
1 / 27

A User-Friendly Hybrid Sparse Matrix Class in C++

Conrad Sanderson, Ryan R. Curtin

July 19, 2018



Introduction

2 / 27

Here’s our problem:

The existing landscape of sparse matrix libraries often requires a user to

be knowledgeable about sparse matrix storage formats to write efficient

code.

Here’s our solution:

We provide a new hybrid storage format that automatically (and lazily)

converts its internal representation to the best format for a given solution.



Introduction

2 / 27

Here’s our problem:

The existing landscape of sparse matrix libraries often requires a user to

be knowledgeable about sparse matrix storage formats to write efficient

code.

Here’s our solution:

We provide a new hybrid storage format that automatically (and lazily)

converts its internal representation to the best format for a given solution.



Introduction

3 / 27

Outline:

1. The existing sparse matrix landscape

2. Our hybrid format approach

3. Simulations and comparisons

4. Conclusion



Introduction

3 / 27

Outline:

1. The existing sparse matrix landscape

2. Our hybrid format approach

3. Simulations and comparisons

4. Conclusion



Introduction

3 / 27

Outline:

1. The existing sparse matrix landscape

2. Our hybrid format approach

3. Simulations and comparisons

4. Conclusion



Introduction

3 / 27

Outline:

1. The existing sparse matrix landscape

2. Our hybrid format approach

3. Simulations and comparisons

4. Conclusion



Introduction

3 / 27

Outline:

1. The existing sparse matrix landscape

2. Our hybrid format approach

3. Simulations and comparisons

4. Conclusion



MATLAB sparse matrix usage

4 / 27

MATLAB has only one sparse matrix format: compressed sparse

column (CSC).

This means that insertion operations can be very slow:

Because sparse matrices are stored in compressed sparse

column format, there are different costs associated with

indexing into a sparse matrix than there are with indexing into a

full matrix.

https://www.mathworks.com/help/matlab/math/accessing-sparse-matrices.html

https://www.mathworks.com/help/matlab/math/accessing-sparse-matrices.html


MATLAB sparse matrix usage

4 / 27

MATLAB has only one sparse matrix format: compressed sparse

column (CSC).

This means that insertion operations can be very slow:

Because sparse matrices are stored in compressed sparse

column format, there are different costs associated with

indexing into a sparse matrix than there are with indexing into a

full matrix.

https://www.mathworks.com/help/matlab/math/accessing-sparse-matrices.html

https://www.mathworks.com/help/matlab/math/accessing-sparse-matrices.html


MATLAB sparse matrix usage (2)

5 / 27

So, a loop like this can be very inefficient:

for i=1:500,

for j=1:500,

sp_matrix(i, j) = 5.0;

end

end

This means that when using MATLAB with sparse matrices, some

operations have to be written carefully.



MATLAB sparse matrix usage (2)

5 / 27

So, a loop like this can be very inefficient:

for i=1:500,

for j=1:500,

sp_matrix(i, j) = 5.0;

end

end

This means that when using MATLAB with sparse matrices, some

operations have to be written carefully.



scipy sparse matrix usage

6 / 27

scipy implements seven different sparse matrix formats.

● bsr_matrix: block sparse row matrix

● coo_matrix: coordinate list matrix

● csc_matrix: compressed sparse column matrix

● csr_matrix: compressed sparse row matrix

● dia_matrix: sparse matrix with diagonal storage

● dok_matrix: dictionary-of-keys based matrix (close to RBT)

● lil_matrix: row-based linked list sparse matrix

Each of these formats is applicable to different use cases, but the user

must manually convert between each.



scipy sparse matrix usage

6 / 27

scipy implements seven different sparse matrix formats.

