mlpack: or, How | Learned To Stop Worrying and
Love C++

Ryan R. Curtin
May 3, 2018

.

Introduction

Why are we here?

Introduction

Why are we here?

speed

Introduction

Why are we here?

speed programming languages

Introduction

Why are we here?

speed programming languages ‘ machine learning

Introduction

Why are we here?

speed programming languages ‘ machine learning

C++

Introduction

Why are we here?

speed programming languages ‘ machine learning

C++ mlpack

Introduction

Why are we here?

speed programming languages ‘ machine learning

C++ mlpack fast

Graph #1

Graph #1

low-level high-level

Graph #1

ASM

low-level high-level

Graph #1

low- level high-level

Graph #1

VB

low- level high-level

Graph #1

low- level high-level

Graph #1

_ Java S
“° INTERCAL S
Scala i;
Cos Python .
C Go Ruby
C# Tcl - Y
ASM PHP Lua VB
low-level high-level

Note: this is not a scientific or particularly accurate representation.

Graph #1

. Java S
'\ INTERCAL J
Scala
Cos Python
C Go Ruby
C# Tcl | y
ASM PHP Lua VB
low-level high-level
fast easy

Note: this is not a scientific or particularly accurate representation.

Graph #1

. Java S
(" INTERCAL 4
Scala
Cos Python
C Go Ruby
C# Tcl | y
ASM PHP Lua VB
low-level high-level
fast easy
specific portable

Note: this is not a scientific or particularly accurate representation.

The Big Tradeoff

speed vs. portability and readability

The Big Tradeoff

speed vs. portability and readability

The Big Tradeoff

speed vs. portability and readability

- .J’—) ‘q’

If we'’re careful, we can get speed, portability, and
readability by using C++.

bt

‘l‘

So, mipack.

What is it?

http://www.mlpack.org/
https://github.com/mlpack/mlpack/

So, mipack.

What is it?

® a fast general-purpose C++ machine learning library

® contains flexible implementations of common and cutting-edge
machine learning algorithms

@ for fast or big runs on single workstations

® bindings are available for R, Python, and the command line, and are
coming for other languages

® 100+ developers from around the world
® frequent participation in the Google Summer of Code program

http://www.mlpack.org/
https://github.com/mlpack/mlpack/

So, mipack.

What is it?

® a fast general-purpose C++ machine learning library

® contains flexible implementations of common and cutting-edge
machine learning algorithms

@ for fast or big runs on single workstations

® Dbindings are available for R, Python, and the command line, and are
coming for other languages

® 100+ developers from around the world
® frequent participation in the Google Summer of Code program

http://www.mlpack.org/
https://github.com/mlpack/mlpack/

R.R. Curtin, J.R. Cline, N.P. Slagle, W.B. March, P. Ram, N.A. Mehta, A.G. Gray, “mlpack: a
scalable C++ machine learning library”, in The Journal of Machine Learning Research, vol. 14,
p. 801-805, 2013.

http://www.mlpack.org/
https://github.com/mlpack/mlpack/

What does mipack implement?

mipack implements a lot of standard machine learning techniques and
also new, cutting-edge techniques.

Classification Regression Distance-Based
Techniques

ID3
Naive Bayes Classifier Decision Stumps

Hidden Markov Models . . .
perceptrons | Sofimas Ragresoen Collaborative Filtering Kernel PCA - anystroem Method
Logistic Regression pecision Trees . Deep Learning Range SearchEMsTsparse Coding
DeeD Loy Lo s Linear Regression . k-NearestNeighbor Search PCA
Random F orests Adagoostvk LARS ~ HMM Regression pensty Estimaton rces NC kst hetbor Searc
Approximate KFN Sparse Autoencoder

Hoeffding Trees

Other Tools Clustering

Randomized SVD
Matrix CompletionHyper-Parameter Tuner k—meanS DBSCAN
Preprocessing Utilities . Gaussian Mixture Models
Non-Negative Matrix Factorizationgegyfarized SVD : Mean Shift

Optimization Toolkit

Collaborative Filtering
Incremental SVD

How do we get mipack?

$ sudo apt-get install libmlpack-dev
$ sudo dnf install mlpack-devel
$ brew tap brewsci/science &&
brew install mlpack
> nuget add mlpack-windows

https://www.mlpack.org/docs/mlpack-3.0.0/doxygen/build.html
https://keon.io/mlpack/mlpack-on-windows/

How do we get mipack?

$ sudo apt-get install libmlpack-dev
$ sudo dnf install mlpack-devel
$ brew tap brewsci/science &&
brew install mlpack
> nuget add mlpack-windows

Or install from source:

git clone https://github.com/mlpack/mlpack
mkdir mlpack/build && cd mlpack/build
cmake ../

make -j8 # Probably good to use many cores.
sudo make install

“+r A A A A

https://www.mlpack.org/docs/mlpack-3.0.0/doxygen/build.html
https://keon.1io/mlpack/mlpack-on-windows/

https://www.mlpack.org/docs/mlpack-3.0.0/doxygen/build.html
https://keon.io/mlpack/mlpack-on-windows/

Installing from Python

Use pip:
$ pip install mlpack3
Or use conda:

$ conda install -c mlpack mlpack

Command-line programs

You don’t need to be a C++ expert.

$ mlpack_adaboost -t training_file.h5 -1 training_labels.h5 \
> -M trained_model.bin

$ mlpack_adaboost -m trained_model.bin -T test_set.csv \
> -0 test_set_predictions.csv

Command-line programs

You don’t need to be a C++ expert.

$ mlpack_adaboost -t training_file.h5 -1 training_labels.h5 \
> -M trained_model.bin

$ mlpack_adaboost -m trained_model.bin -T test_set.csv \
> -0 test_set_predictions.csv

$ mlpack_knn -r dataset.txt -k 5 -n neighbors.csv

Command-line programs

You don’t need to be a C++ expert.

