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What does mipack implement?

mipack implements a lot of standard machine learning techniques and also new, cutting-edge
techniques.
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How do we get mipack?

$ sudo apt-get install libmlpack-dev
$ sudo dnf install mlpack-devel
$ brew tap brewsci/science &&
brew install mlpack
> nuget add mlpack-windows
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https://keon.io/mlpack/mlpack-on-windows/

How do we get mipack?

$ sudo apt-get install libmlpack-dev
$ sudo dnf install mlpack-devel
$ brew tap brewsci/science &&
brew install mlpack
> nuget add mlpack-windows

Or install from source:

git clone https://github.com/mlpack/mlpack
mkdir mlpack/build && cd mlpack/build

cmake ../

make -j8 # Probably good to use many cores.
sudo make install
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Installing from Python

Use pip:
$ pip install mlpack3
Or use conda:

$ conda install -c mlpack mlpack



Command-line programs

You don’t need to be a C++ expert.

$ mlpack_adaboost -t training_file.h5 -1 training_labels.h5 \
> -M trained_model.bin

$ mlpack_adaboost -m trained_model.bin -T test_set.csv \
> -0 test_set_predictions.csv
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Command-line programs

You don’t need to be a C++ expert.

$ mlpack_adaboost -t training_file.h5 -1 training_labels.h5 \
> -M trained_model.bin

$ mlpack_adaboost -m trained_model.bin -T test_set.csv \
> -0 test_set_predictions.csv

$ mlpack_knn -r dataset.txt -k 5 -n neighbors.csv

$ mlpack_preprocess_imputer -i dataset.h5 -s mean -o imputed.h5
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Python bindings

Can be dropped directly into a Python workflow.

>>> 1mport numpy as np
>>> from mlpack import pca

>>> X = np.genfromtxt(’'my_data.csv’, delimiter=',")
>>> X.Shape
(2048, 10)

>>> result = pca(input=x, new_dimensionality=5, verbose=True)
[INFO ] Performing PCA on dataset...

[INFO ] 99.9491% of variance retained (5 dimensions).

>>> result['output’].shape

(2048, 5)

>>>
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Python bindings

A simple example: collaborative filtering for item recommendations.

>>> import numpy as np

>>> from mlpack import cf

>>> X = np.genfromtxt(’GroupLensl00k.csv’, delimiter=",")
>>> X.Shape

(100000, 3)

>>>



Python bindings

A simple example: collaborative filtering for item recommendations.

>>> import numpy as np

>>> from mlpack import cf

>>> X = np.genfromtxt(’GroupLensl00k.csv’, delimiter=",")
>>> X.Shape

(100000, 3)

>>> help(cf)



Help on built-in function cf in module mlpack.cf:

cf(..

.)

Collaborative Filtering

This program performs collaborative filtering (CF) on the given dataset. Given
a list of user, item and preferences (the 'training’ parameter), the program
will perform a matrix decomposition and then can perform a series of actions
related to collaborative filtering. Alternately, the program can load an
existing saved CF model with the 'input_model’ parameter and then use that
model to provide recommendations or predict values.

The input matrix should be a 3-dimensional matrix of ratings, where the first
dimension is the user, the second dimension is the item, and the third
dimension is that user’s rating of that item. Both the users and items should
be numeric indices, not names. The indices are assumed to start from 0.

A set of query users for which recommendations can be generated may be
specified with the ’'query’ parameter; alternately, recommendations may be
generated for every user in the dataset by specifying the
"all_user_recommendations’ parameter. In addition, the number of
recommendations per user to generate can be specified with the
"recommendations’ parameter, and the number of similar users (the size of the
neighborhood) to be considered when generating recommendations can be
specified with the ’'neighborhood’ parameter.

For performing the matrix decomposition, the following optimization algorithms
can be specified via the 'algorithm’ parameter:
"RegSVD’ -- Regularized SVD using a SGD optimizer
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update rules

"BatchSVD’' -- SVD batch learning
"SVDIncompleteIncremental’ -- SVD incomplete incremental learning
"SVDCompleteIncremental’ -- SVD complete incremental learning

A trained model may be saved to with the 'output_model’ output parameter.

To train a CF model on a dataset 'training_set’ using NMF for decomposition
and saving the trained model to ’'model’, one could call:

>>> cf(training=training_set, algorithm="NMF")
>>> model = output[’output_model’]

Then, to use this model to generate recommendations for the list of users in

the query set 'users’, storing 5 recommendations in ’'recommendations’, one
could call

>>> cf(input_model=model, query=users, recommendations=5)
>>> recommendations = output[’'output’]

Input parameters:

algorithm (string): Algorithm used for matrix factorization. Default

value 'NMF’.
- all_user_recommendations (bool): Generate recommendations for all
users.

copy_all_inputs (bool): If specified, all input parameters will be
deep copied before the method is run. This is useful for debugging
problems where the input parameters are being modified by the algorithm,
but can slow down the code.

input_model (CFType): Trained CF model to load.
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Initialized W and H.
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[INFO ] Performing CF matrix decomposition on dataset...

