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Abstract: Despite the importance of sparse matrices in numerous fields of science, software1

implementations remain difficult to use for non-expert users, generally requiring the understanding2

of underlying details of the chosen sparse matrix storage format. In addition, to achieve good3

performance, several formats may need to be used in one program, requiring explicit selection and4

conversion between the formats. This can be both tedious and error-prone, especially for non-expert5

users. Motivated by these issues, we present a user-friendly and open-source sparse matrix class6

for the C++ language, with a high-level application programming interface deliberately similar7

to the widely used MATLAB language. This facilitates prototyping directly in C++ and aids the8

conversion of research code into production environments. The class internally uses two main9

approaches to achieve efficient execution: (i) a hybrid storage framework, which automatically10

and seamlessly switches between three underlying storage formats (compressed sparse column,11

Red-Black tree, coordinate list) depending on which format is best suited and/or available for specific12

operations, and (ii) a template-based meta-programming framework to automatically detect and13

optimise execution of common expression patterns. Empirical evaluations on large sparse matrices14

with various densities of non-zero elements demonstrate the advantages of the hybrid storage15

framework and the expression optimisation mechanism.16
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1. Introduction19

Recent decades have seen the frontiers of scientific computing increasingly push towards the use20

of larger and larger datasets. In fact, frequently the data to be represented is so large that it cannot fully21

fit into working memory. Fortunately, in many cases the data has many zeros and can be represented22

in a compact manner, allowing users to work with sparse matrices of extreme size with few non-zero23

elements. However, converting code from using dense matrices to using sparse matrices—a common24

task when scaling code to larger data—is not always straightforward.25

Current open-source frameworks may provide several separate sparse matrix classes, each with26

its own data storage format. For example, SciPy [1] has 7 sparse matrix classes, where each storage27

format is best suited for efficient execution of a specific set of operations (eg., incremental matrix28

construction vs. matrix multiplication). Other frameworks may provide only one sparse matrix class,29
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with severe runtime penalties if it is not used in the right way. This can be challenging and bewildering30

for users who simply want to create and use sparse matrices, and do not have the time, expertise, or31

desire to understand the advantages and disadvantages of each format. To achieve good performance,32

several formats may need to be used in one program, requiring explicit selection and conversion33

between the formats. This multitude of sparse matrix classes complicates the programming task, adds34

to the maintenance burden, and increases the likelihood of bugs.35

Driven by the above concerns, we have devised a practical and user-friendly sparse matrix class36

for the C++ language [2]. The sparse matrix class uses a hybrid storage framework, which automatically37

and seamlessly switches between three data storage formats, depending on which format is best suited38

and/or available for specific operations:39

• Compressed Sparse Column (CSC), used for efficient and nuanced implementation of core40

arithmetic operations such as matrix multiplication and addition, as well as efficient reading of41

individual elements;42

• Red-Black Tree (RBT), used for both robust and efficient incremental construction of sparse43

matrices (i.e., construction via setting individual elements one-by-one, not necessarily in order);44

• Coordinate List (COO), used for low-maintenance and straightforward implementation of45

relatively complex and/or lesser-used sparse matrix functionality.46

The COO format is important to point out, as the source code for the sparse matrix class is47

distributed and maintained as part of the open-source Armadillo library [3]. Due to its simpler nature,48

the COO format facilitates functionality contributions from time-constrained and/or non-expert users,49

as well as reducing maintenance and debugging overhead for the library maintainers.50

While there are many other sparse matrix implementations in existence, to our knowledge the51

presented approach is the first to offer a unified interface with automatic format switching under the52

hood. Most toolkits are limited to either a single format or multiple formats the user must manually53

convert between. The comprehensive SPARSKIT package [4] contains 16, and SciPy contains seven54

formats [1]. In these toolkits the user must manually convert between formats. On the other hand,55

both MATLAB and GNU Octave [5] contain sparse matrix implementations, but they supply only the56

CSC format [6], meaning that users must write their code in special ways to ensure its efficiency [7].57

This is a similar situation to the Blaze library (bitbucket.org/blaze-lib/blaze) [8], which implements58

only a CSR/CSC format sparse matrix. Users are explicitly discouraged from individual element59

insertions and, for efficiency, must construct their sparse matrices in the restricted environment of batch60

insertion. The Eigen C++ matrix library (eigen.tuxfamily.org) uses a specialised sparse matrix format61

which has deliberate redundancy and overprovisioned storage. While this can help with reducing62

the computational effort of element insertion in some situations, it requires manual care to maintain63

storage efficiency. Furthermore, as the cost of random insertion of elements is still high, the associated64

documentation recommends to manually construct a COO-like representation of all the elements,65

from which the actual sparse matrix is then constructed. The IT++ library (itpp.sourceforge.net)66

has a cumbersome sparse matrix class with a custom format that also employs overprovisioned67

storage. The format is less efficient storage-wise than CSC unless explicit manual care is taken. Data68

is stored in unordered fashion which allows for faster element insertion than CSC, but at the cost69

of reduced performance for linear algebra operations. Thus, overall, the landscape of sparse matrix70

implementations is composed of libraries where a user must be aware of some of the internal storage71

details of these implementations in order to produce efficient code; this is not ideal.72

To make the situation even more complex, there are also numerous other sparse matrix formats [4,73