$ mlpack_adaboost -t training_file.h5 -1 training_labels.h5 \
> -M trained_model.bin

$ mlpack_adaboost -m trained_model.bin -T test_set.csv \
> -0 test_set_predictions.csv

$ mlpack_knn -r dataset.txt -k 5 -n neighbors.csv

$ mlpack_preprocess_imputer -i dataset.h5 -s mean -o imputed.h5

Python bindings

Can be dropped directly into a Python workflow.

>>>

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>>

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>> from mlpack import pca

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np

>>> from mlpack import pca
>>>

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>> from mlpack import pca
>>> X = np.genfromtxt(’'my_data.csv’, delimiter=',")

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np

>>> from mlpack import pca

>>> X = np.genfromtxt(’'my_data.csv’, delimiter=',")
>>>

Python bindings

Can be dropped directly into a Python workflow.

>>>

>>>

>>>

>>>

import numpy as np

from mlpack import pca

x = np.genfromtxt(’'my_data.csv’, delimiter=’,")
X.shape

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>> from mlpack import pca

>>> X = np.genfromtxt(’'my_data.csv’, delimiter=",")
>>> X.Shape
(2048, 10)

>>>

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>> from mlpack import pca

>>> X = np.genfromtxt(’'my_data.csv’, delimiter=",")
>>> X.Shape
(2048, 10)

>>> result = pca(input=x, new_dimensionality=5, verbose=True)

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>> from mlpack import pca

>>> X = np.genfromtxt(’'my_data.csv’, delimiter=",")
>>> X.Shape
(2048, 10)

>>> result = pca(input=x, new_dimensionality=5, verbose=True)
[INFO] Performing PCA on dataset...

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>> from mlpack import pca

>>> X = np.genfromtxt(’'my_data.csv’, delimiter=",")
>>> X.Shape
(2048, 10)

>>> result = pca(input=x, new_dimensionality=5, verbose=True)
[INFO] Performing PCA on dataset...
[INFO] 99.9491% of variance retained (5 dimensions).

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>> from mlpack import pca

>>> X = np.genfromtxt(’'my_data.csv’, delimiter=",")
>>> X.Shape
(2048, 10)

>>> result = pca(input=x, new_dimensionality=5, verbose=True)
[INFO] Performing PCA on dataset...

[INFO] 99.9491% of variance retained (5 dimensions).

>>>

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>> from mlpack import pca

>>> X = np.genfromtxt(’'my_data.csv’, delimiter=",")
>>> X.Shape
(2048, 10)

>>> result = pca(input=x, new_dimensionality=5, verbose=True)
[INFO] Performing PCA on dataset...

[INFO] 99.9491% of variance retained (5 dimensions).

>>> result[’output’].shape

Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np
>>> from mlpack import pca

>>> X = np.genfromtxt(’'my_data.csv’, delimiter=",")
>>> X.Shape
(2048, 10)

>>> result = pca(input=x, new_dimensionality=5, verbose=True)
[INFO] Performing PCA on dataset...

[INFO] 99.9491% of variance retained (5 dimensions).

>>> result['output’].shape

(2048, 5)

>>>

Python bindings

A simple example: collaborative filtering for item recommendations.

>>>

Python bindings

A simple example: collaborative filtering for item recommendations.

>>> import numpy as np

Python bindings

A simple example: collaborative filtering for item recommendations.

>>> import numpy as np
>>>

Python bindings

A simple example: collaborative filtering for item recommendations.

>>> import numpy as np
>>> from mlpack import cf

Python bindings

A simple example: collaborative filtering for item recommendations.

>>> import numpy as np

>>> from mlpack import cf
>>>

Python bindings

A simple example: collaborative filtering for item recommendations.

>>> import numpy as np
>>> from mlpack import cf
>>> X = np.genfromtxt(’'GroupLensl00k.csv’, delimiter=",")

Python bindings

A simple example: collaborative filtering for item recommendations.

>>> import numpy as np
>>> from mlpack import cf

>>> X = np.genfromtxt(’'GroupLensl00k.csv’, delimiter=",")
>>>

Python bindings

A simple example: collaborative filtering for item recommendations.

>>> 1mport numpy as np

>>> from mlpack import cf

>>> X = np.genfromtxt(’'GroupLensl00k.csv’, delimiter=",")
>>> X.Shape

Python bindings

A simple example: collaborative filtering for item recommendations.

>>> 1mport numpy as np

>>> from mlpack import cf

>>> X = np.genfromtxt(’'GroupLensl00k.csv’, delimiter=",")
>>> X.Shape

(100000, 3)

>>>

Python bindings

A simple example: collaborative filtering for item recommendations.

>>> 1mport numpy as np

>>> from mlpack import cf

>>> X = np.genfromtxt(’'GroupLensl00k.csv’, delimiter=",")
>>> X.Shape

(100000, 3)

>>> help(cf)

Help on built-in function cf in module mlpack.cf:

cf(..

.)

Collaborative Filtering

This program performs collaborative filtering (CF) on the given dataset. Given
a list of user, item and preferences (the 'training’ parameter), the program
will perform a matrix decomposition and then can perform a series of actions
related to collaborative filtering. Alternately, the program can load an
existing saved CF model with the ’input_model’ parameter and then use that
model to provide recommendations or predict values.

The input matrix should be a 3-dimensional matrix of ratings, where the first
dimension is the user, the second dimension is the item, and the third
dimension is that user’s rating of that item. Both the users and items should
be numeric indices, not names. The indices are assumed to start from 0.

A set of query users for which recommendations can be generated may be
specified with the ’'query’ parameter; alternately, recommendations may be
generated for every user in the dataset by specifying the
"all_user_recommendations’ parameter. In addition, the number of
recommendations per user to generate can be specified with the
"recommendations’ parameter, and the number of similar users (the size of the
neighborhood) to be considered when generating recommendations can be
specified with the ’'neighborhood’ parameter.