[INFO ] No rank given for decomposition; using rank of 11 calculated by
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(100000, 3)

>>> help(cf)

>>> output = cf(training=x, algorithm="NMF’, verbose=True)

[INFO ] Performing CF matrix decomposition on dataset...

[INFO ] No rank given for decomposition; using rank of 11 calculated by
density-based heuristic.

[INFO ] Initialized W and H.

[INFO ] Iteration 1; residue 0.710812.

[INFO ] Iteration 2; residue 0.0627744.

[INFO ] Iteration 3; residue 0.156398.

[INFO ] Iteration 26; residue 5.93531e-06.

[INFO ] AMF converged to residue of 5.93531e-06 in 26 iterations.

>>> model = output['output_model’]

>>> result = cf(input_model=model, query=[[1]],
recommendations=3, verbose=True)

[INFO ] Generating recommendations for 1 user.

[INFO ] 41 node combinations were scored.

[INFO ] 40 base cases were calculated.

>>> print(result['output’])

[[123 8 136]]
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From the command line

Actually, we could have done the exact same thing from the command line:

$ mlpack_cf -t GroupLenslO0k.csv -M model.bin -a NMF

$ mlpack_cf -m model.bin -gq query.csv -c 3 -0 recs.csv
$ recs.csv

123, 8, 136

Basically all mlpack algorithm bindings to the command-line, Python, or other languages
operate like this.
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Pros of C++

C++ is great!

Generic programming at compile time via templates.
Low-level memory management.
Little to no runtime overhead.

Well-known!

The Armadillo library gives us good linear algebra primitives.

arma;
mat X, y;
mat z = (x + y) * chol(x) + 3 * chol(y.t());
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® Templates can be hard to debug because of error messages.
® Memory bugs are easy to introduce.
® The new language revisions are not making the language any simpler...
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n.Search(query_set, 3, neighbors, distances);

What if | don’t want the Euclidean distance?



Genericity

Why write an algorithm for one specific situation?

NearestNeighborSearch n(dataset, 1);
n.Search(query_set, 3, neighbors, distances);

Ok, this is a little better!



Genericity

Why write an algorithm for one specific situation?

NearestNeighborSearch<ManhattanDistance> n(dataset);
n.Search(query_set, 3, neighbors, distances);

This is much better! The user can specify whatever
distance metric they want, including one they write
themselves.



Genericity

Why write an algorithm for one specific situation?

MyStupidDistance
{
Evaluate( arma::vec& a,
arma::vec& b)
{
15.0 % std::abs(a[0] - b[0O]);
}
};

NearestNeighborSearch<MyStupidDistance> n(dataset);
n.Search(query_set, 3, neighbors, distances);



Genericity

Why write an algorithm for one specific situation?

NearestNeighborSearch<MyStupidDistance, arma::sp_mat>
n(sparse_dataset);
n.Search(sparse_query_set, 3, neighbors, distances);



Genericity

Why write an algorithm for one specific situation?

NearestNeighborSearch<EuclideanDistance, arma::mat, KDTree> kn;
NearestNeighborSearch<EuclideanDistance, arma::sp_mat, CoverTree> cn;
NearestNeighborSearch<ManhattanDistance, arma::mat, Octree> on;
NearestNeighborSearch<ChebyshevDistance, arma::sp_mat, RPlusTree> rn;
NearestNeighborSearch<MahalanobisDistance, arma::mat, RPTree> rpn;
NearestNeighborSearch<EuclideanDistance, arma::mat, XTree> xn;

R.R. Curtin, “Improving dual-tree algorithms”. PhD thesis, Georgia Institute of Technology, At-
lanta, GA, 8/2015.
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Why write an algorithm for one specific situation?
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R.R. Curtin, “Improving dual-tree algorithms”. PhD thesis, Georgia Institute of Technology, At-
lanta, GA, 8/2015.
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What about virtual inheritance?

MyStupidDistance : Distance
{
Evaluate( arma::vec& a,
arma::vec& b)
{
15.0 x std::abs(al[0] - b[0O]);
}
b
NearestNeighborSearch n(dataset, MyStupidDistance());

n.Search(3, neighbors, distances);



Why templates?

What about virtual inheritance?

