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Here’s our problem:

The existing landscape of sparse matrix libraries often requires a user to

be knowledgeable about sparse matrix storage formats to write efficient

code.

Here’s our solution:

We provide a new hybrid storage format that automatically (and lazily)

converts its internal representation to the best format for a given solution.
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MATLAB has only one sparse matrix format: compressed sparse

column (CSC).

This means that insertion operations can be very slow:

Because sparse matrices are stored in compressed sparse

column format, there are different costs associated with

indexing into a sparse matrix than there are with indexing into a

full matrix.

https://www.mathworks.com/help/matlab/math/accessing-sparse-matrices.html

https://www.mathworks.com/help/matlab/math/accessing-sparse-matrices.html
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So, a loop like this can be very inefficient:

for i=1:500,

for j=1:500,

sp_matrix(i, j) = 5.0;

end

end

This means that when using MATLAB with sparse matrices, some

operations have to be written carefully.
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scipy implements seven different sparse matrix formats.

● bsr_matrix: block sparse row matrix

● coo_matrix: coordinate list matrix

● csc_matrix: compressed sparse column matrix

● csr_matrix: compressed sparse row matrix

● dia_matrix: sparse matrix with diagonal storage

● dok_matrix: dictionary-of-keys based matrix (close to RBT)

● lil_matrix: row-based linked list sparse matrix

Each of these formats is applicable to different use cases, but the user

must manually convert between each.
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Here is an example program:

X = scipy.sparse.rand(1000, 1000, 0.01)

# manually convert to LIL format

# to allow insertion of elements

X = X.tolil()

X[1,1] = 1.23

X[3,4] += 4.56

# random dense vector

V = numpy.random.rand((1000))

# manually convert X to CSC format

# for efficient multiplication

X = X.tocsc()

W = V * X
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● SPARSKIT: contains 16 formats, no automatic conversions

● Eigen: contains only one format (a CSC variant)

● R (glmnet, Matrix, and slam): one format each

● Julia: CSC format only

Even if more than one format is available, the user is responsible for

manually converting between formats for the sake of efficiency.
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● Each format has its own efficiency and usage drawbacks

● Users must generally manually convert between formats

● Users must understand the efficiency issues related to each format

● Non-expert users can’t just use it



Coordinate list format

10 / 27

Simple storage of each nonzero point.

[[0 2 0 0

1 0 4 0

0 0 5 0

0 3 0 0

0 0 0 6]]

values

rows

cols

1 2 3 4 5 6

1 0 3 1 2 4

0 1 1 2 2 3
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● Insertion: hard

● Ordered access: easy

● Random access: medium

● Programming difficulty: easy
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Storage of each nonzero format with pointers to the start of each column.

Column indices don’t need to be stored.
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1 0 4 0
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0 3 0 0

0 0 0 6]]

values

row indices

column offsets
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Store nonzeros in a tree structure for easy insertion.

[[0 2 0 0

1 0 4 0

0 0 5 0

0 3 0 0

0 0 0 6]]

5 (2)

1 (1) 11 (4)

8 (3) 12 (5)

19 (6)
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Store nonzeros in a tree structure for easy insertion.
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format insertion ordered access random access difficulty

COO hard easy medium easy

CSC hard easy easy hard

RBT easy medium medium hard

A hybrid approach can get the best of each world.

● CSC for structured operations where access patterns are regular

(multiplication, addition, decompositions, etc.).

● RBT for operations where access patterns are random, irregular, or

unknown (insertion, deletion, etc.).

● COO for low-programmer-resource structured operations.
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At all times inside the sparse matrix object we hold the following:

● CSC representation

● RBT representation

● flags indicating if CSC or RBT representations are up to date

The representations in the matrix object are allowed to be out of

sync!

The COO representation is created on-demand from CSC.
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We perform on-demand syncing between CSC and RBT.

● CSC operation: we first ensure that our CSC representation is the

most up-to-date. If not we sync it.

● RBT format: we first ensure that our RBT representation is the most

up-to-date. If not we sync it.

● COO format: we extract a COO representation on-demand.

All of this syncing is handled automatically and is hidden from the

user.
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Extra optimizations with template

metaprogramming
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The C++ language allows us to collect the details of an operation as its

type.

● A.t().t() > we can do no computation at all

● trace(A.t() * B) > we can avoid the transpose and multiplication

● C = 2 * (A + B) > we can avoid generating a temporary for A + B

This also allows us to skip format syncing when it isn’t necessary.

(These optimizations also apply to dense matrices in Armadillo.)

C. Sanderson. Armadillo: An Open-Source C++ Linear Algebra Library for Fast Prototyping and
Computationally Intensive Experiments. Technical report, NICTA, 2010.

C. Sanderson, R.R. Curtin. Armadillo: C++ template metaprogramming for compile-time optimization
of linear algebra. PASC 2017.
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X = scipy.sparse.rand(1000, 1000, 0.01)

# manually convert to LIL format

# to allow insertion of elements

X = X.tolil()

X[1,1] = 1.23

X[3,4] += 4.56

# random dense vector

V = numpy.random.rand((1000))

# manually convert X to CSC format

# for efficient multiplication

X = X.tocsc()

W = V * X

sp_mat X = sprandu(1000, 1000, 0.01);

// automatic conversion to RBT format

// for fast insertion of elements

X(1,1) = 1.23;

X(3,4) += 4.56;

// random dense vector

rowvec V(1000, fill::randu);

// automatic conversion of X to CSC

// prior to multiplication

rowvec W = V * X;
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● Sparse matrix implementations are not very user friendly, because

they often require the user to know details about internal storage.

● The CSC, COO, and RBT format provide good performance for the

vast majority of use cases.

● We have created a hybrid format that can use whichever of these is

best for the given task.

● The hybrid format performs automatic on-demand conversion between

internal storage formats; the overhead is minimal.

● Use of this hybrid format means easy code for users.

● This is all available in Armadillo (http://arma.sourceforge.net/) as

the arma::sp_mat class!

http://arma.sourceforge.net/
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Questions and comments?
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