● bsr_matrix: block sparse row matrix

● coo_matrix: coordinate list matrix

● csc_matrix: compressed sparse column matrix

● csr_matrix: compressed sparse row matrix

● dia_matrix: sparse matrix with diagonal storage

● dok_matrix: dictionary-of-keys based matrix (close to RBT)

● lil_matrix: row-based linked list sparse matrix

Each of these formats is applicable to different use cases, but the user

must manually convert between each.



scipy sparse matrix usage (2)

7 / 27

Here is an example program:

X = scipy.sparse.rand(1000, 1000, 0.01)

# manually convert to LIL format

# to allow insertion of elements

X = X.tolil()

X[1,1] = 1.23

X[3,4] += 4.56

# random dense vector

V = numpy.random.rand((1000))

# manually convert X to CSC format

# for efficient multiplication

X = X.tocsc()

W = V * X



Other libraries

8 / 27

● SPARSKIT: contains 16 formats, no automatic conversions

● Eigen: contains only one format (a CSC variant)

● R (glmnet, Matrix, and slam): one format each

● Julia: CSC format only

Even if more than one format is available, the user is responsible for

manually converting between formats for the sake of efficiency.



Primary drawbacks

9 / 27

● Each format has its own efficiency and usage drawbacks

● Users must generally manually convert between formats

● Users must understand the efficiency issues related to each format

● Non-expert users can’t just use it



Coordinate list format

10 / 27

Simple storage of each nonzero point.

[[0 2 0 0

1 0 4 0

0 0 5 0

0 3 0 0

0 0 0 6]]

values

rows

cols

1 2 3 4 5 6

1 0 3 1 2 4

0 1 1 2 2 3



Coordinate list format

11 / 27

Simple storage of each nonzero point.

[[0 2 0 0

1 0 4 0

0 0 5 0

0 3 0 0

0 0 0 6]]

values

rows

cols

1 2 3 4 5 6

1 0 3 1 2 4

0 1 1 2 2 3

● Insertion: hard

● Ordered access: easy

● Random access: medium

● Programming difficulty: easy



Compressed Sparse Column (CSC) format

12 / 27

Storage of each nonzero format with pointers to the start of each column.

Column indices don’t need to be stored.

[[0 2 0 0

1 0 4 0

0 0 5 0

0 3 0 0

0 0 0 6]]

values

row indices

column offsets

1 2 3 4 5 6

1 0 3 1 2 4

0 1 3 5 6



Compressed Sparse Column (CSC) format

13 / 27

Storage of each nonzero format with pointers to the start of each column.

Column indices don’t need to be stored.

[[0 2 0 0

1 0 4 0

0 0 5 0

0 3 0 0

0 0 0 6]]

values

row indices

column offsets

1 2 3 4 5 6

1 0 3 1 2 4

0 1 3 5 6

● Insertion: hard

● Ordered access: easy

● Random access: easy

● Programming difficulty: hard



Red-black tree (RBT) format

14 / 27

Store nonzeros in a tree structure for easy insertion.

[[0 2 0 0

1 0 4 0

0 0 5 0

0 3 0 0

0 0 0 6]]

5 (2)

1 (1) 11 (4)

8 (3) 12 (5)

19 (6)



Red-black tree (RBT) format

15 / 27

Store nonzeros in a tree structure for easy insertion.

[[0 2 0 0

1 0 4 0

0 0 5 0

0 3 0 0

0 0 0 6]]

5 (2)

1 (1) 11 (4)

8 (3) 12 (5)

19 (6)

● Insertion: easy

● Ordered access: medium

● Random access: medium

● Programming difficulty: hard



Hybrid format

16 / 27

format insertion ordered access random access difficulty

COO hard easy medium easy

CSC hard easy easy hard

RBT easy medium medium hard

A hybrid approach can get the best of each world.

● CSC for structured operations where access patterns are regular

(multiplication, addition, decompositions, etc.).

● RBT for operations where access patterns are random, irregular, or

unknown (insertion, deletion, etc.).

● COO for low-programmer-resource structured operations.



Hybrid format

16 / 27

format insertion ordered access random access difficulty

COO hard easy medium easy

CSC hard easy easy hard

RBT easy medium medium hard

A hybrid approach can get the best of each world.

● CSC for structured operations where access patterns are regular

(multiplication, addition, decompositions, etc.).

● RBT for operations where access patterns are random, irregular, or

unknown (insertion, deletion, etc.).

