing, mystifying matrix of incompatible
hardware and software, and can write their machine learning applications in a simple way and
deploy them to whatever hardware they are using.
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