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For the next (approximate) hour, you will be subjected to:

● how distance-based problems appear in all kinds of machine learning

problems,

● a detailed introduction to data structures like the kd-tree and others,

● a unifying generalization for these types of tree structures called

‘space trees’,

● a dive into how single-tree and dual-tree algorithms can be used to

answer distance-based problems,

● an incomplete list of the problems we can solve this way,

● some theoretical concerns,

● some empirical results that show it was all worthwhile,

● and some incomplete thoughts about the future.



Distance-based Problems
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It turns out that lots of machine learning problems depend on distances,

either obviously or non-obviously.

● k-nearest-neighbor search: find the k points with minimum d(·, ·) to the query

point(s)

● range search: find the points with d(·, ·) in a given range from the query

● kernel density estimation: compute a density estimate that depends on d(·, ·)
between the query location and all points

● max-kernel search: find the point with maximum similarity (implicitly depends on a

distance d(·, ·))
● k-means clustering: iterative algorithm depending on distances

● DBSCAN clustering: includes a range search query

● collaborative filtering: often includes a k-NN step

● single-linkage clustering: equivalent to computing an MST on distances

● manifold learning algorithms: usually an optimization constrained on distance

computations between points, often related to k-NN

● Gaussian mixture models: fits depend on distance between points

● Hidden Markov model training: computation of probabilities depends on distances

d(·, ·).
● and so on...



Only two problems
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Let’s ensmallen the universe.

In our temporary universe Utemp, there exist only two problems that are

worth solving:

● k-nearest-neighbor search

● range search

If we can solve these problems efficiently, we have determined the

meaning of life in Utemp!



k-nearest neighbor search
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Given some query point pq and some reference set Sr, find

k-argminpr∈Sr
d(pq, pr).



Range search

6 / 70

Given some query point pq, some range [l, u], and a reference set Sr, find

{pr : pr ∈ Sr, l ≤ d(pq, pr) ≤ u}

(variant: range count)



How do we solve these problems fast?
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● Exact computation.

not efficient...

● Hashing or low-dimensional projections: make the problem ‘simpler’

and introduce some approximation.

● Sampling or coresets: select some points from Sr that are likely to be

good (approximate) solutions.

● Trees: build an indexing structure on Sr for (hopefully)

logarithmic-time search.

● Other approaches I won’t consider...
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Diversion: locality-sensitive hashing
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Let’s (very) briefly consider locality-sensitive hashing for nearest neighbor
search because it’s important and relevant.

● Pick some random hyperplane Pi.
● If pr ∈ Sr is to the left of Pi then the hash code is 0; otherwise it is 1.
● Do this a lot of times to assemble a long hash code.

● When searching for a nearest neighbor of pq, find the hash code of pq and
look at all points of Sr that have the same hash code.

Let’s ignore all the theory about why this works, how well it works, etc., and just

say it reasonably works and leave it at that.

other considerations: how many Pi?; multiple bins

for each Pi; probe multiple nearby hash codes for

similar pq; how to select Pi?; connections to trees;

hybrid approaches; multi-level hash tables; etc...
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Un-diversion: trees
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For the rest of the talk let’s focus on trees. In our little Utemp we care about

● Empirical speed

● Applicability to real-world situations

(Okay, theory is still good too, but it’s secondary.)
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The kd-tree
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We are interested in a hierarchical representation of

these points.



The kd-tree
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The kd-tree
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A typical kd-tree only holds points in the leaves.



kd-tree building algorithm
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Written as a procedure:

1. Compute (minimum) bounding box of all points S. (This can be

wrapped into subsequent steps...)

2. Select a dimension d to split on. (How about the dimension with

maximum variance?)

3. Select a value t to split on. (How about the mean in dimension d? Or

the median?)

4. Put all points with value less than t in dimension d into the left set Sl,

and all others in the right set Sr. (Implementationally: one round of

quicksort.)

5. Recurse with Sl and Sr; the subtrees produced will be the left and

right children of this node.
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kd-tree implementation notes
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Trees organize points hierarchically, and each node corresponds to a

region of the input space. But some hierarchies are better than others...