9]. Examples are the modified compressed row/column format (intended for sparse matrices with all74

non-zero elements on the diagonal), block compressed storage format (intended for sparse matrices75

with dense submatrices), compressed diagonal format (intended for straightforward storage of banded76

sparse matrices under the assumption of constant bandwith), and the skyline format (intended for77

more efficient storage of banded sparse matrices with irregular bandwith). As these formats are78
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focused on specialised use cases, their utility is typically not very general. Thus we have currently79

opted against including these formats in our hybrid framework, though it would be relatively easy to80

accomodate more formats in the future.81

To further promote efficient execution, the sparse matrix class internally implements a delayed82

evaluation framework [10] based on template meta-programming [11,12] combined with operator83

overloading [2]. In delayed evaluation, the evaluation of a given compound mathematical expression84

is delayed until its value is required (ie., assigned to a variable). This is in contrast to eager evaluation85

(also known as strict evaluation), where each component of a compound expression is evaluated86

immediately. As such, the delayed evaluation framework allows automatic compile-time analysis of87

compound expressions, which in turns allows for automatic detection and optimisation of common88

expression patterns. For example, several operations can be combined to reduce the required89

computational effort.90

Overall, the sparse matrix class and its associated functions provide a high-level application91

programming interface (function syntax) that is intuitive, close to a typical dense matrix interface,92

and deliberately similar to MATLAB. This can help with rapid transition of dense-specific code to93

sparse-specific code, facilitates prototyping directly in C++, and aids the conversion of research code94

into production environments.95

The paper is continued as follows. In Section 2 we overview the functionality provided by the96

sparse matrix class and its associated functions. The delayed evaluation approach is overviewed97

in Section 3. In Section 4 we describe the underlying storage formats used by the class, and the98

scenarios that each of the formats is best suited for. In Section 5 we discuss the costs for switching99

between the formats. Section 6 provides an empirical evaluation showing the advantages of the hybrid100

storage framework and the delayed evaluation approach. The salient points and avenues for further101

exploitation are summarised in Section 7. This article is a thoroughly revised and extended version of102

our earlier work [13].103

2. Functionality104

The sparse matrix class and its associated functions provide a user-friendly suite of essential105

sparse linear algebra functionality, including fundamental operations such as addition, matrix106

multiplication and submatrix manipulation. The class supports storing elements as integers,107

single- and double-precision floating point numbers, as well as complex numbers. Various sparse108

eigendecompositions and linear equation solvers are provided through integration with low-level109

routines in the de-facto standard ARPACK [14] and SuperLU libraries [15]. The resultant high-level110

functions automatically take care of tedious and cumbersome details such as memory management,111

allowing the user to concentrate their programming effort on mathematical details.112

C++ language features such as overloading of operators (eg., * and +) [2] are exploited to allow113

mathematical operations with matrices to be expressed in a concise and easy-to-read manner, in a114

similar fashion to the proprietary MATLAB language. For example, given sparse matrices A, B, and C,115

a mathematical expression such as116

D = 1
2(A + B) · CT

can be written directly in C++ as117

sp_mat D = 0.5 * (A + B) * C.t();

where sp_mat is our sparse matrix class. Figure 1 contains a complete C++ program which briefly118

demonstrates usage of the sparse matrix class, while Table 1 lists a subset of the available functionality.119

The aggregate of the sparse matrix class, operator overloading and associated functions on sparse120

matrices is an instance of a Domain Specific Language (sparse linear algebra in this case) embedded121

within the host C++ language [16,17]. This allows complex algorithms relying on sparse matrices to be122

easily developed and integrated within a larger C++ program, making the sparse matrix class directly123

useful in application/product development.124



Version 6th July 2019 submitted to Math. Comput. Appl. 4 of 16

Function Description
sp_mat X(1000,2000) Declare sparse matrix with 1000 rows and 2000 columns
sp_cx_mat X(1000,2000) As above, but use complex elements
X(1,2) = 3 Assign value 3 to element at location (1,2) of matrix X
X = 4.56 * A Multiply matrix A by scalar
X = A + B Add matrices A and B
X = A * B Multiply matrices A and B
X( span(1,2), span(3,4) ) Provide read/write access to submatrix of X
X.diag(k) Provide read/write access to diagonal k of X
X.print() Print matrix X to terminal
X.save(filename, format) Store matrix X as a file
speye(rows, cols) Generate sparse matrix with values on diagonal set to one
sprandu(rows, cols, density) Generate sparse matrix with random non-zero elements
sum(X, dim) Sum of elements in each column (dim=0) or row (dim=1)
min(X, dim); max(X, dim) Obtain extremum value in each column (dim=0) or row (dim=1)
X.t() or trans(X) Return transpose of matrix X
kron(A, B) Kronecker tensor product of matrices A and B
repmat(X, rows, cols) Replicate matrix X in block-like fashion
norm(X, p) Compute p-norm of vector or matrix X
normalise(X, p, dim) Normalise each column (dim=0) or row (dim=1) to unit p-norm
trace(A.t() * B) Compute trace of AT B without explicit transpose and multiplication
diagmat(A + B) Obtain diagonal matrix from A + B without full matrix addition
eigs_gen(eigval, eigvec, X, k) Compute k largest eigenvalues and eigenvectors of matrix X
svds(U, s, V, X, k) Compute k singular values and singular vectors of matrix X
X = spsolve(A, b) Solve sparse system Ax = b for x

Table 1. Subset of available functionality for the sparse matrix class, with brief descriptions. Optional
additional arguments have been omitted for brevity. See http://arma.sf.net/docs.html#SpMat for
more detailed documentation.

