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1 Introduction

The Hoeffding tree (or ‘streaming decision tree’) is a decision tree induction
technique that builds a decision tree on streaming data [2]. The general idea is
that Hoeffding bounds can be used to select high-confidence splitting features
on the fly, before seeing all samples. This makes the technique applicable to
especially large datasets.

However, the available implementation in VFML [4] is not particularly ro-
bust or extensible; therefore, I have implemented the Hoeffding tree in mlpack
[1]. Documentation for how to use the mlpack implementation is contained
inside the library, and not here.

This document is concerned with benchmarking the performance and effi-
cacy of the mlpack Hoeffding tree implementation. Because these performance
numbers will change over time, this document is organized in a time-ordered
fashion, with the oldest simulations and results first, followed by documenta-
tion of the changes performed, followed by more simulations.

2 Week of Nov. 1 2015: batch mode

This week has seen the implementation of ‘batch mode’ learning, wherein the
training set is seen in full before each split of the tree (so the Hoeffding bound
is ignored), and then the training set is recursively passed to the leaves, which
then split after they have seen the full training set that falls into the region
represented by that leaf. This process then repeats until there is no longer
any benefit from splitting (according to information gain or Gini impurity, or
whatever the fitness function is), or until the leaves see fewer than some number
of points (call this l, the ‘leaf size’).

The goal of this process was to improve the efficacy of Hoeffding trees to
come closer to the results of C5.0. Informally, on the covertype dataset [5],
C5.0 achieves something like 5% test error, whereas streaming-mode Hoeffding
trees appeared to achieve more like 20-40% test error, which is less good.
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For testing batch mode, which for now we will do only on the 581012x54
covertype dataset, we will split the dataset into 75% training set, 25% testing
set, and then train the tree, giving the resulting accuracy on the training set
and on the test set. We have a handful of parameters we can vary:

• The training mode: ‘batch’ or ‘streaming’

• The numeric feature splitting strategy: ‘domingos’ (the original), or ‘bi-
nary’ (a slower but better split [3])

• When in batch mode, the leaf size l

• When in streaming mode, the number of passes over the training set p

• When in streaming mode, the confidence c before a split

A note about the leaf size l: a leaf size of l does not mean that every leaf
in the decision tree has seen l or fewer training points. Instead, that is merely
a limit for splitting. Nodes may not be split at higher levels if it does not give
any gain. l simply sets a bound on how much a node can split.

While obtaining data with a leaf size of 1 using the ‘binary’ split, extreme
variance in test set error and overfitting was seen. This is not particularly
surprising; Table 1 shows the high variability of test errors.

trial training accuracy test accuracy
0 99.097% 69.102%
1 99.097% 60.758%
2 99.097% 79.002%
3 99.097% 63.135%
4 99.097% 58.582%
5 99.097% 70.016%
6 99.081% 84.367%
7 99.081% 62.342%
8 99.081% 92.707%
9 99.081% 93.025%

Table 1: Training and test accuracies for ten trials of the Hoeffding tree with the
‘binary’ split with l = 1; 75%/25% train/test split, on the covertype dataset.

Building on this, Table 2 reports simulation results on the covertype dataset
for different splits, training strategies, l, and p.1 In these simulations, c was not
varied, because the goal here is to determine when overfitting is occuring, and
if it can be mitigated.

1Due to the binning strategy of the ‘domingos’ split, it does not make sense to do very
small l: the strategy looks at l points, then splits into m equal-sized bins (in these simulations
m = 10, arbitrarily) based on the smallest and largest of the l points seen so far. So l = 1
gives zero-width bins, and very small l is not likely to give decent bins. For streaming mode,
the strategy looks at 100 points before binning (again, arbitrary).
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split mode l p training accuracy testing accuracy
domingos streaming – 1 72.291% ± 00.883% 69.217% ± 03.281%
domingos streaming – 2 74.035% ± 00.741% 72.101% ± 02.146%
domingos streaming – 3 75.458% ± 00.563% 72.689% ± 01.622%
domingos streaming – 4 77.054% ± 00.722% 71.921% ± 02.370%
domingos streaming – 5 78.177% ± 00.625% 73.251% ± 03.402%
domingos streaming – 10 81.237% ± 00.478% 77.135% ± 02.980%
domingos streaming – 25 85.533% ± 00.349% 79.331% ± 04.436%
domingos streaming – 50 88.943% ± 00.356% 81.096% ± 04.558%
domingos streaming – 100 91.872% ± 00.282% 77.199% ± 03.695%