For performing the matrix decomposition, the following optimization algorithms
can be specified via the ’algorithm’ parameter:
"RegSVD’ -- Regularized SVD using a SGD optimizer

PE=I R =R == W% @i dafte A e d ¥ e W= 0¥ Dl | - et WA i - ity Bl

update rules

"BatchSVD’' -- SVD batch learning
"SVDIncompleteIncremental’ -- SVD incomplete incremental learning
"SVDCompleteIncremental’ -- SVD complete incremental learning

A trained model may be saved to with the ’output_model’ output parameter.

To train a CF model on a dataset ’'training_set’ using NMF for decomposition
and saving the trained model to 'model’, one could call:

>>> cf(training=training_set, algorithm='NMF")
>>> model = output[’output_model’]

Then, to use this model to generate recommendations for the list of users in
the query set 'users’, storing 5 recommendations in ’'recommendations’, one
could call

>>> cf(input_model=model, query=users, recommendations=5)

>>> recommendations = output[’ output’]

Input parameters:

algorithm (string): Algorithm used for matrix factorization. Default

value 'NMF’.
- all_user_recommendations (bool): Generate recommendations for all
users.

copy_all_inputs (bool): If specified, all input parameters will be
deep copied before the method is run. This is useful for debugging
problems where the input parameters are being modified by the algorithm,
but can slow down the code.

input_model (CFType): Trained CF model to load.

~== NeLplCcrl

>>>

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

—== NeLpLcr)

>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.

= nNeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)

[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.
[INFO] AMF converged to residue of 5.93531e-06 in 26
iterations.

= nNeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)

[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.
[INFO] AMF converged to residue of 5.93531e-06 in 26

iterations.
>>>

= nNeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)

[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.

[INFO] AMF converged to residue of 5.93531e-06 in 26
iterations.

>>> model = output['output_model’]

= nNeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)

[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.
[INFO] AMF converged to residue of 5.93531e-06 in 26
iterations.

>>> model = output['output_model’]
>>>

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.

[INFO] AMF converged to residue of 5.93531e-06 in 26

iterations.

>>> model = output['output_model’]

>>> result = cf(input_model=model, query=[[1]],
recommendations=3, verbose=True)

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.

[INFO] AMF converged to residue of 5.93531e-06 in 26

iterations.

>>> model = output['output_model’]

>>> result = cf(input_model=model, query=[[1]],
recommendations=3, verbose=True)

[INFO] Generating recommendations for 1 user.

[INFO] 41 node combinations were scored.

[INFO] 40 base cases were calculated.

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.

[INFO] AMF converged to residue of 5.93531e-06 in 26

iterations.

>>> model = output['output_model’]

>>> result = cf(input_model=model, query=[[1]],
recommendations=3, verbose=True)

[INFO] Generating recommendations for 1 user.

[INFO] 41 node combinations were scored.

[INFO] 40 base cases were calculated.
>>>

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.

[INFO] AMF converged to residue of 5.93531e-06 in 26

iterations.

>>> model = output['output_model’]

>>> result = cf(input_model=model, query=[[1]],
recommendations=3, verbose=True)

[INFO] Generating recommendations for 1 user.

[INFO] 41 node combinations were scored.

[INFO] 40 base cases were calculated.

>>> print(result['output’])

—== NeLpLcr)
>>> output = cf(training=x, algorithm="NMF’, verbose=True)
[INFO] Performing CF matrix decomposition on dataset...
[INFO] No rank given for decomposition; using rank of 11
calculated by density-based heuristic.

[INFO] Initialized W and H.

[INFO] Iteration 1; residue 0.710812.

[INFO | Iteration 2; residue 0.0627744.

[INFO] Iteration 3; residue 0.156398.

[INFO] Iteration 26; residue 5.93531e-06.

[INFO] AMF converged to residue of 5.93531e-06 in 26

iterations.

>>> model = output['output_model’]

>>> result = cf(input_model=model, query=[[1]],
recommendations=3, verbose=True)

[INFO] Generating recommendations for 1 user.

[INFO] 41 node combinations were scored.

[INFO] 40 base cases were calculated.

>>> print(result['output’])

[[123 8 136]]

From the command line

Actually, we could have done the exact same thing from the command
line:

$ mlpack_cf -t GroupLenslQO0k.csv -M model.bin -a NMF

From the command line

Actually, we could have done the exact same thing from the command
line:

$ mlpack_cf -t GroupLenslQO0k.csv -M model.bin -a NMF
$ mlpack_cf -m model.bin -q query.csv -c 3 -0 recs.csv

From the command line

Actually, we could have done the exact same thing from the command
line:

$ mlpack_cf -t GroupLenslQO0k.csv -M model.bin -a NMF
$ mlpack_cf -m model.bin -q query.csv -c 3 -0 recs.csv
$ recs.csv

From the command line

Actually, we could have done the exact same thing from the command
line:

$ mlpack_cf -t GroupLenslQO0k.csv -M model.bin -a NMF

$ mlpack_cf -m model.bin -q query.csv -c 3 -0 recs.csv
$ recs.csv

123, 8, 136

From the command line

Actually, we could have done the exact same thing from the command
line:

$ mlpack_cf -t GroupLenslQO0k.csv -M model.bin -a NMF

$ mlpack_cf -m model.bin -q query.csv -c 3 -0 recs.csv
$ recs.csv

123, 8, 136

Basically all mlpack algorithm bindings to the command-line,
Python, or other languages operate like this.

Pros of C++

C++ is great!

Pros of C++

C++ is great!

® Generic programming at compile time via templates.

Pros of C++

C++ is great!

® Generic programming at compile time via templates.

® Low-level memory management.

Pros of C++

C++ is great!

® Generic programming at compile time via templates.
® Low-level memory management.

® Little to no runtime overhead.

Pros of C++

C++ is great!

Generic programming at compile time via templates.
Low-level memory management.
Little to no runtime overhead.

Well-known!

Pros of C++

C++ is great!

Generic programming at compile time via templates.
Low-level memory management.
Little to no runtime overhead.