#include <armadillo>
using namespace arma;

int main()
{
// generate random sparse 1000x1000 matrix with 1% density of non-zero values,
// with uniform distribution of values in the [0,1] interval
sp_mat A = sprandu(1000, 1000, 0.01);

// multiply A by its transpose
sp_mat B = A * A.t();

// add scalar to main diagonal
B.diag() += 0.1;

// declare dense vector and matrix
vec eigvals; mat eigvecs;

// find 3 eigenvectors of sparse matrix B
eigs_sym(eigvals, eigvecs, B, 3);

return 0;
}

Figure 1. A small C++ program to demonstrate usage of the sparse matrix class (sp_mat).

http://arma.sf.net/docs.html#SpMat
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3. Template-Based Optimisation of Compound Expressions125

The sparse matrix class uses a delayed evaluation approach, allowing several operations to be126

combined to reduce the amount of computation and/or temporary objects. In contrast to brute-force127

evaluations, delayed evaluation can provide considerable performance improvements as well as128

reduced memory usage [18]. The delayed evaluation machinery is accomplished through template129

meta-programming [11,12], where a type-based signature of a compound expression (set of consecutive130

mathematical operations) is automatically constructed. The C++ compiler is then automatically131

induced to detect common expression patterns at compile time, followed by selecting the most132

computationally efficient implementations.133

As an example of the possible efficiency gains, let us consider the expression trace(A.t() * B),134

which often appears as a fundamental quantity in semidefinite programs [19]. These computations are135

thus used in a wide variety of diverse fields, most notably machine learning [20–22]. A brute-force136

implementation would evaluate the transpose first, A.t(), and store the result in a temporary matrix137

T1. The next operation would be a time consuming matrix multiplication, T1 * B, with the result138

stored in another temporary matrix T2. The trace operation (sum of diagonal elements) would then be139

applied on T2. The explicit transpose, full matrix multiplication and creation of the temporary matrices140

is suboptimal from an efficiency point of view, as for the trace operation we require only the diagonal141

elements of the A.t() * B expression.142

Template-based expression optimisation can avoid the unnecessary operations. Let us declare143

two lightweight objects, Op and Glue, where Op objects are used for representing unary operations,144

while Glue objects are used for representing binary operations. The objects are lightweight as they do145

not store actual sparse matrix data; instead the objects only store references to matrices and/or other146

Op and Glue objects. Ternary and more complex operations are represented through combinations of147

Op and Glue objects. The exact type of each Op and Glue object is automatically inferred from a given148

mathematical expression through template meta-programming.149

In our example, the expression A.t() is automatically converted to an instance of the lightweight150

Op object with the following type:151

Op<sp_mat, op_trans>

where Op<...> indicates that Op is a template class, with the items between ‘<’ and ‘>’ specifying152

template parameters. In this case the Op<sp_mat, op_trans> object type indicates that a reference153

to a matrix is stored and that a transpose operation is requested. In turn, the compound expression154

A.t() * B is converted to an instance of the lightweight Glue object with the following type:155

Glue< Op<sp_mat, op_trans>, sp_mat, glue_times>

where the Glue object type in this case indicates that a reference to the preceding Op object is stored, a156

reference to a matrix is stored, and that a matrix multiplication operation is requested. In other words,157

when a user writes the expression trace(A.t() * B), the C++ compiler is induced to represent it158

internally as trace(Glue< Op<sp_mat, op_trans>, sp_mat, glue_times>(A,B)).159

There are several implemented forms of the trace() function, one of which is automatically160

chosen by the C++ compiler to handle the Glue< Op<sp_mat, op_trans>, sp_mat, glue_times>161

expression. The specific form of trace() takes references to the A and B matrices, and executes a partial162

matrix multiplication to obtain only the diagonal elements of the A.t() * B expression. All of this163

is accomplished without generating temporary matrices. Furthermore, as the Glue and Op objects164

only hold references, they are in effect optimised away by modern C++ compilers [12]: the resultant165

machine code appears as if the Glue and Op objects never existed in the first place.166

The template-based delayed evaluation approach has also been employed for other functions, such167

as the diagmat() function, which obtains a diagonal matrix from a given expression. For example, in168

the expression diagmat(A + B), only the diagonal components of the A + B expression are evaluated.169
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Figure 2. Illustration of sparse matrix representations: (a) example sparse matrix with 5 rows, 4
columns and 6 non-zero values, shown in traditional mathematical notation; (b) corresponding
CSC representation; (c) corresponding RBT representation, where each node is expressed by (i, v),
with i indicating a linearly encoded matrix location and v indicating the value held at that location;
(d) corresponding COO representation. Following C++ convention [2], we use zero-based indexing.