binary streaming – 1 72.138% ± 00.291% 66.506% ± 04.859%
binary streaming – 2 74.296% ± 00.178% 62.952% ± 07.335%
binary streaming – 3 75.644% ± 00.236% 65.761% ± 05.099%
binary streaming – 4 76.706% ± 00.425% 65.226% ± 04.803%
binary streaming – 5 77.540% ± 00.466% 63.710% ± 05.756%
binary streaming – 10 80.891% ± 00.263% 58.031% ± 08.406%
binary streaming – 25 85.967% ± 00.157% 65.151% ± 09.045%
binary streaming – 50 89.825% ± 00.200% 72.157% ± 11.889%
binary streaming – 100 93.201% ± 00.105% 76.666% ± 11.431%

domingos batch 5 – 97.330% ± 00.156% 75.406% ± 06.234%
domingos batch 10 – 95.393% ± 00.240% 79.543% ± 05.050%
domingos batch 25 – 91.493% ± 00.328% 78.392% ± 03.899%
domingos batch 50 – 88.370% ± 00.364% 79.322% ± 04.298%
domingos batch 100 – 84.870% ± 00.381% 78.114% ± 04.273%
domingos batch 250 – 80.233% ± 00.337% 75.909% ± 03.109%
domingos batch 500 – 76.948% ± 00.516% 71.594% ± 02.915%
domingos batch 1000 – 74.928% ± 00.759% 73.510% ± 09.285%

binary batch 1 – 99.081% ± 00.001% 77.130% ± 12.152%
binary batch 2 – 99.091% ± 00.000% 79.796% ± 09.769%
binary batch 5 – 99.115% ± 00.000% 73.261% ± 15.864%
binary batch 10 – 98.094% ± 00.000% 68.779% ± 07.513%
binary batch 25 – 95.943% ± 00.000% 69.865% ± 10.309%
binary batch 50 – 93.569% ± 00.126% 70.853% ± 13.196%
binary batch 100 – 90.872% ± 00.000% 70.455% ± 11.724%
binary batch 250 – 86.336% ± 00.000% 67.873% ± 07.003%
binary batch 500 – 83.181% ± 00.000% 69.625% ± 07.065%
binary batch 1000 – 79.809% ± 00.000% 64.902% ± 03.419%

Table 2: Hoeffding tree efficacy on the covertype dataset; 75%/25% train/test
split; 10 trials.
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These results are not what I expected. They make some amount of sense
for the ‘domingos’ split, but for the ‘binary’ split, it really appears like some-
thing is wrong, like a bug in the program; the test accuracy is never anywhere
near close to the training accuracy—especially in the streaming setting. The
standard deviation is also huge, making the ‘binary’ results hard to interpret.
A worthwhile next thing to do, then, will be to compare these results with the
VFML implementation.

3 Week of Nov 8 2015: VFML and C5.0 com-
parison

In order to make sense of the results above, it would be prudent to compare
against the VFML implementation to ensure that the results are similar.

mode p training accuracy testing accuracy
streaming 1 68.215% ± 0.495% 68.228% ± 0.599%
streaming 2 69.340% ± 0.253% 69.346% ± 0.274%
streaming 3 70.699% ± 0.309% 70.606% ± 0.293%
streaming 4 71.553% ± 0.293% 71.478% ± 0.283%
streaming 5 72.091% ± 0.177% 72.031% ± 0.212%
streaming 10 73.819% ± 0.195% 73.662% ± 0.132%
streaming 25 76.919% ± 0.230% 76.599% ± 0.256%
streaming 50 79.424% ± 0.220% 78.914% ± 0.277%
streaming 100 82.873% ± 0.213% 82.077% ± 0.222%
streaming 250 87.844% ± 0.118% 86.385% ± 0.169%
streaming 500 91.563% ± 0.106% 89.286% ± 0.104%

batch – 59.753% ± 9.750%

Table 3: Results of VFML toolkit in streaming and batch mode, with 75%/25%
train/test split. l is pegged to 5 for batch mode.

In addition, to set the goals for what kind of accuracy we are looking for,
we can compare against the GPL C5.0 implementation. In Table 3, results are
given for C5.0. C5.0 also supports bagging, so the parameter t, the number of
trees, is swept across several values. Pre-pruning is also an option; this specifies
the minimum number p of training points a node must see to be included in
the tree; this presumably prevents overfitting. In these trials, only one run was
performed, so variance numbers do not exist.

