

ensmallen: a flexible C++ library for efficient function optimization
Shikhar Bhardwaj1, Ryan R. Curtin2, Marcus Edel3, Yannis Mentekidis, Conrad Sanderson4,5

1Delhi Technological University, 2RelationalAI, 3Free University of Berlin, 4Data61/CSIRO, 5University of Queensland

Motivation

Mathematical optimization is the workhorse of virtually all machine learning
algorithms. For a given objective function f (·), almost all machine learning problems
can be boiled down to the following optimization form:

argmin
x

f (x).

⇒ ensmallen, a C++ optimization toolkit that contains a wide variety of optimization
techniques

Types of Objective Functions

• ensmallen provides a set of optimizers for optimizing user-defined objective func-
tions

• arbitrary: no assumptions can be made on f (x)

• differentiable: f (x) has a computable gradient f ′(x)

• separable: f (x) is a sum of individual components: f (x) =
∑

i fi(x)

• categorical: x contains elements that can only take discrete values

• sparse: the gradient f ′(x) or f ′i(x) (for a separable function) is sparse

• partially differentiable: the separable gradient f ′i(x) is also separable for a different
axis j

• constrained: x is limited in the values that it can take

Feature Comparison

and TensorFlow [1] each contain a variety of optimization techniques. However, these techniques
are limited to stochastic gradient descent (SGD) and SGD-like optimizers that operate on small
batches of data points at a time. Other machine learning libraries, such as scikit-learn [25] contain
optimization algorithms but not in a coherent or reusable framework. Many programming languages
have higher-level packages for mathematical optimization. For example, scipy.optimize [12], is
widely used in the Python community, and MATLAB’s function optimization support has been
available and used for many decades. However, these implementations are often unsuitable for
modern machine learning tasks—for instance, computing the full gradient of the objective function
may not be feasible because there are too many data points.

In this paper, we describe the functionality of ensmallen and the types of problems that it can be
applied to. We discuss the mechanisms by which ensmallen is able to provide both computational
efficiency and ease-of-use. We show a few examples that use the library, as well as empirical
performance comparisons with other optimization libraries.

ensmallen is open-source software licensed under the 3-clause BSD license [27], allowing unen-
cumbered use in both open-source and proprietary projects. It is available for download from
https://ensmallen.org. Armadillo [30] is used for efficient linear algebra operations, with
optional interface to GPUs via NVBLAS [23].

2 Types of Objective Functions
ensmallen provides a set of optimizers for optimizing user-defined objective functions. It is also
easy to implement a new optimizer in the ensmallen framework. Overall, our goal is to provide
an easy-to-use library that can solve the problem argminx f(x) for any function f(x) that takes a
vector or matrix input x. In most cases, f(x) will have special structure; one example might be that
f(x) is differentiable. Therefore, the abstraction we have designed for ensmallen can optionally take
advantage of this structure. For example, in addition to f(x), a user can provide an implementation
of f 0(x), which in turn allows first-order gradient-based optimizers to be used. This generally leads
to significant speedups.

There are a number of other properties that ensmallen can use to accelerate computation. These are
listed below:

• arbitrary: no assumptions can be made on f(x)
• differentiable: f(x) has a computable gradient f 0(x)
• separable: f(x) is a sum of individual components: f(x) =

P
i fi(x)

• categorical: x contains elements that can only take discrete values
• sparse: the gradient f 0(x) or f 0

i(x) (for a separable function) is sparse
• partially differentiable: the separable gradient f 0

i(x) is also separable for a different axis j
• bounded: x is limited in the values that it can take

unified framework

constra
ints

batches
arbitra

ry functions

arbitra
ry optim

izers

sparse
gradients

categ
orical

ensmallen
Shogun - - -
Vowpal Wabbit - - - - -
TensorFlow - G# - G# -
Caffe - G# G# - -
Keras - G# G# - -
scikit-learn G# - G# G# - - -
SciPy - - - -
MATLAB - - - -
Julia (Optim.jl) - - - - -

Table 1: Feature comparison: = provides feature, G#= partially provides feature, - = does not provide feature.
unified framework indicates if there is some kind of generic/unified optimization framework; constraints and
batches indicate support for constrained problems and batches; arbitrary functions means arbitrary objective
functions are easily implemented; arbitrary optimizers means arbitrary optimizers are easily implemented;
sparse gradient indicates that the framework can natively take advantage of sparse gradients; and categorical
refers to if support for categorical features exists.