MyStupidDistance : Distance
{
Evaluate( arma::vec& a,
arma::vec& b)
{
15.0 x std::abs(al[0] - b[0O]);
}
b
NearestNeighborSearch n(dataset, MyStupidDistance());

n.Search(3, neighbors, distances);

vtable lookup penalty!
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Using inheritance to call a function costs us instructions:

Distancex d =
MyStupidDistance(); | MyStupidDistance::Evaluate(a, b);
d->Evaluate(a, b);
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Distancex d =
MyStupidDistance(); | MyStupidDistance::Evaluate(a, b);
d->Evaluate(a, b);
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Why templates?

Using inheritance to call a function costs us instructions:

Distancex d =
MyStupidDistance(); | MyStupidDistance::Evaluate(a, b);
d->Evaluate(a, b);

movqg % , %

movg $_ZTV1A+16, (% ) _ZN1BlaEd.1isra.0.constprop.1l

_ZN1AlaEd

Up to 10%+ performance penalty in some situations!
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Compile-time expressions

What about math? (Armadillo)
In C:

rows, cols;

// We want to do e = a + b + ¢ + d.
mat_copy(e, a, rows, cols);
mat_add(e, b, rows, cols);
mat_add(e, c, rows, cols);
mat_add(e, d, rows, cols);
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xx a, b, c, d, e;
rows, cols;

// We want to doe=a +b + c + d.
mat_add4_into(e, a, b, c, d, rows, cols);

Fastest! (one pass)



Compile-time expressions

What about math? (Armadillo)

In C with a custom function:

xx a, b, c, d, e;
rows, cols;

// We want to doe=a +b + c + d.
mat_add4_into(e, a, b, c, d, rows, cols);

Fastest! (one pass)

mat_add4_into( x% @, ** a, xx b,
*% C, xx* d, rows, cols)
{
{ r

= 0; r < rows; ++r)
{ c = 0; ¢ < cols; ++c)
e[r][c] = alr]llc] + b[r][c] + cl[r]llc] + d[r]lc];
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Compile-time expressions

What about math? (Armadillo)
In MATLAB:

e=a+b+c+d

Beautiful!
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In C++ (with Armadillo): "y R

-

arma;
mat a, b, c, d;

mat e =a +b + c + d;

No temporaries, only one pass! Just as fast as the fastest C implementation.
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What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b + c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<T1l, T2, add> +( T1& X, T2& vy);

® mat + mat
— op<mat, mat, add>
® mat + mat + mat
— op<mat, mat, add> + mat
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What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b + c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<T1l, T2, add> +( T1& X, T2& vy);

® mat + mat
— op<mat, mat, add>
® mat + mat + mat
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Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b + c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<T1l, T2, add> +( T1& X, T2& vy);

The expression yields type op<op<op<mat, mat, add>

< T1, 12>
op<T1l, T2, add>& op);

]
—

mat::

’

mat,

add>.



Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b + c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<T1l, T2, add> +( T1& X, T2& vy);
The expression yields type op<op<op<mat, mat, add> , mat, add>.
< T1, 12>
mat:: = op<T1l, T2, add>& op);

The assignment operator "unwraps" the operation and generates optimal code.



Take-home

® Templates give us generic code.

® Iemplates allow us to generate fast code.
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Optimization in C++ with ensmallen

Optimization is a fundamental machine learning problem:
argmin,, f(x)

mlpack provides some nice facilities to do this, via the new ensmallen library:

https://github.com/mlpack/ensmallen. In order to optimize a differentiable function we just
need a class with two methods:

Evaluate( arma::mat& x);

Gradient( arma::mat& x, arma::mat& gradient);


https://github.com/mlpack/ensmallen
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Let’s take linear regression as an example:

® A: data matrix
® b: data responses
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Optimization in C++ with ensmallen

Let’s take linear regression as an example:

® A: data matrix
® b: data responses
® 1. parameters for linear regression

f(z) = (Axz — b)' (Az — b).
And the gradient:

Vf(z)=Al(Az —b).

We want to minimize f(x).

(The point of the demo here is to show how easy it is to implement, not to detail the intricacies of
linear regression, so don’t worry about the math much.)
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responses (responses) { }
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Optimization in C++ with ensmallen

Remember, we just need two functions inside of a class.
LinearRegressionFunction

arma: :mat& data;
arma::rowvec& responses;

f(z) = (Az — )T (Az —b).

LinearRegressionFunc : data(data),

responses(responses) { }
Evaluate ( arma::mat& Xx)

(data * x - responses).t() * (data * x - responses);



Optimization in C++ with ensmallen

Remember, we just need two functions inside of a class.

LinearRegressionFunction

{

arma::mat& data;

arma::rowvec& responses;
LinearRegressionFunction ( arma::mat& data, arma::rowvec& responses) : data(data),

responses(responses) { }
Evaluate ( arma::mat& Xx)
{
(data * x - responses).t() * (data * x - responses);

}

Gradient( arma::mat& x, arma::mat& gradient)
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Remember, we just need two functions inside of a class.
LinearRegressionFunction

arma: :mat& data;
arma::rowvec& responses;

Vf(z) =AY (Az - b).