4. Storage Formats for Sparse Data170

We have chosen the three underlying storage formats (CSC, RBT, COO) to give overall efficient171

execution across several use cases, as well as to minimise the difficulty of implementation and code172

maintenance burden where possible. Specifically, our focus is on the following main use cases:173

1. Flexible ad-hoc construction and element-wise modification of sparse matrices via unordered174

insertion of elements, where each new element is inserted at a random location.175

2. Incremental construction of sparse matrices via quasi-ordered insertion of elements, where176

each new element is inserted at a location that is past all the previous elements according to177

column-major ordering.178

3. Multiplication of dense vectors with sparse matrices.179

4. Multiplication of two sparse matrices.180

5. Operations involving bulk coordinate transformations, such as flipping matrices column- or181

row-wise.182

The three storage formats as well as their benefits and limitations are briefly described below. We183

use N to indicate the number of non-zero elements of the matrix, while n_rows and n_cols indicate the184

number of rows and columns, respectively.185

4.1. Compressed Sparse Column (CSC)186

The CSC format [4] uses column-major ordering where the elements are stored column-by-column,187

with consecutive non-zero elements in each column stored consecutively in memory. Three arrays are188

used to represent a sparse matrix:189

1. The values array, which is a contiguous array of N floating point numbers holding the non-zero190

elements.191

2. The rows array, which is a contiguous array of N integers holding the corresponding row indices192

(ie., the n-th entry contains the row of the n-th element).193

3. The col_offsets array, which is a contiguous array of n_cols + 1 integers holding offsets to the194

values array, with each offset indicating the start of elements belonging to each column.195

Following C++ convention [2], all arrays use zero-based indexing, ie., the initial position in each array196

is denoted by 0. For consistency, element locations within a matrix are also encoded as starting at zero,197

ie., the initial row and column are both denoted by 0. Furthermore, the row indices for elements in198

each column are kept sorted in ascending manner. In many applications, sparse matrices have more199

non-zero elements than the number of columns, leading to the col_offsets array being typically much200

smaller than the values array.201

Let us denote the i-th entry in the col_offsets array as c[i], the j-th entry in the rows array as r[j], and202

the n-th entry in the values array as v[n]. The number of non-zero elements in column i is determined203



Version 6th July 2019 submitted to Math. Comput. Appl. 7 of 16

using c[i+1]− c[i], where, by definition, c[0] is always 0 and c[n_cols] is equal to N. If column i has204

non-zero elements, then the first element is obtained via v[ c[i] ], and r[ c[i] ] is the corresponding row of205

the element. An example of this format is shown in Figure 2(b).206

The CSC format is well-suited for efficient sparse linear algebra operations such as vector-matrix207

multiplication. This is due to consecutive non-zero elements in each column being stored next to208

each other in memory, which allows modern CPUs to speculatively read ahead elements from the209

main memory into fast cache memory [23]. The CSC format is also suited for operations that do not210

change the structure of the matrix, such as element-wise operations on the non-zero elements (eg.,211

multiplication by a scalar). The format also affords relatively efficient random element access; to locate212

an element (or determine that it is not stored), a single lookup to the beginning of the desired column213

can be performed, followed by a binary search [24] through the rows array to find the element.214

While the CSC format provides a compact representation yielding efficient execution of linear215

algebra operations, it has two main disadvantages. The first disadvantage is that the design and216

implementation of efficient algorithms for many sparse matrix operations (such as matrix-matrix217

multiplication) tend to be non-trivial [4,25]. This stems not only from the sparse nature of the data, but218

also due to the need to (i) explicitly keep track of the column offsets, and (ii) keep the row indices for219

elements in each column sorted in ascending manner. In our experience, the process of designing and220

implementing efficient matrix processing algorithms in CSC is a time-consuming affair — it is both221

finicky and prone to subtle bugs.222

The second disadvantage of CSC is the computational effort required to insert a new element [6].223

In the worst-case scenario, memory for three new larger-sized arrays (containing the values and224

locations) must first be allocated, the position of the new element determined within the arrays, data225

from the old arrays copied to the new arrays, data for the new element placed in the new arrays, and226

finally the memory used by the old arrays deallocated. As the number of elements in the matrix grows,227

the entire process becomes slower.228

There are opportunities for some optimisation, such as using oversized storage to reduce memory229

allocations, where a new element past all the previous elements can be readily inserted. However, this230

does not help when a new non-zero element is inserted between two existing non-zero elements. It231

is also possible to perform batch insertions with some speedup by first sorting all the elements to be232

inserted and then merging with the existing data arrays. While the above approaches can be effective,233

they require the user to explicitly deal with cumbersome low-level storage details instead of focusing234

on high-level functionality.235

The CSC format was chosen over the related Compressed Sparse Row (CSR) format [4] for two236

main reasons: (i) to ensure compatibility with external libraries such as the SuperLU solver [15], and237

(ii) to ensure consistency with the surrounding infrastructure provided by the Armadillo library, which238

uses column-major dense matrix representation to take advantage of low-level functions provided by239