● COO for low-programmer-resource structured operations.



Hybrid format

16 / 27

format insertion ordered access random access difficulty

COO hard easy medium easy

CSC hard easy easy hard

RBT easy medium medium hard

A hybrid approach can get the best of each world.

● CSC for structured operations where access patterns are regular

(multiplication, addition, decompositions, etc.).

● RBT for operations where access patterns are random, irregular, or

unknown (insertion, deletion, etc.).

● COO for low-programmer-resource structured operations.



Hybrid format

16 / 27

format insertion ordered access random access difficulty

COO hard easy medium easy

CSC hard easy easy hard

RBT easy medium medium hard

A hybrid approach can get the best of each world.

● CSC for structured operations where access patterns are regular

(multiplication, addition, decompositions, etc.).

● RBT for operations where access patterns are random, irregular, or

unknown (insertion, deletion, etc.).

● COO for low-programmer-resource structured operations.



Hybrid format implementation

17 / 27

At all times inside the sparse matrix object we hold the following:

● CSC representation

● RBT representation

● flags indicating if CSC or RBT representations are up to date

The representations in the matrix object are allowed to be out of

sync!

The COO representation is created on-demand from CSC.



Hybrid format implementation

17 / 27

At all times inside the sparse matrix object we hold the following:

● CSC representation

● RBT representation

● flags indicating if CSC or RBT representations are up to date

The representations in the matrix object are allowed to be out of

sync!

The COO representation is created on-demand from CSC.



Hybrid format implementation

17 / 27

At all times inside the sparse matrix object we hold the following:

● CSC representation

● RBT representation

● flags indicating if CSC or RBT representations are up to date

The representations in the matrix object are allowed to be out of

sync!

The COO representation is created on-demand from CSC.



Transitions between states

18 / 27

We perform on-demand syncing between CSC and RBT.

● CSC operation: we first ensure that our CSC representation is the

most up-to-date. If not we sync it.

● RBT format: we first ensure that our RBT representation is the most

up-to-date. If not we sync it.

● COO format: we extract a COO representation on-demand.

All of this syncing is handled automatically and is hidden from the

user.



Transitions between states

18 / 27

We perform on-demand syncing between CSC and RBT.

● CSC operation: we first ensure that our CSC representation is the

most up-to-date.

If not we sync it.

● RBT format: we first ensure that our RBT representation is the most

up-to-date. If not we sync it.

● COO format: we extract a COO representation on-demand.

All of this syncing is handled automatically and is hidden from the

user.



Transitions between states

18 / 27

We perform on-demand syncing between CSC and RBT.

● CSC operation: we first ensure that our CSC representation is the

most up-to-date. If not we sync it.

● RBT format: we first ensure that our RBT representation is the most

up-to-date. If not we sync it.

● COO format: we extract a COO representation on-demand.

All of this syncing is handled automatically and is hidden from the

user.



Transitions between states

18 / 27

We perform on-demand syncing between CSC and RBT.

● CSC operation: we first ensure that our CSC representation is the

most up-to-date. If not we sync it.

● RBT format: we first ensure that our RBT representation is the most

up-to-date. If not we sync it.

● COO format: we extract a COO representation on-demand.

All of this syncing is handled automatically and is hidden from the

user.



Transitions between states

18 / 27

We perform on-demand syncing between CSC and RBT.

● CSC operation: we first ensure that our CSC representation is the

most up-to-date. If not we sync it.

● RBT format: we first ensure that our RBT representation is the most

up-to-date. If not we sync it.

● COO format: we extract a COO representation on-demand.

All of this syncing is handled automatically and is hidden from the

user.



Transitions between states

18 / 27

We perform on-demand syncing between CSC and RBT.

● CSC operation: we first ensure that our CSC representation is the

most up-to-date. If not we sync it.

● RBT format: we first ensure that our RBT representation is the most

up-to-date. If not we sync it.

● COO format: we extract a COO representation on-demand.

All of this syncing is handled automatically and is hidden from the

user.



Extra optimizations with template

metaprogramming

19 / 27

The C++ language allows us to collect the details of an operation as its

type.