LinearRegressionFunc : data(data),

responses(responses) { }
Evaluate ( arma::mat& Xx)

(data * x - responses).t() * (data * x - responses);

Gradient( arma::mat& x, arma::mat& gradient)



Optimization in C++ with ensmallen

Remember, we just need two functions inside of a class.

LinearRegressionFunction

arma: :mat& data;
arma::rowvec& responses;

Vf(z) =AY (Az - b).

LinearRegressionFunc
responses(responses) { }

Evaluate ( arma::mat& Xx)
{
(data * x - responses).t() * (data * x - responses);
}
Gradient( arma::mat& x, arma::mat& gradient)
{
gradient = data.t() * (data * x - responses);
}

: data(data),



Optimization in C++ with ensmallen

Remember, we just need two functions inside of a class.

LinearRegressionFunction

{
arma::mat& data;
arma::rowvec& responses;
LinearRegressionFunction ( arma::mat& data, arma::rowvec& responses)
responses(responses) { }
Evaluate ( arma::mat& Xx)
{
(data * x - responses).t() * (data * x - responses);
}
Gradient( arma::mat& x, arma::mat& gradient)
{
gradient = data.t() * (data * x - responses);
}

: data(data),
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Optimization in C++ with ensmallen
Now we can take our LinearRegressionFunction and optimize it!

mlpack: :optimization;

LinearRegressionFunction lrf(data, responses);

arma::mat Xx;
L_BFGS 1;
L.0ptimize(lrf, x);

GradientDescent g;
g.0ptimize(lrf, x);

SA s;
s.Optimize(lrf, Xx);

IQN 1i;
i.0ptimize(lrf, x);



A wide range of optimizers for different problem types

ensmallen has a huge collection of optimizers.

® Quasi-Newton variants: Limited-memory BFGS (L-BFGS), incremental Quasi-Newton
method (IQN), Augmented Lagrangian Method

® SGD variants: Stochastic Gradient Descent (SGD), Stochastic Coordinate Descent (SCD),
Parallel Stochastic Gradient Descent (Hogwild!), Stochastic Gradient Descent with Restarts
(SGDR), SMORMS3, AdaGrad, AdaDelta, RMSProp, Adam, AdaMax, Padam, Nadam,
WNGrad, AMSGrad

® Genetic variants: Conventional Neuro-evolution (CNE), Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)

® Other: Conditional Gradient Descent, Frank-Wolfe algorithm, Simulated Annealing, SPSA


https://ensmallen.org/

A wide range of optimizers for different problem types

ensmallen has a huge collection of optimizers.

® Quasi-Newton variants: Limited-memory BFGS (L-BFGS), incremental Quasi-Newton
method (IQN), Augmented Lagrangian Method

® SGD variants: Stochastic Gradient Descent (SGD), Stochastic Coordinate Descent (SCD),
Parallel Stochastic Gradient Descent (Hogwild!), Stochastic Gradient Descent with Restarts
(SGDR), SMORMS3, AdaGrad, AdaDelta, RMSProp, Adam, AdaMax, Padam, Nadam,
WNGrad, AMSGrad

® Genetic variants: Conventional Neuro-evolution (CNE), Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)

® Other: Conditional Gradient Descent, Frank-Wolfe algorithm, Simulated Annealing, SPSA

And it is also easy to implement new optimizers. https://ensmallen.org/

S. Bhardwaj, R.R. Curtin, M. Edel, Y. Mentekidis, C. Sanderson, “ensmallen: a flexible C++
library for efficient function optimization”, Systems for ML Workshop at NeurlPS 2018, 2018.


https://ensmallen.org/
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mlpack: :ann;
arma::mat data, responses, testData;

FFN<NegativelLogLikelihood<>, RandomInitialization> model;
model.Add<Linear<>>(data.n_rows, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 10);

model.Add<LogSoftMax<>>();
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With ensmallen, we can do deep learning.

mlpack: :ann;
arma::mat data, responses, testData;

FFN<NegativelLogLikelihood<>, RandomInitialization> model;
model.Add<Linear<>>(data.n_rows, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 10);

model.Add<LogSoftMax<>>();

SGD<> optimizer(0.001 , 1024 ,
100000 ) ;
model.Train(data, responses, optimizer);



Deep Neural Networks with mlpack

With ensmallen, we can do deep learning.

mlpack: :ann;
arma::mat data, responses, testData;

FFN<NegativelLogLikelihood<>, RandomInitialization> model;
model.Add<Linear<>>(data.n_rows, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 10);

model.Add<LogSoftMax<>>();

SGD<> optimizer(0.001 , 1024 ,
100000 ) ;
model.Train(data, responses, optimizer);

arma::mat predictions;
model.Predict(testData, predictions);



Benchmarks

Did C++ get us what we wanted?