LAPACK [26].240

4.2. Red-Black Tree (RBT)241

To address the efficiency problems with element insertion at arbitrary locations, we first represent242

each element as a 2-tuple, l = (index, value), where index encodes the location of the element as243

index = row + column × n_rows. Zero-based indexing is used. This encoding implicitly assumes244

column-major ordering of the elements. Secondly, rather than using a simple linked list or an array245

based representation, the list of the tuples is stored as a Red-Black Tree (RBT), a self-balancing binary246

search tree [24].247

Briefly, an RBT is a collection of nodes, with each node containing the 2-tuple described above248

and links to two children nodes. There are two constraints: (i) each link points to a unique child249

node, and (ii) there are no links to the root node. The index within each 2-tuple is used as the key to250

identify each node. An example of this structure for a simple sparse matrix is shown in Figure 2(c). The251

ordering of the nodes and height of the tree (number of node levels below the root node) is controlled252
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so that searching for a specific index (ie., retrieving an element at a specific location) has worst-case253

complexity of O(log N). Insertion and removal of nodes (ie., matrix elements), also has the worst-case254

complexity of O(log N). If a node to be inserted is known to have the largest index so far (eg., during255

incremental matrix construction), the search for where to place the node can be omitted, which in256

practice can considerably speed up the insertion process.257

With the above element encoding, traversing an RBT in an ordered fashion (from the smallest to258

largest index) is equivalent to reading the elements in column-major ordering. This in turn allows for259

quick conversion of matrix data stored in RBT format into CSC format. The location of each element is260

simply decoded via row = (index mod n_rows), and column = bindex/n_rowsc, where, for clarity, bzc is261

the integer version of z, rounded towards zero. These operations are accomplished via direct integer262

arithmetic on CPUs. More details on the conversion are given in Section 5.263

Within the hybrid storage framework, the RBT format is used for incremental construction of264

sparse matrices, either in an ordered or unordered fashion, and a subset of element-wise operations265

(such as inplace addition of values to specified elements). This in turn enables users to construct sparse266

matrices in the same way they might construct dense matrices—for instance, a loop over elements to267

be inserted without regard to storage format.268

While the RBT format allows for fast element insertion, it is less suited than CSC for efficient linear269

algebra operations. The CSC format allows for exploitation of fast caches in modern CPUs due to the270

consecutive storage of non-zero elements in memory [23]. In contrast, accessing consecutive elements271

in the RBT format requires traversing the tree (following links from node to node), which in turn272

entails accessing node data that is not guaranteed to be consecutively stored in memory. Furthermore,273

obtaining the column and row indices requires explicit decoding of the index stored in each node,274

rather than a simple lookup in the CSC format.275

4.3. Coordinate List Representation (COO)276

The Coordinate List (COO) is a general concept where a list L = (l1, l2, · · · , lN) of 3-tuples277

represents the non-zero elements in a matrix. Each 3-tuple contains the location indices and value of278

the element, ie., l = (row, column, value). The format does not prescribe any ordering of the elements,279

and a simple linked list [24] can be used to represent L. However, in a computational implementation280

geared towards linear algebra operations [4], L is often represented as a set of three arrays:281

1. The values array, which is a contiguous array of N floating point numbers holding the non-zero282

elements of the matrix.283

2. The rows array, a contiguous array of N integers holding the row index of the corresponding284

value.285

3. The columns array, a contiguous array of N integers holding the column index of the286

corresponding value.287

As per the CSC format, all arrays use zero-based indexing, ie., the initial position in each array is 0.288

The elements in each array are sorted in column-major order for efficient lookup.289

The array-based representation of COO is related to CSC, with the main difference that for each290

element the column indices are explicitly stored. This leads to the primary advantage of the COO291

format: it can greatly simplify the implementation of matrix processing algorithms. It also tends to be292

a natural format many non-expert users expect when first encountering sparse matrices. However, due293

to the explicit representation of column indices, the COO format contains redundancy and is hence294

less efficient (spacewise) than CSC for representing sparse matrices. An example of this is shown in295

Figure 2(d).296

To contrast the differences in effort required in implementing matrix processing algorithms in297

CSC and COO, let us consider the problem of sparse matrix transposition. When using the COO298

format this is trivial to implement: simply swap the rows array with the columns array and then re-sort299

the elements so that column-major ordering is maintained. However, the same task for the CSC format300
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is considerably more specialised: an efficient implementation in CSC would likely use an approach301

such as the elaborate TRANSP algorithm by Bank and Douglas [25], which is described through a 47-line302

pseudocode algorithm with annotations across two pages of text.303

Our initial implementation of sparse matrix transposition used the COO based approach. COO304

was used simply due to shortage of available time for development and the need to flesh out other parts305

of sparse matrix functionality. When time allowed, we reimplemented sparse matrix transposition to306

use the abovementioned TRANSP algorithm. This resulted in considerable speedups, due to no longer307

requiring the time-consuming sort operation. We verified that the new CSC-based implementation is308

correct by comparing its output against the previous COO-based implementation on a large set of test309

matrices.310

The relatively straightforward nature of COO format hence makes it well-suited for:311