Well-known!

The Armadillo library gives us good linear algebra primitives.

Pros of C++

C++ is great!

Generic programming at compile time via templates.
Low-level memory management.
Little to no runtime overhead.

Well-known!

The Armadillo library gives us good linear algebra primitives.

arma;
mat X, y;
mat z = (x + y) *x chol(x) + 3 x chol(y.t());

Cons of C++

C++ is not great!

Cons of C++

C++ is not great!

® JTemplates can be hard to debug because of error messages.

Cons of C++

C++ is not great!

® JTemplates can be hard to debug because of error messages.
® Memory bugs are easy to introduce.

Cons of C++

C++ is not great!

® JTemplates can be hard to debug because of error messages.

Memory bugs are easy to introduce.

® The new language revisions are not making the language any
simpler...

Cons of _§++

C++ is not great!

E --ﬁ‘,‘-—i-_"‘ssages.

O
O . c...g:r —
® The new Iangl__ _ a0 _.Jage any

S|mpler T AN N R | T

Genericity

Why write an algorithm for one specific situation?

Genericity

Why write an algorithm for one specific situation?

NearestNeighborSearch n(dataset);
n.Search(query_set, 3, neighbors, distances);

What if | don’t want the Euclidean distance?

Genericity

Why write an algorithm for one specific situation?

NearestNeighborSearch n(dataset, 1);
n.Search(query_set, 3, neighbors, distances);

Ok, this is a little better!

Genericity

Why write an algorithm for one specific situation?

NearestNeighborSearch<ManhattanDistance> n(dataset);
n.Search(query_set, 3, neighbors, distances);

This is much better! The user can specify whatever
distance metric they want, including one they write
themselves.

Genericity

Why write an algorithm for one specific situation?

MyStupidDistance
{
Evaluate(arma: :vec& a,
arma::vec& b)
{
15.0 x std::abs(a[0] - b[0O]);
}
}i

NearestNeighborSearch<MyStupidDistance> n(dataset);
n.Search(query_set, 3, neighbors, distances);

Genericity

Why write an algorithm for one specific situation?

NearestNeighborSearch<MyStupidDistance, arma::sp_mat>
n(sparse_dataset);
n.Search(sparse_query_set, 3, neighbors, distances);

Genericity

Why write an algorithm for one specific situation?

NearestNeighborSearch<EuclideanDistance, arma::mat, KDTree> kn;
NearestNeighborSearch<EuclideanDistance, arma::sp_mat, CoverTree> cn;
NearestNeighborSearch<ManhattanDistance, arma::mat, Octree> on;
NearestNeighborSearch<ChebyshevDistance, arma::sp_mat, RPlusTree> rn;
NearestNeighborSearch<MahalanobisDistance, arma::mat, RPTree> rpn;
NearestNeighborSearch<EuclideanDistance, arma::mat, XTree> xn;

R.R. Curtin, “Improving dual-tree algorithms”. PhD thesis, Georgia Institute of Technology, At-
lanta, GA, 8/2015.

Nearest
Nearest
Nearest
Nearest
Nearest
Nearest

Genericity

R.R. Curtin, “Improving dual-tree algorithms”. PhD thesis, Georgia Institute of Technology, At-
lanta, GA, 8/2015.

Genericity

Why wr

Nearest
Nearest
Nearest
Nearest
Nearest
Nearest

R.R. Curtin, “Improving dual-tree algorithms”. PhD thesis, Georgia Institute of Technology, At-
lanta, GA, 8/2015.

Why templates?

What about virtual inheritance?

Why templates?

What about virtual inheritance?

MyStupidDistance : Distance
{
Evaluate(arma::vec& a,
arma::vec& b)
{
15.0 * std::abs(a[0] - b[O]);
}
};
NearestNeighborSearch n(dataset, MyStupidDistance());

n.Search(3, neighbors, distances);

Why templates?

What about virtual inheritance?

MyStupidDistance : Distance
{
Evaluate(arma::vec& a,
arma::vec& b)
{
15.0 * std::abs(a[0] - b[O]);
}
};
NearestNeighborSearch n(dataset, MyStupidDistance());

n.Search(3, neighbors, distances);

vtable lookup penalty!

Why templates?

Using inheritance to call a function costs us instructions:

Distancex d =
MyStupidDistance(); | MyStupidDistance::Evaluate(a, b);
d->Evaluate(a, b);

Why templates?

Using inheritance to call a function costs us instructions:

Distancex d
MyStupidDistance();
d->Evaluate(a, b);

MyStupidDistance: :Evaluate(a, b);

o
i)

movq %Isp,

movg $_ZTV1A+16, (%)

_ZN1AlaEd

_ZN1BlaEd.isra.0.constprop.1

Why templates?

Using inheritance to call a function costs us instructions:

Distancex d =
MyStupidDistance(); | MyStupidDistance::Evaluate(a, b);
d->Evaluate(a, b);

movqg %rsp, %

movq $_ZTV1A+16, (%) _ZN1BlaEd.isra.0.constprop.1l

_ZN1AlaEd

Up to 10%+ performance penalty in some situations!

Compile-time expressions

What about math? (Armadillo)

Compile-time expressions

What about math? (Armadillo)
In C:

xx a, b, ¢, d, e;
rows, cols;

// We want to doe=a + b + c + d.
mat_copy(e, a, rows, cols);
mat_add(e, b, rows, cols);
mat_add(e, c, rows, cols);
mat_add(e, d, rows, cols);

Compile-time expressions

What about math? (Armadillo)

In C with a custom function:

xx a, b, ¢, d, e;
rows, cols;

// We want to doe=a +b + c + d.