2

 = provides feature, G#= partially provides feature, - = does not provide feature.

Runtime

Runtimes for the linear regression function on various dataset sizes (n = number of
samples, d = dimensionality of each sample). 10 iterations of L-BFGS.

algorithm d: 100, n: 1k d: 100, n: 10k d: 100, n: 100k d: 1k, n: 100k

ensmallen-1 0.001s 0.009s 0.154s 2.215s
ensmallen-2 0.002s 0.016s 0.182s 2.522s
Optim.jl 0.006s 0.030s 0.337s 4.271s
scipy 0.003s 0.017s 0.202s 2.729s
bfgsmin 0.071s 0.859s 23.220s 2859.81s
ForwardDiff.jl 0.497s 1.159s 4.996s 603.106s
autograd 0.007s 0.026s 0.210s 2.673s

Table 3: Runtimes for the linear regression function on various dataset sizes, with n indicating the number of
samples, and d indicating the dimensionality of each sample. All Julia runs do not count compilation time.

Results for various data sizes are shown in Table 3. For each implementation, L-BFGS was allowed
to run for only 10 iterations and never converged in fewer iterations. The datasets used for training
are highly noisy random data with a slight linear pattern. Note that the exact data is not relevant for
the experiments here, only its size. Runtimes are reported as the average across 10 runs.

The results indicate that ensmallen with EvaluateWithGradient() is the fastest approach. Fur-
thermore, the use of EvaluateWithGradient() yields considerable speedup over the ensmallen-2
implementation with both the objective and gradient implemented separately. In addition, although
the automatic differentiation support makes it easier for users to write their code, we observe that the
output of automatic differentiators is not as efficient, especially with ForwardDiff.jl. We expect
this effect to be more pronounced with increasingly complex objective functions.

Lastly, we demonstrate the easy pluggability in ensmallen for using various optimizers on the same
task. Using a version of LinearRegressionFunction from Sec. 3 adapted for separable differentiable
optimizers, we run six optimizers with default parameters in just 8 lines of code, as shown in Fig. 2(a).
Applying these optimizers to the YearPredictionMSD dataset from the UCI repository [17] yields
the learning curves shown in Fig. 2(b). Any other optimizer for separable differentiable objective
functions can be dropped into place in the same manner.

6 Conclusion
We have described ensmallen, a flexible C++ library for function optimization that provides an easy
interface for the implementation and optimization of user-defined objective functions. Many types
of functions can be optimized, including separable and constrained functions. The library provides
many pre-built optimizers (including numerous variants of SGD and Quasi-Newton optimizers). The
library internally exploits template metaprogramming to maximise opportunities for efficiency gains,
as well as to make the implementation of objective functions easier by automatically generating
missing methods.

We aim to expand the library with further optimization techniques as the need arises. Since ensmallen
is open source, external contributions to the codebase are welcome. For more information on the
library, see the website and documentation at https://ensmallen.org. The library is already in use
for function optimization in the mlpack machine learning toolkit [5].

Acknowledgements. We would like to thank the many contributors to ensmallen, who are listed on
the associated website.

// X and y are data
LinearRegressionFunction lrf(X, y);

using namespace ens;
StandardSGD<>().Optimize(lrf, sgdModel);
Adam().Optimize(lrf, adamModel);
AdaGrad().Optimize(lrf, adagradModel);
SMORMS3().Optimize(lrf, smorms3Model);
SPALeRASGD().Optimize(lrf, spaleraModel);
RMSProp().Optimize(lrf, rmspropModel);

(a) Code. (b) Learning curves.