(i) functionality contributed by time-constrained and/or non-expert users, (ii) relatively complex312

and/or less-common sparse matrix operations, and (iii) verifying the correct implementation of313

algorithms in the more complex CSC format. The volunteer driven nature of the Armadillo project314

makes its vibrancy and vitality depend in part on contributions received from users and the315

maintainability of the codebase. The number of core developers is small (ie., the authors of this316

paper), and hence difficult-to-understand or difficult-to-maintain code tends to be avoided, since the317

resources are simply not available to handle that burden.318

The COO format is currently employed for less-commonly used tasks that involve bulk coordinate319

transformations, such as reverse() for flipping matrices column- or row-wise, and repelem(), where320

a matrix is generated by replicating each element several times from a given matrix. While it is certainly321

possible to adapt these functions to directly use the more complex CSC format, at the time of writing322

we have spent our time-constrained efforts on optimising and debugging more commonly used parts323

of the sparse matrix class.324

5. Automatic Conversion Between Storage Formats325

To circumvent the problems associated with selection and manual conversion between storage326

formats, our sparse matrix class employs a hybrid storage framework that automatically and seamlessly327

switches between the formats described in Section 4. By default, matrix elements are stored in CSC328

format. When needed, data in CSC format is internally converted to either the RBT or COO format, on329

which an operation or set of operations is performed. The matrix is automatically converted (‘synced’)330

back to the CSC format the next time an operation requiring the CSC format is performed.331

The storage details and conversion operations are completely hidden from the user, who may332

not necessarily be knowledgeable about (or care to learn about) sparse matrix storage formats. This333

allows for simplified user code that focuses on high-level algorithm logic, which in turn increases334

readability and lowers maintenance. In contrast, other toolkits without automatic format conversion335

can cause either slow execution (as a non-optimal storage format might be used), or require many336

manual conversions. As an example, Figure 3 shows a short Python program using the SciPy toolkit [1]337

and a corresponding C++ program using the hybrid sparse matrix class. Manually initiated format338

conversions are required for efficient execution in the SciPy version; this causes both development339

time and code required to increase. If the user does not carefully consider the type of their sparse340

matrix at all times, they are likely to write inefficient code. In contrast, in the C++ program the format341

conversion is done automatically and behind the scenes.342

A potential drawback of the automatic conversion between formats is the added computational343

cost. However, it turns out that COO/CSC conversions can be done in time that is linear in the344

number of non-zero elements in the matrix, and that CSC/RBT conversions can be done at worst in345

log-linear time. Since most sparse matrix operations are more expensive (eg., matrix multiplication), the346

conversion overhead turns out to be mostly negligible in practice. Below we present straightforward347

algorithms for conversion and note their asymptotic complexity in terms of the O notation [24]. This348
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X = scipy.sparse.rand(1000, 1000, 0.01)

# manually convert to LIL format
# to allow insertion of elements
X = X.tolil()
X[1,1] = 1.23
X[3,4] += 4.56

# random dense vector
V = numpy.random.rand((1000))

# manually convert X to CSC format
# for efficient multiplication
X = X.tocsc()
W = V * X

sp_mat X = sprandu(1000, 1000, 0.01);

// automatic conversion to RBT format
// for fast insertion of elements

X(1,1) = 1.23;
X(3,4) += 4.56;

// random dense vector
rowvec V(1000, fill::randu);

// automatic conversion of X to CSC
// prior to multiplication

rowvec W = V * X;

Figure 3. Left panel: a Python program using the SciPy toolkit, requiring explicit conversions between
sparse format types to achieve efficient execution; if an unsuitable sparse format is used for a given
operation, SciPy will emit TypeError or SparseEfficiencyWarning. Right panel: A corresponding C++
program using the sparse matrix class, with the format conversions automatically done by the class.

is followed by discussing practical considerations that are not directly taken into account by the349

O notation.350

5.1. Conversion Between COO and CSC351

Since the COO and CSC formats are quite similar, the conversion algorithms are straightforward.352

In fact the only parts of the formats to be converted are the columns and col_offsets arrays with the rows353

and values arrays remaining unchanged.354

The algorithm for converting COO to CSC is given in Figure 4(a). In summary, the algorithm first355

determines the number of elements in each column (lines 6-8), and then ensures that the values in356

the col_offsets array are consecutively increasing (lines 9-10) so that they indicate the starting index of357

elements belonging to each column within the values array. The operations listed on line 5 and lines358

9-10 each have a complexity of approximately O(n_cols), while the operation listed on lines 6-8 has359

a complexity of O(N), where N is the number of non-zero elements in the matrix and n_cols is the360

number of columns. The complexity is hence O(N + 2n_cols). As in most applications the number of361

non-zero elements will be considerably greater than the number of columns, the overall asymptotic362

complexity in these cases is O(N).363

The corresponding algorithm for converting CSC to COO is shown in Figure 4(b). In essence the364

col_offsets array is unpacked into a columns array with length N. As such, the asymptotic complexity of365

this operation is O(N).366

5.2. Conversion Between CSC and RBT367

The conversion between the CSC and RBT formats is also straightforward and can be368

accomplished using the algorithms shown in Figure 5. In essence, the CSC to RBT conversion involves369

encoding the location of each matrix element to a linear index, followed by inserting a node with that370

index and the corresponding element value into the RBT. The worst-case complexity for inserting all371

elements into an RBT is O(N · log N). However, as the elements in the CSC format are guaranteed to372

be stored according to column-major ordering (as per Section 4.1), and the location encoding assumes373

column-major ordering (as per Section 4.2), the insertion of a node into an RBT can be accomplished374

without searching for the node location. While the worst-case cost of O(N · log N) is maintained due375

to tree maintenance (ie., controlling the height of the tree) [24], in practice the amortised insertion cost376

is typically lower due to avoidance of the search.377
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1 proc COO_to_CSC
2 input: N, n_cols (integer scalars)
3 input: values, rows, columns (COO arrays)
4 allocate array col_offsets with length n_cols + 1
5 forall j ∈ [0, n_cols]: col_offsets[j]← 0
6 forall i ∈ [0, N):
7 j← columns[i] + 1
8 col_offsets[j]← col_offsets[j] + 1
9 forall j ∈ [1, n_cols]:

10 col_offsets[j]← col_offsets[j] + col_offsets[j-1]
11 output: values, rows, col_offsets (CSC arrays)

1 proc CSC_to_COO
2 input: N, n_cols (integer scalars)
3 input: values, rows, col_offsets (CSC arrays)
4 allocate array columns with length N
5 k← 0
6 forall j ∈ [0, n_cols):
7 M← col_offsets[j+1]− col_offsets[j]
8 forall l ∈ [0, M):
9 columns[k+l]← j

10 k← k + M
11 output: values, rows, columns (COO arrays)

(a) (b)

Figure 4. Algorithms for: (a) conversion from COO to CSC, and (b) conversion from CSC to COO.
Matrix elements in COO format are assumed to be stored in column-major ordering. All arrays and
matrix locations use zero-based indexing. N indicates the number of non-zero elements, while n_cols
indicates the number of columns. Details for the CSC and COO arrays are given in Section 4.

1 proc CSC_to_RBT
2 input: N, n_rows, n_cols (integer scalars)
3 input: values, rows, col_offsets (CSC arrays)
4 declare red-black tree T
5 forall j ∈ [0, n_cols):
6 start← col_offsets[j]
7 end← col_offsets[j+1]
8 forall k ∈ [start, end):
9 index← row_indices[k] + j ∗ n_rows

10 l← (index, values[k])
11 insert node l into T
12 output: T (red-black tree)

1 proc RBT_to_CSC
2 input: N, n_rows, n_cols (integer scalars)
3 input: T (red-black tree)
4 allocate array values with length N
5 allocate array row_indices with length N
6 allocate array col_offsets with length n_cols + 1
7 forall j ∈ [0, n_cols]: col_offsets[j]← 0
8 k← 0
9 foreach node l ∈ T, where l = (index,value):

10 values[k]← value
11 row_indices[k]← index mod n_rows
12 j← bindex/n_rowsc
13 col_offsets[j+1]← col_offsets[j+1] + 1
14 k← k + 1
15 forall j ∈ [1, n_cols]:
16 col_offsets[j]← col_offsets[j] + col_offsets[j-1]
17 output: values, rows, col_offsets (CSC arrays)

(a) (b)

Figure 5. Algorithms for: (a) conversion from CSC to RBT, and (b) conversion from RBT to CSC. All
arrays and matrix locations use zero-based indexing. N indicates the number of non-zero elements,
while n_rows and n_cols indicate the number of row and columns, respectively. Details for the CSC
arrays are given in Section 4.

Converting an RBT to CSC involves traversing through the nodes of the tree from the lowest to378

highest index, which is equivalent to reading the elements in column-major format. The value stored379

in each node is hence simply copied into the corresponding location in the CSC values array. The380

index stored in each node is decoded into row and column indices, as per Section 4.2, with the CSC381

row_indices and col_offsets arrays adjusted accordingly. The worst-case cost for finding each element in382

the RBT is O(log N), which results in the asymptotic worst-case cost of O(N · log N) for the whole383

conversion. However, in practice most consecutive elements are in nearby nodes, which on average384

reduces the number of traversals across nodes, resulting in considerably lower amortised conversion385

cost.386

5.3. Practical Considerations387

Since the conversion algorithms given in Figures 4 and 5 are quite straightforward, theO notation388

does not hide any large constant factors. For COO/CSC conversions the cost is O(N), while for389

CSC/RBT conversions the worst-case cost in O(N · log N). In contrast, many mathematical operations390

on sparse matrices have much higher computational cost than the conversion algorithms. Even391
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simply adding two sparse matrices can be much more expensive than a conversion. Although the392

addition operation still takes O(N) time (assuming N is identical for both matrices), there is a lot of393

hidden constant overhead, since the sparsity pattern of the resulting matrix must be computed first [4].394

A similar situation applies for multiplication of two sparse matrices, which for square matrices takes395

O(N + n_cols) time [27], but in practice tends to be much slower due to the many passes and extra396

overhead of computing the output sparsity structure [25].397

Sparse matrix factorisations are much more expensive, meaning that any conversion overhead is398

essentially negligible. A sparse LU factorisation is superlinear [28] as well as other factorisations like399

the Cholesky factorisation, which costs O(n_cols3/2) time [29]. Other factorisations and higher-level400

operations exhibit similar complexity characteristics. Given this, the cost of format conversions is401

heavily outweighed by the user convenience that they allow.402

6. Empirical Evaluation403

To demonstrate the advantages of the hybrid storage framework and the template-based404

expression optimisation mechanism, we have performed a set of experiments, measuring the wall-clock405

time (elapsed real time) required for:406

1. Unordered element insertion into a sparse matrix, where the elements are inserted at random407

locations in random order.408

2. Quasi-ordered element insertion into a sparse matrix, where each new inserted element is409

at a random location that is past the previously inserted element, under the constraint of410

column-major ordering.411

3. Calculation of trace(AT B), where A and B are randomly generated sparse matrices.412

4. Obtaining a diagonal matrix from the (A+ B) expression, where A and B are randomly generated413

sparse matrices.414

In all cases the sparse matrices have a size of 10,000×10,000, with four settings for the density415

of non-zero elements: 0.01%, 0.1%, 1%, 10%. The experiments were done on a machine with an Intel416