● Only hold points in the leaves. So nodes in the tree only hold a

bounding box and two children, but no points.

● A leaf might hold something like 20 points. (For cache reasons...)

● Points held by a leaf should be contiguous in memory.

● Nodes should be as ‘tight’ as possible for pruning. (More soon...)

● Mean-split kd-trees tend to give better performance, at least for k-NN

search.

● Splitting on the dimension with maximum variance tends to give better

performance, at least for k-NN search.
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Here’s a unifying abstraction for the types of trees we care about in Utemp.

A space tree on a dataset S ∈ ℜn×d, is an undirected, acyclic, rooted

simple graph with the following properties:

● Each node (or vertex) holds a number of points (possibly zero) and is
connected to one parent node and a number of child nodes (possibly zero).

● There is one node in every space tree with no parent; this is the root of the
tree.

● Each point in S is contained in at least one node of the tree.

● Each node N of the tree has a convex subset of ℜd that contains each of the
points in that node as well as the convex subsets represented by each child
of the node.

R.R. Curtin, W.B. March, P. Ram, D.V. Anderson, A.G. Gray, C.L. Isbell, Jr. “Tree-independent
dual-tree algorithms,” in Proceedings of the 30th International Conference on Machine Learning
(ICML ’13), pp. 1435–1443, Atlanta, GA, 2013.
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A Geometric Observation (3)
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dmax

dmin

dmin



Return to the universe
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How do we use a kd-tree to solve the range search query? Assume we

built a tree Tr on the reference set Sr.

Recurse(pq, [l, u], Ni):

if dmax(pq,Ni) < l or dmin(pq,Ni) > u:

return;

for (point pr : Ni):

BaseCase(pq, pr, [l, u])

for (child Nc: Ni):

Recurse(pq, [l, u], Nc)

BaseCase(pq, pr, [l, u]):
if (d(pq, pr) ∈ [l, u]):

add pr to result set

Depending on the dataset, this approach can be very

fast compared to brute-force search!



Return to the universe

25 / 70

How do we use a kd-tree to solve the range search query? Assume we

built a tree Tr on the reference set Sr.

Recurse(pq, [l, u], Ni):

if dmax(pq,Ni) < l or dmin(pq,Ni) > u:

return;

for (point pr : Ni):

BaseCase(pq, pr, [l, u])

for (child Nc: Ni):

Recurse(pq, [l, u], Nc)

BaseCase(pq, pr, [l, u]):
if (d(pq, pr) ∈ [l, u]):

add pr to result set

Depending on the dataset, this approach can be very

fast compared to brute-force search!



Return to the universe

25 / 70

How do we use a kd-tree to solve the range search query? Assume we

built a tree Tr on the reference set Sr.

Recurse(pq, [l, u], Ni):

if dmax(pq,Ni) < l or dmin(pq,Ni) > u:

return;

for (point pr : Ni):

BaseCase(pq, pr, [l, u])

for (child Nc: Ni):

Recurse(pq, [l, u], Nc)

BaseCase(pq, pr, [l, u]):
if (d(pq, pr) ∈ [l, u]):

add pr to result set

Depending on the dataset, this approach can be very

fast compared to brute-force search!



Return to the universe

25 / 70

How do we use a kd-tree to solve the range search query? Assume we

built a tree Tr on the reference set Sr.

Recurse(pq, [l, u], Ni):

if dmax(pq,Ni) < l or dmin(pq,Ni) > u:

return;

for (point pr : Ni):

BaseCase(pq, pr, [l, u])

for (child Nc: Ni):

Recurse(pq, [l, u], Nc)

BaseCase(pq, pr, [l, u]):
if (d(pq, pr) ∈ [l, u]):

add pr to result set

Depending on the dataset, this approach can be very

fast compared to brute-force search!



Range search

26 / 70

u

l

pq



Range search

27 / 70

u

l

pq



Range search

28 / 70

u

l

pq



Range search

29 / 70

u

l

pq



Range search

30 / 70

u

l

pq



Range search

31 / 70

u

l

pq



Range search

32 / 70

u

l

pq



Range search

33 / 70

u

l

pq



Range search

34 / 70

u

l

pq



Range search

35 / 70

u

l

pq



Range search

36 / 70

u

l

pq



Range search

37 / 70

u

l

pq



1-nearest-neighbor Search
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Generalizes to k-NN with a little bit more overhead...