These results from C5.0, and the earlier results from VFML, are a little
more in line with the expected results, with significantly less noise. This means
that there is likely to be a bug in the mlpack implementation, and therefore
reducing the test variance or replicating the VFML results more precisely is the
first priority.
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b p training accuracy test accuracy
1 – 98.1% 94.2%
3 – 99.3% 94.8%
4 – 99.5% 95.5%
5 – 99.8% 95.8%
10 – 100.0% 96.7%
25 – 100.0% 97.0%
50 – 100.0% 97.1%
100 – 100.0% 97.2%
1 5 96.9% 93.5%
1 10 95.3% 92.3%
1 25 92.4% 90.3%
1 50 89.5% 88.0%
1 100 86.1% 85.2%
1 250 82.0% 81.5%
1 500 78.2% 77.8%
1 1000 75.6% 75.5%

Table 4: Performance of C5.0 on the covertype dataset, with a 75%/25%
train/test split, varying the number of trees in the forest (b) and the pre-pruning
parameter p.

4 Week of Nov 15 2015: reducing test variance

A large amount of investigation and searching for bugs has revealed several
possibilities for explaining the huge test variance of the mlpack implementation
and other differences when compared to the VFML implementation:

1. --max samples being used incorrectly and accidentally set artifically too
low during the previous tests

2. the use of the Gini impurity as opposed to the information gain

3. allowing only one possible split per dimension, which could cause the Ho-
effding bound to choose a split that wasn’t the best in a certain dimension

4. a suboptimal numeric split procedure that differs from VFML

Of these, item (1) is easy to fix, item (2) was fixed in 66592fa, item (3) was
fixed in 81a8b6c and 278a5f8, and (4) has not yet been approached. However, it
turns out that the real issue was that the test data was being loaded improperly.
This was fixed in 967e230. Now, we can actually start generating meaningful
results.
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split mode gain l p training accuracy testing accuracy
domingos streaming gini – 1 71.220% ± 0.486% 71.147% ± 0.547%
domingos streaming gini – 2 73.313% ± 0.397% 73.072% ± 0.486%
domingos streaming gini – 3 74.585% ± 0.736% 74.224% ± 0.769%
domingos streaming gini – 4 75.291% ± 0.361% 74.839% ± 0.326%
domingos streaming gini – 5 76.220% ± 0.319% 75.684% ± 0.402%
domingos streaming gini – 10 78.954% ± 0.593% 78.018% ± 0.703%
domingos streaming gini – 25 83.759% ± 0.635% 81.641% ± 0.673%
domingos streaming gini – 50 87.333% ± 0.470% 83.675% ± 0.681%
domingos streaming gini – 100 91.233% ± 0.220% 84.847% ± 0.390%
domingos streaming gini – 250 95.018% ± 0.199% 84.432% ± 0.520%
domingos streaming gini – 500 97.190% ± 0.151% 83.068% ± 0.834%
domingos streaming gini – 1000 99.157% ± 0.029% 82.548% ± 0.521%
domingos streaming info – 1 67.897% ± 0.278% 67.905% ± 0.272%
domingos streaming info – 2 68.421% ± 0.320% 68.478% ± 0.325%
domingos streaming info – 3 68.876% ± 0.260% 68.846% ± 0.324%
domingos streaming info – 4 69.422% ± 0.574% 69.439% ± 0.627%
domingos streaming info – 5 70.066% ± 0.263% 70.013% ± 0.295%
domingos streaming info – 10 71.508% ± 0.599% 71.368% ± 0.626%
domingos streaming info – 25 74.729% ± 0.572% 74.347% ± 0.649%
domingos streaming info – 50 77.710% ± 0.421% 77.029% ± 0.440%
domingos streaming info – 100 80.886% ± 0.641% 79.566% ± 0.630%
domingos streaming info – 250 85.656% ± 0.487% 82.529% ± 0.529%
domingos streaming info – 500 89.247% ± 0.325% 84.072% ± 0.497%
domingos streaming info – 1000 91.978% ± 0.198% 84.545% ± 0.383%
domingos batch gini 5 – 97.328% ± 0.113% 83.066% ± 0.621%
domingos batch gini 10 – 95.367% ± 0.196% 85.846% ± 0.579%
domingos batch gini 25 – 91.390% ± 0.269% 86.529% ± 0.404%
domingos batch gini 50 – 88.033% ± 0.314% 85.127% ± 0.322%
domingos batch gini 100 – 84.585% ± 0.536% 82.888% ± 0.612%
domingos batch gini 250 – 80.656% ± 0.485% 79.785% ± 0.531%
domingos batch gini 500 – 77.344% ± 0.694% 76.934% ± 0.755%
domingos batch gini 1000 – 74.795% ± 0.417% 74.518% ± 0.458%
domingos batch info 5 – 97.300% ± 0.108% 83.159% ± 0.542%
domingos batch info 10 – 95.347% ± 0.158% 86.123% ± 0.336%
domingos batch info 25 – 91.453% ± 0.263% 86.812% ± 0.427%
domingos batch info 50 – 87.610% ± 0.449% 84.825% ± 0.597%
domingos batch info 100 – 84.358% ± 0.664% 82.715% ± 0.698%
domingos batch info 250 – 79.859% ± 0.521% 78.993% ± 0.529%
domingos batch info 500 – 76.416% ± 0.519% 76.008% ± 0.549%
domingos batch info 1000 – 74.373% ± 0.420% 74.152% ± 0.401%