Xeon E5-2630L CPU running at 2 GHz, using the GCC v5.4 compiler. Each experiment was repeated 10417

times, and the average wall-clock time is reported. The wall-clock time measures the total time taken418

from the start to the end of each run, and includes necessary overheads such as memory allocation.419

Figure 6 shows the average wall-clock time taken for element insertion done directly using the420

underlying storage formats (ie., CSC, COO, RBT, as per Section 4), as well as the hybrid approach421

which uses RBT followed by conversion to CSC. The CSC and COO formats use oversized storage422

as a form of optimisation (as mentioned in Section 4.1), where the underlying arrays are grown in423

chunks of 1024 elements in order to reduce both the number of memory reallocations and array copy424

operations due to element insertions.425

In all cases bar one, the RBT format is the quickest for insertion, generally by one or two orders426

of magnitude. The conversion from RBT to CSC adds negligible overhead. For the single case of427

quasi-ordered insertion to reach the density of 0.01%, the COO format is slightly quicker than RBT.428

This is due to the relatively simple nature of the COO format, as well as the ordered nature of the429

element insertion where the elements are directly placed into the oversized COO arrays (ie., no sorting430

required). Furthermore, due to the very low density of non-zero elements and the chunked nature431

of COO array growth, the number of reallocations of the COO arrays is relatively low. In contrast,432

inserting a new element into RBT requires the allocation of memory for a new node, and modifying433

the tree to append the node. For larger densities (≥ 0.1%), the COO element insertion process quickly434

becomes more time consuming than RBT element insertion, due to to an increased amount of array435

reallocations and the increased size of the copied arrays. Compared to COO, the CSC format is more436

complex and has the additional burden of recalculating the column offsets (col_offsets) array for each437

inserted element.438

Figure 7 shows the wall-clock time taken to calculate the expressions trace(A.t()*B) and439

diagmat(A+B), with and without the aid of the automatic template-based optimisation of compound440
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Figure 6. Wall-clock time taken to insert elements into a 10,000×10,000 sparse matrix to achieve various
densities of non-zero elements. In (a), the elements are inserted at random locations in random order.
In (b), the elements are inserted in a quasi-ordered fashion, where each new inserted element is at a
random location that is past the previously inserted element, using column-major ordering.
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Figure 7. Wall-clock time taken to calculate the expressions (a) trace(A.t()*B) and
(b) diagmat(A + B), where A and B are randomly generated sparse matrices with a size of
10,000×10,000 and various densities of non-zero elements. The expressions were calculated with
and without the aid of the template-based optimisation of compound expression described in Section 3.
As per Table 1, X.t() returns the transpose of matrix X, while diagmat(X) returns a diagonal matrix
constructed from the main diagonal of X.

expression described in Section 3. For both expressions, employing expression optimisation leads to441

considerable reduction in the wall-clock time. As the density increases (ie., more non-zero elements),442

more time is saved via expression optimisation.443

For the trace(A.t()*B) expression, the expression optimisation computes the trace by omitting444

the explicit transpose operation and performing a partial matrix multiplication to obtain only the445

diagonal elements. In a similar fashion, the expression optimisation for the diagmat(A+B) expression446

directly generates the diagonal matrix by performing a partial matrix addition, where only the diagonal447

elements of the two matrices are added. As well as avoiding full matrix addition, the generation of a448

temporary intermediary matrix to hold the complete result of the matrix addition is also avoided.449
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7. Conclusion450

Driven by a scarcity of easy-to-use tools for algorithm development that requires use of sparse451

matrices, we have devised a practical sparse matrix class for the C++ language. The sparse matrix class452

internally uses a hybrid storage framework, which automatically and seamlessly switches between453

several underlying formats, depending on which format is best suited and/or available for specific454

operations. This allows the user to write sparse linear algebra without requiring to consider the455

intricacies and limitations of various storage formats. Furthermore, the sparse matrix class employs a456

template meta-programming framework that can automatically optimise several common expression457

patterns, resulting in faster execution.458

The source code for the sparse matrix class and its associated functions is included in recent459

releases of the cross-platform and open-source Armadillo linear algebra library [3], available from460

http://arma.sourceforge.net. The code is provided under the permissive Apache 2.0 license [30],461

allowing unencumbered use in both open-source and proprietary projects (eg. product development).462

The sparse matrix class has already been successfully used in open-source projects such as463

the mlpack library for machine learning [31], and the ensmallen library for mathematical function464

optimisation [32]. In both cases the sparse matrix class is used to allow various algorithms to be run on465

either sparse or dense datasets. Furthermore, bi-directional bindings for the class are provided to the R466

environment via the Rcpp bridge [33]. Avenues for further exploration include expanding the hybrid467

storage framework with more sparse matrix formats [4,9] in order to provide speedups for specialised468

use cases.469

http://arma.sourceforge.net
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