Figure 2: Example usage of six ensmallen optimizers to optimize a linear regression function on the
YearPredictionMSD dataset [17] for 5 epochs of training. The optimizers can be tuned for better performance.

Optimization Algorithms

ensmallen provides a large set of diverse optimization algorithms for various objective
functions:

• SGD variants: Stochastic Gradient Descent (SGD), SGD with Restarts, Parallel
SGD (Hogwild!), Stochastic Coordinate Descent, AdaGrad, AdaDelta, RMSProp,
SMORMS3, Adam, AdaMax, NadaMax, AMSGrad, Nadam, OptimisticAdam, WN-
Grad, EVE, FTML, pAdam, SWATS

• Quasi-Newton variant: Limited-memory BFGS (L-BFGS), incremental Quasi-
Newton method, Augmented Lagrangian Method

• Genetic variants: Conventional Neuro-evolution, Covariance Matrix Adaptation
Evolution Strategy, SPSA

• Other: Conditional Gradient Descent, Frank-Wolfe algorithm, Simulated Annealing

Interface

For the most common case of a differentiable f (x), the user only needs to
implement two methods:

• double Evaluate(x): given coordinates x, this function returns the value of f (x).

• void Gradient(x, g): given coordinates x and a reference to g, set g = f ′(x).

or one function that computes both f (x) and f ′(x) simultaneously:

• double EvaluateWithGradient(x, g)

Example - Linear Regression Function

Implementation of objective and gradient functions for linear regression, used by opti-
mizers in ensmallen. The types arma::mat and arma::vec are matrix and vector
types.

class LinearRegressionFunction {

public:

// Construct the LinearRegressionFunction with the given data.

LinearRegressionFunction(arma::mat& X_in, arma::vec& y_in) : X(X_in), y(y_in) {}

// Compute the objective function,

double Evaluate(const arma::mat& theta) {

return std::pow(arma::norm(y - X * theta), 2.0);

}

// Compute the gradient and store in 'gradient'.

void Gradient(const arma::mat& theta, arma::mat& gradient) {

gradient = -2 * X.t() * (y - X * theta);

}

// Compute the objective function and gradient store in 'gradient'.

double EvaluateWithGradient(const arma::mat& theta, arma::mat& gradient) {

const arma::vec v = (y - X * theta); // Cache result.

gradient = -2 * X.t() * v; // Store gradient in the provided matrix.

return arma::accu(v % v); // Take squared norm of v.

}

private:

arma::mat& X; arma::vec& y;

};

Example - Optimization

Given the defined LinearRegressionFunction class, find the best parameters θ:

LinearRegressionFunction lrf(X, y); // We assume X and y already hold data.

using namespace ens;

// After this call, the second parameter holds the solution.

L_BFGS().Optimize(lrf, lbfgsModel); // Use the BFGS to get solution.

StandardSGD().Optimize(lrf, sgdModel); // Use the SGD to get solution.

Adam().Optimize(lrf, adamModel); // Use Adam to get solution.

AdaGrad().Optimize(lrf, adagradModel); // Use AdaGrad to get solution.

SMORMS3().Optimize(lrf, smorms3Model); // Use SMORMS3 to get solution.

SPALeRASGD().Optimize(lrf, spaleraModel); // Use SPALeRASGD to get solution.

RMSProp().Optimize(lrf, rmspropModel); // Use RMSProp to get solution.

It’s easy to plug in different optimizers and compare their performance!

0 1 2 3 4 5
epochs

1010

1011

1012

1013

lo
ss

Adam
AdaGrad
RMSprop
SPALeRA
SMORMS3
SGD

Conclusions

• ensmallen, a flexible C++ library for function optimization

• provides an easy interface for the implementation and optimization

• supports separable and constrained functions

• provides many pre-built optimizers (including numerous variants of SGD and
Quasi-Newton optimizers)

• automatically generating missing methods ⇒ makes the implementation of
objective functions easier

Project page http://ensmallen.org

Github http://github.com/mlpack/ensmallen