Table 5: Hoeffding tree efficacy on the covertype dataset; 75%/25% train/test
split; 10 trials. Git revision 0e93455.
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split mode gain l p training accuracy testing accuracy
binary streaming gini – 1 73.362% ± 0.243% 73.264% ± 0.264%
binary streaming gini – 2 75.506% ± 0.134% 75.220% ± 0.154%
binary streaming gini – 3 76.961% ± 0.175% 76.763% ± 0.212%
binary streaming gini – 4 78.046% ± 0.262% 77.697% ± 0.269%
binary streaming gini – 5 79.032% ± 0.171% 78.652% ± 0.176%
binary streaming gini – 10 82.463% ± 0.238% 81.710% ± 0.234%
binary streaming gini – 25 86.994% ± 0.149% 85.579% ± 0.185%
binary streaming gini – 50 90.565% ± 0.129% 88.344% ± 0.177%
binary streaming gini – 100 94.001% ± 0.126% 90.721% ± 0.184%
binary streaming gini – 250 fail fail
binary streaming gini – 500 fail fail
binary streaming gini – 1000 fail fail
binary streaming info – 1 67.823% ± 0.328% 67.712% ± 0.363%
binary streaming info – 2 68.899% ± 0.106% 68.831% ± 0.170%
binary streaming info – 3 69.839% ± 0.455% 69.769% ± 0.439%
binary streaming info – 4 70.795% ± 0.203% 70.713% ± 0.226%
binary streaming info – 5 71.412% ± 0.121% 71.322% ± 0.200%
binary streaming info – 10 72.990% ± 0.190% 72.921% ± 0.201%
binary streaming info – 25 75.443% ± 0.122% 75.271% ± 0.179%
binary streaming info – 50 78.227% ± 0.147% 77.851% ± 0.152%
binary streaming info – 100 81.491% ± 0.180% 80.812% ± 0.178%
binary streaming info – 250 fail fail
binary streaming info – 500 fail fail
binary streaming info – 1000 fail fail
binary batch gini 1 – 99.098% ± 0.016% 93.061% ± 0.085%
binary batch gini 2 – 99.105% ± 0.009% 93.092% ± 0.086%
binary batch gini 5 – 99.090% ± 0.017% 93.019% ± 0.110%
binary batch gini 10 – 98.085% ± 0.019% 92.765% ± 0.062%
binary batch gini 25 – 95.927% ± 0.043% 91.833% ± 0.097%
binary batch gini 50 – 93.604% ± 0.072% 90.453% ± 0.158%
binary batch gini 100 – 90.731% ± 0.107% 88.405% ± 0.117%
binary batch gini 250 – 86.319% ± 0.99% 84.900% ± 0.143%
binary batch gini 500 – 83.055% ± 0.087% 82.186% ± 0.169%
binary batch gini 1000 – 80.104% ± 0.149% 79.514% ± 0.153%
binary batch info 1 – 99.297% ± 0.009% 93.661% ± 0.086%
binary batch info 2 – 99.296% ± 0.011% 93.649% ± 0.122%
binary batch info 5 – 99.301% ± 0.019% 93.637% ± 0.063%
binary batch info 10 – 98.369% ± 0.021% 93.381% ± 0.039%
binary batch info 25 – 96.201% ± 0.065% 92.321% ± 0.112%
binary batch info 50 – 93.814% ± 0.037% 90.908% ± 0.084%
binary batch info 100 – 90.804% ± 0.079% 88.645% ± 0.126%
binary batch info 250 – 86.373% ± 0.153% 85.110% ± 0.167%
binary batch info 500 – 82.798% ± 0.186% 81.983% ± 0.235%
binary batch info 1000 – 79.493% ± 0.219% 78.907% ± 0.230%

Table 6: Hoeffding tree efficacy on the covertype dataset; 75%/25% train/test
split; 10 trials. Git revision 0e93455. 8