Compile-time expressions

What about math? (Armadillo)

In C with a custom function:

xx a, b, ¢, d, e;
rows, cols;

// We want to doe=a +b + c + d.
mat_add4_into(e, a, b, c, d, rows, cols);

Fastest! (one pass)

Compile-time expressions

What about math? (Armadillo)

In C with a custom function:

xx a, b, c, d, e;
rows, cols;

// We want to doe=a +b + c + d.
mat_add4_into(e, a, b, c, d, rows, cols);

Fastest! (one pass)

mat_add4_into(xk @, x* a, x*x D),
xk C, xx d, rows, cols)
{
{ r

= 0; r < rows; ++r)
{ c = 0; c < cols; ++c)
e[r][c] = alrllc] + b[r]lc] + c[r]lc] + d[r]lc];

Compile-time expressions

What about math? (Armadillo)
In MATLAB:

e=a+b+c+d

Compile-time expressions

What about math? (Armadillo)
In MATLAB:

e=a+b+c+d

Beautiful!

Compile-time expressions

What about math? (Armadillo)

Compile-time expressions

What about math? (Armadillo)

Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b +c + d;

No temporaries, only one pass! Just as fast as the fastest C
Implementation.

Compile-time expressions ‘%

” .
What about math? (Armadillo) é =

In C++ (with Armadillo): 9 5 U

-

arma;
mat a, b, c, d;

mat e =a +b +c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<Tl, T2, add> +(T1& X, T2& vy);

Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b +c + d;

C++ allows us templated operator overloading:

< T1, 72>
op<Tl, T2, add> +(T1& X, T2& vy);

® mat + mat
— op<mat, mat, add>

Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b +c + d;

C++ allows us templated operator overloading:

< 11, 12>
op<Tl, T2, add> +(T1& X, T2& vy);

® mat + mat
— op<mat, mat, add>
® mat + mat + mat
— op<mat, mat, add> + mat

Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b +c + d;

C++ allows us templated operator overloading:

< 11, 12>
op<Tl, T2, add> +(T1& X, T2& vy);

® mat + mat
— op<mat, mat, add>
® mat + mat + mat
— op<op<mat, mat, add>, mat, add>

Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b +c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<Tl, T2, add> +(T1& X, T2& vy);

® mat + mat

— op<mat, mat, add>
® mat + mat + mat

— op<op<mat, mat, add>, mat, add>
® mat + mat + mat + mat

— op<mat, mat, add> + mat + mat

Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b +c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<Tl, T2, add> +(T1& X, T2& vy);

® mat + mat
— op<mat, mat, add>
® mat + mat + mat
— op<op<mat, mat, add>, mat, add>
® mat + mat + mat + mat
— op<op<mat, mat, add>, mat, add> + mat

Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b +c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<Tl, T2, add> +(T1& X, T2& vy);

® mat + mat
— op<mat, mat, add>
® mat + mat + mat
— op<op<mat, mat, add>, mat, add>
® mat + mat + mat + mat
— op<op<op<mat, mat, add>, mat, add>, mat, add>

Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b +c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<Tl1l, T2, add> +(T1& X, T2& y);
The expression yields type op<op<op<mat, mat, add> , mat, add>.
< T1, T2>

I
—

mat: : op<T1l, T2, add>& op);

Compile-time expressions

What about math? (Armadillo)
In C++ (with Armadillo):

arma;
mat a, b, c, d;

mat e =a +b +c + d;

C++ allows us templated operator overloading:

< T1, T2>
op<Tl, T2, add> +(T1& X, T2& vy);
The expression yields type op<op<op<mat, mat, add> , mat, add>.
< 11, 12>
mat:: =(op<T1l, T2, add>& op);

The assignment operator "unwraps" the operation and generates optimal
code.

Take-home

® Templates give us generic code.

® Iemplates allow us to generate fast code.

Optimization in C++ with mipack

Optimization is a fundamental machine learning problem:

argmin,, f(x)

Optimization in C++ with mipack

Optimization is a fundamental machine learning problem:

argmin,, f(x)

mipack provides some nice facilities to do this. In order to optimize a
differentiable function we just need a class with two methods:

Evaluate(arma: :mat& x);

Gradient(arma::mat& x, arma::mat& gradient);

Optimization in C++ with mipack

Let’s take linear regression as an example:

® A: data matrix
®). data responses
® 1. parameters for linear regression

Optimization in C++ with mipack

Let’s take linear regression as an example:

® A: data matrix
®). data responses
® 1. parameters for linear regression
f(z) = (Az — b)1 (Az — b).
And the gradient:

Vf(z) =AY (Az —0).

Optimization in C++ with mipack

Let’s take linear regression as an example:

® A: data matrix
®). data responses
® 1. parameters for linear regression

f(z) = (Az — b)1 (Az — b).
And the gradient:

Vf(z) =AY (Az —0).

We want to minimize f(z).

Optimization in C++ with mipack

Let’s take linear regression as an example:

® A: data matrix
®). data responses
® 1. parameters for linear regression

f(z) = (Az — b)1 (Az — b).
And the gradient:

Vf(z) =AY (Az —0).

We want to minimize f(z).

(The point of the demo here is to show how easy it is to implement, not to
detail the intricacies of linear regression, so don’t worry about the math
much.)

Optimization in C++ with mipack

Remember, we just need two functions inside of a class.

LinearRegressionFunction

Optimization in C++ with mipack

Remember, we just need two functions inside of a class.

LinearRegressionFunction

{
arma::mat& data;
arma::rowvec& responses;
LinearRegressionFunction (arma::mat& data, arma: :rowvec&

responses) : data(data), responses(responses) { }

Optimization in C++ with mipack

Remember, we just need two functions inside of a class.

LinearRegressionFunction

{
arma::mat& data;
arma::rowvec& responses;
LinearRegressionFunction (arma::mat& data, arma: :rowvec&

responses) : data(data), responses(responses) { }

Evaluate(arma: :mat& x)

Optimization in C++ with mipack

Remember, we just need two functions inside of a class.

LinearRegressionFunction

arma::mat& data;
arma::rowvec& responses;

Linea;Re f(x) ::(fix-—-b)jkfix-—-b).

r.eS|"""'l - et Ut A 4 - T -5 - —— \N°" Ty = —— w Fl

Evaluate(arma: :mat& x)

Optimization in C++ with mipack

Remember, we just need two functions inside of a class.