Recurse(pq, u, Ni):

if dmin(pq,Ni) > u:

return;

for (point pr : Ni):

u← BaseCase(pq, pr, u)

for (child Nc: Ni):

Recurse(pq, u, Nc)

BaseCase(pq, pr, u):

if (d(pq, pr) < u):

pr is the new nearest neighbor candidate

return d(pq, pr)

return u
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(we’re at about 1979 by the way)



Large query sets
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For many problems (including our Utemp), we want results for more than

just one query point!

● all-nearest-neighbors: for every point in Sr, tell me its nearest

neighbor

● batch nearest neighbor: for a query set Sq, find the nearest neighbor

of each pq ∈ Sq in Sr

● all-range-search and batch range search exist too...

Does this put us in U ′
temp? That’s up to you to decide.



Dual-tree algorithms
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I just described a single-tree algorithm. In that, we reduced computation

by bounding results for many points in Sr at once.

In a dual-tree algorithm, we’re going to also bound results for many

points in Sq at once.
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What is a dual-tree algorithm?
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We build two trees (Tq and Tr).

We’ll traverse the trees simultaneously. (This may be dual breadth-first,

dual depth-first, or some combination thereof.)

When we visit a node pair (query and reference nodes), we’ll see if we

can prune that pair. Otherwise, we’ll perform some base case between

points contained in the two nodes.

These algorithms are fast.
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These algorithms are fast
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Speedups are over naive algorithm.

● All-nearest-neighbors search: 100-10000x+

● 2-point correlation: 100x-1000x+

● Exact k-means clustering: 100x+

● Kernel density estimation: 10000x+

● Mean shift: 10x-100x+

● Euclidean minimum spanning tree calculation: 1000x+



Range search
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Given a query set Sq and a reference set Sr and a range [l, u],

find the set

of all reference points in Sr in the range [l, u] from each query point

pq ∈ Sq:

S[pq] = {pr : pr ∈ Sr, l ≤ d(pq, pr) ≤ u}.

Trees provide a useful strategy for fast range search, by pruning away

large amounts of work.

l

u
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Dual kd-tree range search

46 / 70

We need to know when to prune. How?

Use dmin(Nq,Nr) and dmax(Nq,Nr).

If [dmin(Nq,Nr), dmax(Nq,Nr)] does not overlap [l, u], we can prune.
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We need to know when to prune. How?

Use dmin(Nq,Nr) and dmax(Nq,Nr).

If [dmin(Nq,Nr), dmax(Nq,Nr)] does not overlap [l, u], we can prune.

Nq
l − λq

u+ λq

Nr

λq: radius of Nq

Cannot prune!



Dual kd-tree range search
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RangeSearchRecursion(Nq, Nr)

if [dmin(Nq,Nr), dmax(Nq,Nr)] ∩ [l, u] = ∅:
return; // Pruned!

if Nq and Nr are leaves:

base case for each pq ∈ Nq, pr ∈ Nr

Base case: calculate d(pq, pr) and see if it lies in the

range [l, u]. If so, add pr to S[pq].
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RangeSearchRecursion(Nq, Nr)

if [dmin(Nq,Nr), dmax(Nq,Nr)] ∩ [l, u] = ∅:
return; // Pruned!

if Nq and Nr are leaves:

base case for each pq ∈ Nq, pr ∈ Nr

else if Nq is a leaf:

RangeSearchRecursion(Nq, Nr.left)

RangeSearchRecursion(Nq, Nr.right)

else if Nr is a leaf:

RangeSearchRecursion(Nq.left, Nr)

RangeSearchRecursion(Nq.right, Nr)

else:

RangeSearchRecursion(Nq.left, Nr.left)

RangeSearchRecursion(Nq.left, Nr.right)

RangeSearchRecursion(Nq.right, Nr.left)

RangeSearchRecursion(Nq.right, Nr.right)
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Now leaving Utemp for good...



n-point correlation function estimation
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2-point correlation using kd-trees.