Benchmarks

Task 1: z =2(2" + y) + 2(x + /).

mat y(n, n,

n;
mat x(n, n, fill::randu);

fill::randu);

mat z = 2 x (x.t() +y) + 2 x (x + y.t());

) arma numpy | octave R Julia

1000 0.029s | 0.040s | 0.036s | 0.052s | 0.027s
3000 0.047s | 0.432s | 0.376s | 0.344s | 0.041s
10000 | 0.968s | 5.948s | 3.989s | 4.952s | 3.683s
30000 | 19.167s | 62.748s | 41.356s fail | 36.730s




Benchmarks

Task 2: z = (x + 10 x I)T — y,.

n;
mat x(n, n, fill::randu);

mat y(n, n, fill::randu);

mat z = pinv(x + 10 * eye(n, n)) - vy;
) arma humpy | octave R Julia
300 0.081s | 0.080s 0.324s 0.096s 0.098s
1000 1.321s 1.354s | 26.156s 1.444s 1.236s
3000 | 28.817s | 28.955s | 648.64s | 29.732s | 29.069s
10000 | 777.55s | 785.58s | 17661.9s | 787.201s | 778.472s

The computation is dominated by the calculation of the pseudoinverse.




Benchmarks

Task 3: z = abcd for decreasing-size matrices.

mat
mat
mat
mat
mat

n;

a(n, 0.8 x n,

b(0.8 *x n,
c(0.6 *x n,
d(0.4 x n,

0.6 *x n,
0.4 x n,
0.2 *x n,

Z=axb xcxd;

fill::randu);

fill::randu);
fill::randu);
fill::randu);

n arma hnumpy | octave R Julia
1000 0.042s | 0.051s | 0.033s | 0.056s 0.037s
3000 0.642s | 0.812s | 0.796s | 0.846s 0.844s
10000 | 16.320s | 26.815s | 26.478s | 26.957s | 26.576s
30000 | 329.87s | 708.16s | 706.10s | 707.12s | 704.032s

Armadillo can automatically select the correct ordering for multiplication.




Benchmarks

Task 4: z = o/ (diag(b) ).

vec a(n,
vec b(n,
vec c(n,

z = as_scalar(a.t() * inv(diagmat(b)) * c);

n,
fill::randu);
fill::randu);
fill::randu);

n arma | humpy | octave R Julia
1K 8e-6s | 0.100s 2e-4s | 0.014s | 0.057s
10k 8e-5s | 49.399s | 4e-4s | 0.208s | 18.189s
100k | 8e-4s fail 0.002s fail fail
1M 0.009s fail 0.024s fail fail
10M | 0.088s fail 0.205s fail fail
100M | 0.793s fail 1.972s fail fail
1B 8.054s fail 19.520s fail fail




kNN benchmarks
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twitter tinylmages
dataset d N mlipack mipy matlab scikit shogun Weka
isolet 617 8k 15.65s 59.09s 50.88s 44.59s 59.56s 220.38s
corel 82 68k 17.70s 95.26s fail 63.32s fail 29.38s
covertype 54 581k 18.04s 27.68s >9000s 44.55s >9000s 42.34s
twitter 78 583k 1573.92s >9000s >9000s 4637.81s fail >9000s
mnist 784 70k 3129.46s >9000s fail 8494.24s 6040.16s >9000s
tinylmages 384 100k 4535.38s 9000s fail >9000s fail >9000s




vs. Spark

We can use mmap () for out-of-core learning since our algorithms are generic!



vs. Spark

We can use mmap () for out-of-co M3 Runtimes (10 lterations) for e generic!
Logistic Regression (L-BFGS)
Runtime (s)
2000 o~ RAM size = 32GB
1500
1000
500
0
10G 40G 70G 100G 130G 160G 190G
Dataset Size on Disk
L-BFGS K-Means
@ M3 1930s 1604s
@ 8x Spark 2864s 1164s
4x Spark | 82565 ‘ 3491s

D. Fang, P. Chau. M3: scaling up machine learning via memory mapping, SIGMOD/PODS 2016.



ensmallen benchmarks

Runtimes for the linear regression function on various dataset sizes, with »n indicating the number
of samples, and d indicating the dimensionality of each sample. All Julia runs do not count

compilation time.