LinearRegressionFunction

{

arma::mat& data;
arma::rowvec& responses;
: T

LinearRe f(x) = (Ax — b)" (Ax —b).

FES L, Ll il i,
Evaluate (arma::mat& x)
{

(data * x - responses).t() * (data * x - responses);

Optimization in C++ with mipack

Remember, we just need two functions inside of a class.

LinearRegressionFunction

arma::mat& data;
arma::rowvec& responses;

LinearRegressionFunction (arma::mat& data, arma: :rowvec&
responses) : data(data), responses(responses) { }

Evaluate(arma: :mat& x)

(data * x - responses).t() * (data * x - responses);

Gradient(arma::mat& x, arma::mat& gradient)

Optimization in C++ with mipack

Remember, we just need two functions inside of a class.

LinearRegressionFunction

{
arma::mat& data;
arma::rowvec& responses;
: T
LinearRe Vf(x)=A" (Ax —b).
FES L, Ll il i,
Evaluate(arma::mat& x)
{
(data * x - responses).t() x (data * x - responses);
}
Gradient(arma::mat& x, arma::mat& gradient)

Optimization in C++ with mipack

Remember, we just need two functions inside of a class.

LinearRegressionFunction

{
arma::mat& data;
arma::rowvec& responses;
: T
LinearRe Vf(J?) = A (Aa?— b)-
FES L, Ll il i,
Evaluate(arma::mat& x)
{
(data * x - responses).t() x (data * x - responses);
}
Gradient(arma::mat& x, arma::mat& gradient)
{
gradient = data.t() * (data * x - responses);
}

};

Optimization in C++ with mipack

Remember, we just need two functions inside of a class.

LinearRegressionFunction

arma::mat& data;
arma::rowvec& responses;

LinearRegressionFunction (arma::mat& data, arma: :rowvec&
responses) : data(data), responses(responses) { }

Evaluate(arma::mat& x)
{
(data * x - responses).t() x (data * x - responses);
}
Gradient(arma::mat& x, arma::mat& gradient)
{
gradient = data.t() * (data * x - responses);
}

};

Optimization in C++ with mipack

Now we can take our LinearRegressionFunction and optimize it!

Optimization in C++ with mipack

Now we can take our LinearRegressionFunction and optimize it!

mlpack: :optimization;

LinearRegressionFunction lrf(data, responses);

arma::mat Xx;
L_BFGS 1;
L.0Optimize(1lrf, x);

Optimization in C++ with mipack

Now we can take our LinearRegressionFunction and optimize it!

mlpack: :optimization;

LinearRegressionFunction lrf(data, responses);

arma::mat Xx;
L_BFGS 1;
L.0Optimize(1lrf, x);

GradientDescent g;
g.0ptimize(lrf, x);

Optimization in C++ with mipack

Now we can take our LinearRegressionFunction and optimize it!

mlpack: :optimization;

LinearRegressionFunction lrf(data, responses);

arma::mat Xx;
L_BFGS 1;
L.0Optimize(1lrf, x);

GradientDescent g;
g.0ptimize(lrf, x);

SA s;
s.Optimize(lrf, x);

Optimization in C++ with mipack

Now we can take our LinearRegressionFunction and optimize it!

mlpack: :optimization;

LinearRegressionFunction lrf(data, responses);

arma::mat Xx;
L_BFGS 1;
L.0Optimize(1lrf, x);

GradientDescent g;
g.0ptimize(lrf, x);

SA s;
s.Optimize(lrf, x);

IQN i;
i.0ptimize(lrf, x);

A wide range of optimizers for different
problem types

mlpack has a huge collection of optimizers.

® Quasi-Newton variants: Limited-memory BFGS (L-BFGS),
incremental Quasi-Newton method (IQN), Augmented Lagrangian
Method

® SGD variants: Stochastic Gradient Descent (SGD), Stochastic
Coordinate Descent (SCD), Parallel Stochastic Gradient Descent
(Hogwild!), Stochastic Gradient Descent with Restarts (SGDR),
SMORMSS3, AdaGrad, AdaDelta, RMSProp, Adam, AdaMax

® Genetic variants: Conventional Neuro-evolution (CNE), Covariance
Matrix Adaptation Evolution Strategy (CMA-ES)

® Other: Conditional Gradient Descent, Frank-Wolfe algorithm,
Simulated Annealing

A wide range of optimizers for different
problem types

mlpack has a huge collection of optimizers.

® Quasi-Newton variants: Limited-memory BFGS (L-BFGS),
incremental Quasi-Newton method (IQN), Augmented Lagrangian
Method

® SGD variants: Stochastic Gradient Descent (SGD), Stochastic
Coordinate Descent (SCD), Parallel Stochastic Gradient Descent
(Hogwild!), Stochastic Gradient Descent with Restarts (SGDR),
SMORMSS3, AdaGrad, AdaDelta, RMSProp, Adam, AdaMax

® Genetic variants: Conventional Neuro-evolution (CNE), Covariance
Matrix Adaptation Evolution Strategy (CMA-ES)

® Other: Conditional Gradient Descent, Frank-Wolfe algorithm,
Simulated Annealing

And it is also easy to implement new optimizers.

R.R. Curtin, S. Bhardwaj, M. Edel, Y. Mentekidis, “A generic and fast C++ optimization frame-
work”, arXiv preprint arXiv:1711.06581, 2017.

Deep Neural Networks with mlpack

With the optimization infrastructure, we can also do deep learning.