Cover tree allnn
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Nearest neighbor search using cover trees.



Kernel density estimation
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Kernel density estimation using kd-trees.



Euclidean MST calculation
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Euclidean minimum spanning tree calculation using cover trees.



Can we generalize?
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Yes! We can generalize!



Dual-tree traversals
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A pruning dual-tree traversal is a process that, given two trees Tq and

Tr:

● will visit combinations of nodes (Nq,Nr)

● when visiting a combination (Nq,Nr):
performs a computation to assign a score to the

combination—Score()

if the score is∞, the combination is pruned

otherwise a computation is performed between each point in Nq

and Nr—BaseCase()

● if no nodes are pruned, BaseCase() is called with each point in the

query tree and each point in the reference tree

R.R. Curtin, W.B. March, P. Ram, D.V. Anderson, A.G. Gray, C.L. Isbell, Jr. “Tree-independent
dual-tree algorithms,” in Proceedings of the 30th International Conference on Machine Learning
(ICML ’13), pp. 1435–1443, Atlanta, GA, 2013.
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A type of space tree

+

A pruning dual-tree traversal +

Problem-specific BaseCase() and Score() functions =

Dual-tree algorithm

What does this get us?

● Easy-to-understand, beautiful algorithms.

● Improvements to one component propagate!

● Simple development of new algorithms.

● Improved software implementations and abstractions.

R.R. Curtin, W.B. March, P. Ram, D.V. Anderson, A.G. Gray, C.L. Isbell, Jr. “Tree-independent
dual-tree algorithms,” in Proceedings of the 30th International Conference on Machine Learning
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BaseCase(pq, pr):

d← d(pq, pr)
if d ∈ [l, u]:
add pr to list of results for pq

Score(Nq, Nr):

if [dmin(Nq,Nr), dmax(Nq,Nr)] does not

overlap [l, u]:
return ∞ // Pruned!

return 0 // Recursion order doesn’t matter.

Nq

Nr

dmin(Nq,Nr)

u+ λq (l = 0)
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Another quick stopping point for questions
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(don’t worry, we are now at the results part)



Theory
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Theory for trees is hard! We want to (ideally) say something like

“nearest neighbor search takes O(logN) time with trees”. But we can’t:

● I can build an adversarial dataset where you can never prune a node.

● How deep is your tree?

● What is the ratio of a child node’s volume to a parent node’s volume?

● How many descendant points are held in a child vs. in its parent?

With a kd-tree, we have a lot of problems!



The cover tree
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To answer these questions, we need a weird structure called the cover

tree. It is very complex and I don’t want to talk about how you build one

unless forced to...!

Given a dataset S with |S| = N , the expansion constant is the smallest

c ≥ 2 such that for all p ∈ S,

|BS(p, 2δ)| ≤ c|BS(p, δ)|.

● Bounded width: each node has up to c4 children.

● Bounded depth: each node has depth O(c2 logN).
● Bounded tree size: a cover tree has O(N) nodes.

● Bounded construction time: O(c6N logN).
● Bounded NN search time: O(c12 logN) for a single query point.

A. Beygelzimer, S.M. Kakade, and J. Langford. “Cover trees for nearest neighbor,” in Proceed-
ings of the 23rd International Conference on Machine Learning (ICML ’06), pp. 97–106, 2006.



The cover tree

60 / 70

To answer these questions, we need a weird structure called the cover

tree. It is very complex and I don’t want to talk about how you build one

unless forced to...!

Given a dataset S with |S| = N , the expansion constant is the smallest

c ≥ 2 such that for all p ∈ S,

|BS(p, 2δ)| ≤ c|BS(p, δ)|.

● Bounded width: each node has up to c4 children.

● Bounded depth: each node has depth O(c2 logN).
● Bounded tree size: a cover tree has O(N) nodes.

● Bounded construction time: O(c6N logN).
● Bounded NN search time: O(c12 logN) for a single query point.

A. Beygelzimer, S.M. Kakade, and J. Langford. “Cover trees for nearest neighbor,” in Proceed-
ings of the 23rd International Conference on Machine Learning (ICML ’06), pp. 97–106, 2006.