● A.t().t() > we can do no computation at all

● trace(A.t() * B) > we can avoid the transpose and multiplication

● C = 2 * (A + B) > we can avoid generating a temporary for A + B

This also allows us to skip format syncing when it isn’t necessary.

(These optimizations also apply to dense matrices in Armadillo.)

C. Sanderson. Armadillo: An Open-Source C++ Linear Algebra Library for Fast Prototyping and
Computationally Intensive Experiments. Technical report, NICTA, 2010.

C. Sanderson, R.R. Curtin. Armadillo: C++ template metaprogramming for compile-time optimization
of linear algebra. PASC 2017.



Extra optimizations with template

metaprogramming

19 / 27

The C++ language allows us to collect the details of an operation as its

type.

● A.t().t() > we can do no computation at all

● trace(A.t() * B) > we can avoid the transpose and multiplication

● C = 2 * (A + B) > we can avoid generating a temporary for A + B

This also allows us to skip format syncing when it isn’t necessary.

(These optimizations also apply to dense matrices in Armadillo.)

C. Sanderson. Armadillo: An Open-Source C++ Linear Algebra Library for Fast Prototyping and
Computationally Intensive Experiments. Technical report, NICTA, 2010.

C. Sanderson, R.R. Curtin. Armadillo: C++ template metaprogramming for compile-time optimization
of linear algebra. PASC 2017.



Extra optimizations with template

metaprogramming

19 / 27

The C++ language allows us to collect the details of an operation as its

type.

● A.t().t() > we can do no computation at all

● trace(A.t() * B) > we can avoid the transpose and multiplication

● C = 2 * (A + B) > we can avoid generating a temporary for A + B

This also allows us to skip format syncing when it isn’t necessary.

(These optimizations also apply to dense matrices in Armadillo.)

C. Sanderson. Armadillo: An Open-Source C++ Linear Algebra Library for Fast Prototyping and
Computationally Intensive Experiments. Technical report, NICTA, 2010.

C. Sanderson, R.R. Curtin. Armadillo: C++ template metaprogramming for compile-time optimization
of linear algebra. PASC 2017.



Extra optimizations with template

metaprogramming

19 / 27

The C++ language allows us to collect the details of an operation as its

type.

● A.t().t() > we can do no computation at all

● trace(A.t() * B) > we can avoid the transpose and multiplication

● C = 2 * (A + B) > we can avoid generating a temporary for A + B

This also allows us to skip format syncing when it isn’t necessary.

(These optimizations also apply to dense matrices in Armadillo.)

C. Sanderson. Armadillo: An Open-Source C++ Linear Algebra Library for Fast Prototyping and
Computationally Intensive Experiments. Technical report, NICTA, 2010.

C. Sanderson, R.R. Curtin. Armadillo: C++ template metaprogramming for compile-time optimization
of linear algebra. PASC 2017.



Extra optimizations with template

metaprogramming

19 / 27

The C++ language allows us to collect the details of an operation as its

type.

● A.t().t() > we can do no computation at all

● trace(A.t() * B) > we can avoid the transpose and multiplication

● C = 2 * (A + B) > we can avoid generating a temporary for A + B

This also allows us to skip format syncing when it isn’t necessary.

(These optimizations also apply to dense matrices in Armadillo.)

C. Sanderson. Armadillo: An Open-Source C++ Linear Algebra Library for Fast Prototyping and
Computationally Intensive Experiments. Technical report, NICTA, 2010.

C. Sanderson, R.R. Curtin. Armadillo: C++ template metaprogramming for compile-time optimization
of linear algebra. PASC 2017.



Extra optimizations with template

metaprogramming

19 / 27

The C++ language allows us to collect the details of an operation as its

type.

● A.t().t() > we can do no computation at all

● trace(A.t() * B) > we can avoid the transpose and multiplication

● C = 2 * (A + B) > we can avoid generating a temporary for A + B

This also allows us to skip format syncing when it isn’t necessary.

(These optimizations also apply to dense matrices in Armadillo.)

C. Sanderson. Armadillo: An Open-Source C++ Linear Algebra Library for Fast Prototyping and
Computationally Intensive Experiments. Technical report, NICTA, 2010.

C. Sanderson, R.R. Curtin. Armadillo: C++ template metaprogramming for compile-time optimization
of linear algebra. PASC 2017.



API comparison

20 / 27

X = scipy.sparse.rand(1000, 1000, 0.01)

# manually convert to LIL format

# to allow insertion of elements

X = X.tolil()

X[1,1] = 1.23

X[3,4] += 4.56

# random dense vector

V = numpy.random.rand((1000))

# manually convert X to CSC format

# for efficient multiplication

X = X.tocsc()

W = V * X



API comparison

21 / 27

X = scipy.sparse.rand(1000, 1000, 0.01)

# manually convert to LIL format

# to allow insertion of elements

X = X.tolil()

X[1,1] = 1.23

X[3,4] += 4.56

# random dense vector

V = numpy.random.rand((1000))

# manually convert X to CSC format

# for efficient multiplication

X = X.tocsc()

W = V * X

sp_mat X = sprandu(1000, 1000, 0.01);

// automatic conversion to RBT format

// for fast insertion of elements

X(1,1) = 1.23;

X(3,4) += 4.56;

// random dense vector

rowvec V(1000, fill::randu);

// automatic conversion of X to CSC

// prior to multiplication

rowvec W = V * X;



Random element insertion

22 / 27



Ordered element insertion

23 / 27



Multiplication

24 / 27



repmat()

25 / 27



Conclusions

26 / 27

● Sparse matrix implementations are not very user friendly, because

they often require the user to know details about internal storage.

● The CSC, COO, and RBT format provide good performance for the

vast majority of use cases.

● We have created a hybrid format that can use whichever of these is

best for the given task.

● The hybrid format performs automatic on-demand conversion between

internal storage formats; the overhead is minimal.

● Use of this hybrid format means easy code for users.

● This is all available in Armadillo (http://arma.sourceforge.net/) as

the arma::sp_mat class!

http://arma.sourceforge.net/


27 / 27

Questions and comments?


	Introduction
	Introduction
	MATLAB sparse matrix usage
	MATLAB sparse matrix usage (2)
	scipy sparse matrix usage
	scipy sparse matrix usage (2)
	Other libraries
	Primary drawbacks
	Coordinate list format
	Coordinate list format
	Compressed Sparse Column (CSC) format
	Compressed Sparse Column (CSC) format
	Red-black tree (RBT) format
	Red-black tree (RBT) format
	Hybrid format
	Hybrid format implementation
	Transitions between states
	Extra optimizations with template metaprogramming
	API comparison
	API comparison
	Random element insertion
	Ordered element insertion
	Multiplication
	repmat()
	Conclusions
	

	pdclock.49: 
	pdclock.48: 
	pdclock.47: 
	pdclock.46: 
	pdclock.45: 
	pdclock.44: 
	pdclock.43: 
	pdclock.42: 
	pdclock.41: 
	pdclock.40: 
	pdclock.39: 
	pdclock.38: 
	pdclock.37: 
	pdclock.36: 
	pdclock.35: 
	pdclock.34: 
	pdclock.33: 
	pdclock.32: 
	pdclock.31: 
	pdclock.30: 
	pdclock.29: 
	pdclock.28: 
	pdclock.27: 
	pdclock.26: 
	pdclock.25: 
	pdclock.24: 
	pdclock.23: 
	pdclock.22: 
	pdclock.21: 
	pdclock.20: 
	pdclock.19: 
	pdclock.18: 
	pdclock.17: 
	pdclock.16: 
	pdclock.15: 
	pdclock.14: 
	pdclock.13: 
	pdclock.12: 
	pdclock.11: 
	pdclock.10: 
	pdclock.9: 
	pdclock.8: 
	pdclock.7: 
	pdclock.6: 
	pdclock.5: 
	pdclock.4: 
	pdclock.3: 
	pdclock.2: 
	pdclock.1: 
	pdclock.0: 