Deep Neural Networks with mlpack

With the optimization infrastructure, we can also do deep learning.

mlpack: :ann;
arma::mat data, responses, testData;

FFN<NegativelLogLikelihood<>, RandomInitialization> model;
model.Add<Linear<>>(data.n_rows, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 10);

model .Add<LogSoftMax<>>();

Deep Neural Networks with mlpack

With the optimization infrastructure, we can also do deep learning.

mlpack: :ann;
arma::mat data, responses, testData;

FFN<NegativelLogLikelihood<>, RandomInitialization> model;
model.Add<Linear<>>(data.n_rows, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 10);

model .Add<LogSoftMax<>>();

SGD<> optimizer(0.001 , 1024 ,
100000);
model.Train(data, responses, optimizer);

Deep Neural Networks with mlpack

With the optimization infrastructure, we can also do deep learning.

mlpack: :ann;
arma::mat data, responses, testData;

FFN<NegativelLogLikelihood<>, RandomInitialization> model;
model.Add<Linear<>>(data.n_rows, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 100);
model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 10);

model .Add<LogSoftMax<>>();

SGD<> optimizer(0.001 , 1024 ,
100000);
model.Train(data, responses, optimizer);

arma::mat predictions;
model.Predict(testData, predictions);

Benchmarks

Did C++ get us what we wanted?

Benchmarks

Task 1: z =2(2" + y) + 2(x + /).

n L]

mat x(n, n, fill::randu);

mat y(n, n,

fill::randu);

mat z = 2 * (X.t() +y) +2 *x (x +y.t());

n arma numpy | octave R Julia

1000 0.029s | 0.040s | 0.036s | 0.052s | 0.027s
3000 0.047s | 0.432s | 0.376s | 0.344s | 0.041s
10000 | 0.968s | 5.948s | 3.989s | 4.952s | 3.683s
30000 | 19.167s | 62.748s | 41.356s fail | 36.730s

Benchmarks

Task 2: 2z = (x + 10 % I)T — 3.

n L]

mat x(n, n,
mat y(n, n,

mat z = pinv(x + 10 *x eye(n, n))

fill::randu);
fill::randu);

- Y

n arma humpy | octave R Julia
300 0.081s | 0.080s 0.324s 0.096s 0.098s
1000 1.321s | 1.354s | 26.156s 1.444s 1.236s
3000 | 28.817s | 28.955s | 648.64s | 29.732s | 29.069s
10000 | 777.55s | 785.58s | 17661.9s | 787.201s | 778.472s

The computation is dominated by the calculation of the pseudoinverse.

Benchmarks

Task 3: z = abcd for decreasing-size matrices.

n,

mat a(n, 0.8 x n, fill::randu);

mat b(0.8 *x n, 0.6 * n, fill::randu);

mat c(0.6 * n, 0.4 x n, fill::randu);

mat d(0.4 x n, 0.2 x n, fill::randu);

mat z = a x b x ¢ *x d;
n arma humpy | octave R Julia
1000 0.042s | 0.051s | 0.033s | 0.056s 0.037s
3000 0.642s | 0.812s | 0.796s | 0.846s 0.844s
10000 | 16.320s | 26.815s | 26.478s | 26.957s | 26.576s
30000 | 329.87s | 708.16s | 706.10s | 707.12s | 704.032s

Armadillo can automatically select the correct ordering for multiplication.

Task 4: z = o/(diag(b)~1)ec.

vec a(n,
vec b(n,
vec c(n,

Benchmarks

n L]

fill::randu);
fill::randu);
fill::randu);
z = as_scalar(a.t() * inv(diagmat(b)) * c);

n arma | humpy | octave R Julia
1k 8e-6s | 0.100s 2e-4s | 0.014s | 0.057s
10k 8e-5s | 49.399s | 4e-4s | 0.208s | 18.189s
100k | 8e-4s fail (OO0 245 fail fail
1M 0.009s fail 0.024s fail fail
10M | 0.088s fail 0.205s fail fail
100M | 0.793s fail 1.972s fail fail
1B 8.054s fail 19.520s fail fail

kKNN benchmarks

220] . mlpack
e B mipy
::: : . matlab
rae [scikit
“:: . shoaun
:: N ig ig . weka
o e e
covtype isolet corel
F e E E E E
= = = =
1.6 — E E E E
twitter mnist tinylmages
dataset d N mlpack mlpy matlab scikit shogun Weka
isolet 617 8k 15.65s 59.09s 50.88s 44.59s 59.56s 220.38s
corel 2 68k 17.70s 95.26s fail 63.32s fail 29.38s
covertype 54 581k 18.04s 27.68s >9000s 44 .55s >9000s 42.34s
twitter 78 583k 1573.92s >9000s >9000s 4637.81s fail >9000s
mnist Iz 70k 3129.46s >9000s fail 8494.24s 6040.16s >9000s
tinylmages 384 100k 4535.38s 9000s fail >9000s fail >9000s

vs. Spark

We can use mmap () for out-of-core learning since our algorithms are
generic!

vs. Spark

We can use mmap () for out-of-core learning since our algorithms are

generic! M3 Runtimes (10 Iterations) for
Logistic Regression (L-BFGS)
Runtime (s)
2000 /RAIVI size = 32GB
1500
b“-’Qf:"
% .
Q,*‘O
%?}‘,x'
1000 0(5{'&:/.-
500
0
10G e (e 100G 130G 160G 190G
Dataset Size on Disk
L-BFGS K-Means
® M3 1950s 1604s
® 8x Spark 12864s 1164s
4x Spark | 82565 ‘ 3491s

D. Fang, P. Chau. M3: scaling up machine learning via memory mapping, SIGMOD/PODS 2016.

What didn’t | talk about in depth?

hyper-parameter tuner

tree infrastructure for problems like nearest neighbor search
reinforcement learning code

matrix decomposition infrastructure

benchmarking system

automatic binding generator

preprocessing utilities

...and surely more | am not thinking of...

What’s coming?

mipack 3 is released and ready for production use!

http://mlpack.org/blog/mlpack-3-released.html

RN
s/ /N
SN NN

mIipack

http://www.mlpack.org/
https://github.com/mlpack/mlpack/

http://mlpack.org/blog/mlpack-3-released.html
http://www.mlpack.org/
https://github.com/mlpack/mlpack/

Further out

Armadillo-like library for GPU matrix operations: Bandicoot

http://coot.sourceforge.io0/

Two separate use case options:

® Bandicoot can be used as a drop-in accelerator to Armadillo,
offloading intensive computations to the GPU when possible.