The cover tree

60 / 70

To answer these questions, we need a weird structure called the cover

tree. It is very complex and I don’t want to talk about how you build one

unless forced to...!

Given a dataset S with |S| = N , the expansion constant is the smallest

c ≥ 2 such that for all p ∈ S,

|BS(p, 2δ)| ≤ c|BS(p, δ)|.

● Bounded width: each node has up to c4 children.

● Bounded depth: each node has depth O(c2 logN).
● Bounded tree size: a cover tree has O(N) nodes.

● Bounded construction time: O(c6N logN).
● Bounded NN search time: O(c12 logN) for a single query point.

A. Beygelzimer, S.M. Kakade, and J. Langford. “Cover trees for nearest neighbor,” in Proceed-
ings of the 23rd International Conference on Machine Learning (ICML ’06), pp. 97–106, 2006.



The cover tree

60 / 70

To answer these questions, we need a weird structure called the cover

tree. It is very complex and I don’t want to talk about how you build one

unless forced to...!

Given a dataset S with |S| = N , the expansion constant is the smallest

c ≥ 2 such that for all p ∈ S,

|BS(p, 2δ)| ≤ c|BS(p, δ)|.

● Bounded width: each node has up to c4 children.

● Bounded depth: each node has depth O(c2 logN).

● Bounded tree size: a cover tree has O(N) nodes.

● Bounded construction time: O(c6N logN).
● Bounded NN search time: O(c12 logN) for a single query point.

A. Beygelzimer, S.M. Kakade, and J. Langford. “Cover trees for nearest neighbor,” in Proceed-
ings of the 23rd International Conference on Machine Learning (ICML ’06), pp. 97–106, 2006.



The cover tree

60 / 70

To answer these questions, we need a weird structure called the cover

tree. It is very complex and I don’t want to talk about how you build one

unless forced to...!

Given a dataset S with |S| = N , the expansion constant is the smallest

c ≥ 2 such that for all p ∈ S,

|BS(p, 2δ)| ≤ c|BS(p, δ)|.

● Bounded width: each node has up to c4 children.

● Bounded depth: each node has depth O(c2 logN).
● Bounded tree size: a cover tree has O(N) nodes.

● Bounded construction time: O(c6N logN).
● Bounded NN search time: O(c12 logN) for a single query point.

A. Beygelzimer, S.M. Kakade, and J. Langford. “Cover trees for nearest neighbor,” in Proceed-
ings of the 23rd International Conference on Machine Learning (ICML ’06), pp. 97–106, 2006.



The cover tree

60 / 70

To answer these questions, we need a weird structure called the cover

tree. It is very complex and I don’t want to talk about how you build one

unless forced to...!

Given a dataset S with |S| = N , the expansion constant is the smallest

c ≥ 2 such that for all p ∈ S,

|BS(p, 2δ)| ≤ c|BS(p, δ)|.

● Bounded width: each node has up to c4 children.

● Bounded depth: each node has depth O(c2 logN).
● Bounded tree size: a cover tree has O(N) nodes.

● Bounded construction time: O(c6N logN).

● Bounded NN search time: O(c12 logN) for a single query point.

A. Beygelzimer, S.M. Kakade, and J. Langford. “Cover trees for nearest neighbor,” in Proceed-
ings of the 23rd International Conference on Machine Learning (ICML ’06), pp. 97–106, 2006.



The cover tree

60 / 70

To answer these questions, we need a weird structure called the cover

tree. It is very complex and I don’t want to talk about how you build one

unless forced to...!

Given a dataset S with |S| = N , the expansion constant is the smallest

c ≥ 2 such that for all p ∈ S,

|BS(p, 2δ)| ≤ c|BS(p, δ)|.

● Bounded width: each node has up to c4 children.

● Bounded depth: each node has depth O(c2 logN).
● Bounded tree size: a cover tree has O(N) nodes.

● Bounded construction time: O(c6N logN).
● Bounded NN search time: O(c12 logN) for a single query point.

A. Beygelzimer, S.M. Kakade, and J. Langford. “Cover trees for nearest neighbor,” in Proceed-
ings of the 23rd International Conference on Machine Learning (ICML ’06), pp. 97–106, 2006.



The cover tree

61 / 70

To answer these questions, we need a weird structure called the cover

tree. It is very complex and I don’t want to talk about how you build one

unless forced to...!

Given a dataset S with |S| = N , the expansion constant is the smallest

c ≥ 2 such that for all p ∈ S,

|BS(p, 2δ)| ≤ c|BS(p, δ)|.

● Bounded width: each node has up to c4 children.

● Bounded depth: each node has depth O(c2 logN).
● Bounded tree size: a cover tree has O(N) nodes.

● Bounded construction time: O(c6N logN).
● Bounded NN search time: O(c12 logN) for a single query point.

A. Beygelzimer, S.M. Kakade, and J. Langford. “Cover trees for nearest neighbor,” in Proceed-
ings of the 23rd International Conference on Machine Learning (ICML ’06), pp. 97–106, 2006.



Generalized runtime bound

62 / 70

A dual-tree algorithm using cover trees and the cover tree pruning

dual-tree traversal takes time bounded by

O
(

c4qψχ|R
∗|(N + i(Tq) + θ)

)

.

● N : number of query points

● i(Tq): imbalance of query tree

● θ: measure of scale difference between query and reference sets

● cr: expansion constant of reference set

● |R∗|: size of largest set of reference nodes encountered during the

traversal

● ψ: running time of BaseCase()

● χ: running time of Score()

R.R. Curtin, D. Lee, W.B. March, P. Ram. “Plug-and-play runtime analysis for dual-tree algo-
rithms,” The Journal of Machine Learning Research, vol. 16, p. 3269-3297, 2015.
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● Monochromatic nearest neighbor search:

O(c9r(N + it(T)))

● Nearest neighbor search:

O(c4rc
5
qr(N + it(Tq) + θ))

● Approx. kernel density estimation:

O(c
8+⌈log2 ζ⌉
r (N + it(Tq) + θ))

● Range search: (under some assumptions)

O(c8+β
r (N + it(Tq) + θ))

● Sparse kernel matrix approximation:

O(c
7+⌈log2 ν⌉
r (N + it(Tq))

● Fast max-kernel search:

O(γrc
7 log2 α
r (N + it(Tq) + θ))

R.R. Curtin, D. Lee, W.B. March, P. Ram. “Plug-and-play runtime analysis for dual-tree algo-
rithms,” The Journal of Machine Learning Research, vol. 16, p. 3269-3297, 2015.



Empirical results

64 / 70

A.G. Gray, A.W. Moore. “N-body problems in statistical learning”. Advances in Neural Information
Systems Processing (NIPS 2001), 2001.



Empirical results

65 / 70

L. Van Der Maaten. “Accelerating t-SNE using tree-based algorithms.” The Journal of Machine
Learning Research 15.1 (2014): 3221-3245.



Empirical results

66 / 70

W.B. March, P. Ram, and A.G. Gray. “Fast Euclidean minimum spanning tree: algorithm, anal-
ysis, and applications.” Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’10). ACM, 2010.



Empirical results

67 / 70

A.G. Gray and A.W. Moore. “Nonparametric density estimation: Toward computational tractabil-
ity.” Proceedings of the 2003 SIAM International Conference on Data Mining (SDM ’03). Society
for Industrial and Applied Mathematics, 2003.



Empirical results

68 / 70

R.R. Curtin. “Faster dual-tree traversal for nearest neighbor search.” International Conference
on Similarity Search and Applications. Springer, 2015.



Conclusions

69 / 70

Let’s hope that I convinced you of the following things.

● Geometry is everywhere in machine learning!

● Single-tree and dual-tree algorithms are really not all that complex

even though they look that way on paper.

● The class of trees that can be used with a single- or dual-tree

algorithm can be concisely expressed.

● In low(ish) dimensionality, trees are super effective at reducing the

number of distance computations necessary to solve a problem.**

● Trees don’t have great theoretical properties, but sometimes you can

say some things about the performance of tree-based algorithms.

And future directions...
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