algorithm

d: 100, n: 1k d: 100, n: 10k d: 100, n: 100k d: 1k, n: 100k

ensmallen-2
Optim.jl

sclpy

bfgsmin
ForwardDiff.jl
autograd

0.002s
0.006s
0.003s
0.071s
0.497s
0.007s

0.016s
0.030s
0.017s
0.859s
1.159s
0.026s

0.182s
0.337s
0.202s

23.220s

4.996s
0.210s

2.522s
4.271s
2.729s
2859.81s
603.106s
2.673s

S. Bhardwaj, R.R. Curtin, M. Edel, Y. Mentekidis, C. Sanderson, “ensmallen: a flexible C++
library for efficient function optimization”, Systems for ML Workshop at NeurlPS 2018, 2018.



ensmallen benchmarks

Runtimes for the linear regression function on various dataset sizes, with »n indicating the number
of samples, and d indicating the dimensionality of each sample. All Julia runs do not count

compilation time.

algorithm d: 100, n: 1k d: 100, n: 10k d: 100, n: 100k d: 1k, n: 100k
ensmallen-1 0.001s 0.009s 0.154s 2.215s
ensmallen-2 0.002s 0.016s 0.182s 2.522s
Optim.jl 0.006s 0.030s 0.337s 4.271s
scipy 0.003s 0.017s 0.202s 2.729s
bfgsmin 0.071s 0.859s 23.220s 2859.81s
ForwardDiff.jl 0.497s 1.159s 4.996s 603.106s
autograd 0.007s 0.026s 0.210s 2.673s

S. Bhardwaj, R.R. Curtin, M. Edel, Y. Mentekidis, C. Sanderson, “ensmallen: a flexible C++
library for efficient function optimization”, Systems for ML Workshop at NeurlPS 2018, 2018.



Application: low-latency webserver comment filtering

Let’s talk about how we can use mipack in a deployment environment.
Here’s our (hypothetical) situation:

® We run a news website for some locality or region.

® We get lots of comment spam.

® Our boss has told us we better fix the comment spam issue or else!
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2. Information about user and comment get logged.

3. Comment gets posted.
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Proposed spam-filtering workflow

User submits comment.
Information about user and comment get logged.

Use kernel density estimation on the IP’s geolocation. If the comment is coming from a
place where we don't get lots of valid comments, return a CAPTCHA.

Extract more features from the request for spam filtering.
Pass extracted features into a fast logistic regression classifier.

If returned prediction is above a threshold, return a CAPTCHA.
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Proposed spam-filtering workflow

User submits comment.
Information about user and comment get logged.

Use kernel density estimation on the IP’s geolocation. If the comment is coming from a
place where we don't get lots of valid comments, return a CAPTCHA.

Extract more features from the request for spam filtering.
Pass extracted features into a fast logistic regression classifier.
If returned prediction is above a threshold, return a CAPTCHA.

Comment gets posted.
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Why KDE?

Model extrapolation is a problem.

Regression line Prediction

Response Y

!

True regression
function
r(x)=E[Y|X=x]

New input X

.
Predictor X

We don’t want the model to make predictions for comments coming from locations it wasn't trained
on. We don’t have much idea what the model would do in that case!



What is KDE?

Kernel density estimation gives us an estimate of the probability density function at a given
location based on the training data.
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What is KDE?

To compute a prediction we compute and sum K (d(x, y)) for some distance d(-, -) and kernel K ().

Kernel Density Estimate as Weighted Sum of Component Densities
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What is KDE?

To compute a prediction we compute and sum K (d(x, y)) for some distance d(-, -) and kernel K ().

Kernel Density Estimate as Weighted Sum of Component Densities
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mlpack’s KDE<> uses dual-tree and single-tree algorithms to provide fast approximate density
estimates!

A.G. Gray, AW. Moore. “Nonparametric density estimation: toward computational tractability.”
In Proceedings of the 2003 SIAM International Conference on Data Mining (SIAM Data Mining
2003), p. 203—211, 2003.



Why logistic regression?
We choose logistic regression here because it's fast and we are interested in low-latency. To get a

prediction, it is just a quick vector-vector dot product, and it won't slow down our pipeline much.

y = e~ (@ B+

Hang on: we’ll talk about making it more complex later.



Why logistic regression?
We choose logistic regression here because it's fast and we are interested in low-latency. To get a

prediction, it is just a quick vector-vector dot product, and it won't slow down our pipeline much.

y = e~ (@ B+

Hang on: we’ll talk about making it more complex later.

We can use mipack’s LogisticRegression<> for this.



Feature engineering

As input to our logistic regression model, we'll use brutally simple slide-optimized features:

® Number of comments from this IP

Percentage of spam comments from this IP

Number of comments from this region

Percentage of spam comments from this region

Unigram character counts (number of a’s, b’s, etc.)



Feature engineering

As input to our logistic regression model, we'll use brutally simple slide-optimized features:

Number of comments from this IP
Percentage of spam comments from this IP

Number of comments from this region

Percentage of spam comments from this region

® Unigram character counts (number of a’s, b’s, etc.)

In a real situation you'd pick more/different features...



“Before” code
We have some auxiliary functions available to us:

std::string getCommentString/( Http: :Request& req);
postComment ( Http::Request& req, Http::ResponseWriter& response);
captcha( Http: :Request& req, Http::ResponseWriter& response);
std::pair< , > geolocate( Http: :Request& req);
logRequest ( Http: :Request& req);

size_t getNumCommentsFromIP( Http: :Request& req);

size_t getNumCommentsFromRegion( Http: :Request& req);
getSpamPercentageFromIP( Http: :Request& req);
getSpamPercentageFromRegion( Http: :Request& req);

size_t getNumComments();

Http::Request& getComment ( size_t id);

wasSpam ( Http: :Request& req);



“Before” comment handler

Written in Pistache. http://pistache.io/

CommentHandler : Http::Handler {
onRequest ( Http: :Request& req, Http::ResponseWriter response) {
logRequest(req);

postComment(req, response);

}
b


http://pistache.io/

Training the KDE model

We need a KDE model ready for use. But the KDE model should work with a distance over the
surface of the Earth...

GreatCircleDistance {
Evaluate( arma::vec& a, arma::vec& b) {

std::acos(std::sin(a[0]) * std::sin(b[0]) +
std::cos(a[0]) * std::cos(b[0]) * std::cos(b[1l] - a[l]));

b



Training the KDE model

Before we run our server, let’s train our KDE model.

arma::mat dataset(2, getNumComments());

}
}

(size_t currentCol = 0, 1 = 0; 1 < dataset.n_cols; ++1) {

('wasSpam(getComment(i))) {
std::pair< , > latLong = geolocate(getComment(i));

dataset(0, currentCol) = latLong.first;
dataset(l, currentCol) = latLong.second;
++currentCol;

dataset.shed_cols(currentCol, dataset.n_cols - 1);

KDE<GaussianKernel, GreatCircleDistance> kde(0.05

0.0,
GaussianKernel (BANDWIDTH) ) ;

kde.Train(dataset);

data: :Save("kde_model.bin", "model", kde);



Training the logistic regression model: feature extraction

Let’s write a utility function to turn a Http: :Request into an arma: : vec.

arma: :vec extractFeatures( Http::Request& req) {
arma::vec result(30, arma::fill::zeros);

result(0) = ( ) getNumCommentsFromIP(req);
result(l) = getSpamPercentageFromIP(req);

result(2) = ( ) getNumCommentsFromRegion(req);
result(3) = getSpamPercentageFromRegion(req);

std::string comment = getCommentString(req);
(size_t j = 0; j < comment.size(); ++j)
(std::tolower(comment[j]) >= 'a’ && std::tolower(comment[j]) <= 'z’")
result(4 + size_t(std::tolower(comment[j]) - 'a’))++;

result;



Training the logistic regression model

Training the logistic regression model is simple: create the dataset, then train.

arma::mat dataset(30, getNumComments());
arma: :Row<size_t> labels(getNumComments());
(size_t 1 = 0; i < dataset.n_cols; ++1i)
{
dataset.col(i) = extractFeatures(getComment(i));
labels(i) = (size_t) wasSpam(getComment(i));

}

LogisticRegression<> lr(dataset, labels, 0.1 );
data::Save("lr_model.bin", "model", 1lr);
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Training the logistic regression model is simple: create the dataset, then train.

arma::mat dataset(2, getNumComments());
arma: :Row<size_t> labels(getNumComments());
(size_t i = 0; i < dataset.n_cols; ++1i)
{
dataset.col(i) = extractFeatures(getComment(i));
labels(i) = (size_t) wasSpam(getComment(i));

}
LogisticRegression<> lr(dataset, labels, 0.1 );
data::Save("lr_model.bin", "model", 1lr);

But... how do we know we chose the best 1Tambda so we didn’t overfit? We can use the
hyperparameter tuner.



Training the logistic regression model

We can also select the best lambda using the hyperparameter tuner.
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Training the logistic regression model

We can also select the best lambda using the hyperparameter tuner.

arma::mat dataset(2, getNumComments());
arma: :Row<size_t> labels(getNumComments());
(size_t i = 0; i < dataset.n_cols; ++1i)
{
dataset.col(i) = extractFeatures(getComment(i));
labels(i) = (size_t) wasSpam(getComment(i));

}

HyperParameterTuner<LogisticRegression, Fl<Binary>, SimpleCV> hpt(0.2, dataset, labels);

arma::vec lambdas { 0.0, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0 };
bestLambda;
std::tie(bestLambda) = hpt.Optimize(lambdas);

LogisticRegression<> lr(dataset, labels, bestlLambda);
data::Save("lr_model.bin", "model", 1lr);



Training the logistic regression model

The hyperparameter tuner supports continuous optimization! So we can use gradient descent too.

arma::mat dataset(2, getNumComments());
arma: :Row<size_t> labels(getNumComments());
(size_t 1 = 0; i < dataset.n_cols; ++1i)
{
dataset.col(i) = extractFeatures(getComment(i));
labels(i) = (size_t) wasSpam(getComment(i));

}

HyperParameterTuner<LogisticRegression, Fl<Binary>, SimpleCV, GradientDescent> hpt (0.2, dataset, labels);
hpt.StepSize() = 0.01;
hpt.Tolerance() = le-5;

bestLambda;
std::tie(bestLambda) = hpt.Optimize(0.01);

LogisticRegression<> lr(dataset, labels, bestlLambda);
data::Save("lr_model.bin", "model", 1lr);



Back to the CommentHandler...

CommentHandler : Http::Handler {
onRequest ( Http: :Request& req, Http::ResponseWriter response) {
logRequest(req);

postComment(req, response);

}
b



Back to the CommentHandler...

CommentHandler : Http::Handler {
CommentHandler() {
data::Load("kde_model.bin", "model", kde);
data::Load("lr_model.bin", "model", 1r);

}

onRequest ( Http::Request& req, Http::ResponseWriter response) {

logRequest(req);

postComment(req, response);

}

KDE<GaussianKernel, GreatCircleDistance> kde;
LogisticRegression<> 1lr;

b



Back to the CommentHandler...

CommentHandler : Http::Handler {
CommentHandler() {
data::Load("kde_model.bin", "model", kde);
data::Load("lr_model.bin", "model", 1r);

}
onRequest ( Http::Request& req, Http::ResponseWriter response) {
logRequest(req);
std::pair< , > latLong = geolocate(req);

arma::vec result, point { latLong.first, latLong.second };
kde.Evaluate(point, result);
(result[0] < THRESHOLD) {
captcha(req, response);

’

postComment(req, response);

}

KDE<GaussianKernel, GreatCircleDistance> kde;
LogisticRegression<> 1lr;

b



Back to the CommentHandler...

CommentHandler : Http::Handler {
CommentHandler() {
data::Load("kde_model.bin", "model", kde);
data::Load("lr_model.bin", "model", 1r);

}
onRequest ( Http::Request& req, Http::ResponseWriter response) {
logRequest(req);
std::pair< , > latLong = geolocate(req);

arma::vec result, point { latLong.first, latLong.second };
kde.Evaluate(point, result);
(result[0] < THRESHOLD) {
captcha(req, response);

’

point = extractFeatures(req);
size t predClass = lr.Predict(point);
(predClass == 1) ? captcha(req, response) : postComment(req, responses);

}

KDE<GaussianKernel, GreatCircleDistance> kde;
LogisticRegression<> 1lr;

b



We saved our job

What did mlpack get us?

Fast distance implementation via template type GreatCircleDistance

Flexibility via templates to implement GreatCircleDistance

Fast KDE via dual-tree and single-tree algorithms

Hyperparameter tuner for easy optimization of LogisticRegression<> model.

Easy integration with performance-optimized C++ code.



We saved our job

How do we keep our job in the future?

® Add a character-RNN after LogisticRegression<> to filter more points
® Hyperparameter tuning, different/custom kernels for KDE

® Better embeddings or features for the comment text, additional features
O

We should be employable for at least the next ten years!



What didn’t | talk about in depth?

hyper-parameter tuner (there’s a lot more to it!)

tree infrastructure for problems like nearest neighbor search
reinforcement learning code

matrix decomposition infrastructure

benchmarking system

automatic binding generator

preprocessing utilities

...and surely more | am not thinking of...



What’s coming?

mipack 3.1.0 was just released and is ready for production use!

http://mlpack.org/blog/mlpack-3-released.html
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mIipack

http://www.mlpack.org/
https://github.com/mlpack/mlpack/
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Further out

Armadillo-like library for GPU matrix operations: Bandicoot

http://coot.sourceforge.10/

Two separate use case options:

® Bandicoot can be used as a drop-in accelerator to Armadillo, offloading intensive computations
to the GPU when possible.

® Bandicoot can be used as its own library for GPU matrix programming.


http://coot.sourceforge.io/

Further out

Armadillo-like library for GPU matrix operations: Bandicoot

http://coot.sourceforge.10/

Two separate use case options:

® Bandicoot can be used as a drop-in accelerator to Armadillo, offloading intensive computations
to the GPU when possible.

® Bandicoot can be used as its own library for GPU matrix programming.

coot;
mat x(n, n, fill::randu);
mat y(n, n, fill::randu);
mat z = X *x y;


http://coot.sourceforge.io/

Questions and comments?



http://www.mlpack.org/
https://github.com/mlpack/mlpack/
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