® Bandicoot can be used as its own library for GPU matrix programming.

http://coot.sourceforge.io/

Further out

Armadillo-like library for GPU matrix operations: Bandicoot

http://coot.sourceforge.io0/

Two separate use case options:

® Bandicoot can be used as a drop-in accelerator to Armadillo,
offloading intensive computations to the GPU when possible.

® Bandicoot can be used as its own library for GPU matrix programming.

coot;
mat x(n, n, fill::randu);
mat y(n, n, fill::randu);
mat z = X x y;

http://coot.sourceforge.io/

Questions and comments?

http://www.mlpack.org/
https://github.com/mlpack/mlpack/

http://www.mlpack.org/
https://github.com/mlpack/mlpack/

	Introduction
	Graph #1
	The Big Tradeoff
	So, mlpack.
	What does mlpack implement?
	How do we get mlpack?
	Installing from Python
	Command-line programs
	Command-line programs
	Command-line programs
	Python bindings
	Python bindings
	
	
	
	From the command line
	From the command line
	From the command line
	From the command line
	From the command line
	Pros of C++
	Pros of C++
	Cons of C++
	Genericity
	Genericity
	Genericity
	Genericity
	Genericity
	Genericity
	Genericity
	Genericity
	Genericity
	Why templates?
	Why templates?
	Why templates?
	Why templates?
	Why templates?
	Why templates?
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Compile-time expressions
	Take-home
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	Optimization in C++ with mlpack
	A wide range of optimizers for different problem types
	Deep Neural Networks with mlpack
	Deep Neural Networks with mlpack
	Deep Neural Networks with mlpack
	Deep Neural Networks with mlpack
	Benchmarks
	Benchmarks
	Benchmarks
	Benchmarks
	Benchmarks
	kNN benchmarks
	vs. Spark
	What didn't I talk about in depth?
	What's coming?
	Further out
	Further out
	Questions and comments?

	pdclock.166:
	pdclock.165:
	pdclock.164:
	pdclock.163:
	pdclock.162:
	pdclock.161:
	pdclock.160:
	pdclock.159:
	pdclock.158:
	pdclock.157:
	pdclock.156:
	pdclock.155:
	pdclock.154:
	pdclock.153:
	pdclock.152:
	pdclock.151:
	pdclock.150:
	pdclock.149:
	pdclock.148:
	pdclock.147:
	pdclock.146:
	pdclock.145:
	pdclock.144:
	pdclock.143:
	pdclock.142:
	pdclock.141:
	pdclock.140:
	pdclock.139:
	pdclock.138:
	pdclock.137:
	pdclock.136:
	pdclock.135:
	pdclock.134:
	pdclock.133:
	pdclock.132:
	pdclock.131:
	pdclock.130:
	pdclock.129:
	pdclock.128:
	pdclock.127:
	pdclock.126:
	pdclock.125:
	pdclock.124:
	pdclock.123:
	pdclock.122:
	pdclock.121:
	pdclock.120:
	pdclock.119:
	pdclock.118:
	pdclock.117:
	pdclock.116:
	pdclock.115:
	pdclock.114:
	pdclock.113:
	pdclock.112:
	pdclock.111:
	pdclock.110:
	pdclock.109:
	pdclock.108:
	pdclock.107:
	pdclock.106:
	pdclock.105:
	pdclock.104:
	pdclock.103:
	pdclock.102:
	pdclock.101:
	pdclock.100:
	pdclock.99:
	pdclock.98:
	pdclock.97:
	pdclock.96:
	pdclock.95:
	pdclock.94:
	pdclock.93:
	pdclock.92:
	pdclock.91:
	pdclock.90:
	pdclock.89:
	pdclock.88:
	pdclock.87:
	pdclock.86:
	pdclock.85:
	pdclock.84:
	pdclock.83:
	pdclock.82:
	pdclock.81:
	pdclock.80:
	pdclock.79:
	pdclock.78:
	pdclock.77:
	pdclock.76:
	pdclock.75:
	pdclock.74:
	pdclock.73:
	pdclock.72:
	pdclock.71:
	pdclock.70:
	pdclock.69:
	pdclock.68:
	pdclock.67:
	pdclock.66:
	pdclock.65:
	pdclock.64:
	pdclock.63:
	pdclock.62:
	pdclock.61:
	pdclock.60:
	pdclock.59:
	pdclock.58:
	pdclock.57:
	pdclock.56:
	pdclock.55:
	pdclock.54:
	pdclock.53:
	pdclock.52:
	pdclock.51:
	pdclock.50:
	pdclock.49:
	pdclock.48:
	pdclock.47:
	pdclock.46:
	pdclock.45:
	pdclock.44:
	pdclock.43:
	pdclock.42:
	pdclock.41:
	pdclock.40:
	pdclock.39:
	pdclock.38:
	pdclock.37:
	pdclock.36:
	pdclock.35:
	pdclock.34:
	pdclock.33:
	pdclock.32:
	pdclock.31:
	pdclock.30:
	pdclock.29:
	pdclock.28:
	pdclock.27:
	pdclock.26:
	pdclock.25:
	pdclock.24:
	pdclock.23:
	pdclock.22:
	pdclock.21:
	pdclock.20:
	pdclock.19:
	pdclock.18:
	pdclock.17:
	pdclock.16:
	pdclock.15:
	pdclock.14:
	pdclock.13:
	pdclock.12:
	pdclock.11:
	pdclock.10:
	pdclock.9:
	pdclock.8:
	pdclock.7:
	pdclock.6:
	pdclock.5:
	pdclock.4:
	pdclock.3:
	pdclock.2:
	pdclock.1:
	pdclock.0:

