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Abstract. The technology for building knowledge-based systems by inductive inference from examples has
been demonstrated successfully in several practical applications. This paper summarizes an approach to
synthesizing decision trees that has been used in a variety of systems, and it describes one such system,
ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal
with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is

discussed and two means of overcoming it are compared. The paper concludes with illustrations of current
research directions.

1. Introduction

Since artificial intelligence first achieved recognition as a discipline in the mid 1950’s,
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4. ID3

One approach to the induction task above would be to generate all possible decision
trees that correctly classify the training set and to select the simplest of them. The

? The preference for simpler trees, presented here as a commonsense application of Occam’s Razor, is
also supported by analysis. Pearl (1978b) and Quinlan (1983a) have derived upper bounds on the expected
error using different formalisms for generalizing from a set of known cases. For a training set of predeter-
mined size, these bounds increase with the complexity of the induced generalization.
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Figure 3. A complex decision tree.

number of such trees is finite but very large, so this approach would only be feasible
for small induction tasks. ID3 was designed for the other end of the spectrum, where
there are many attributes and the training set coniains many objects, but where a
reasonably good decision tree is required without much computation. It has generally
been found to construct simple decision trees, but the approach it uses cannot
guarantee that better trees have not been overlooked.

The basic structure of ID3 is iterative. A subset of the training set called the win-
dow is chosen at random and a decision tree formed from it; this tree correctly
classifies all objects in the window. All other objects in the training set are then
classified using the tree. If the tree gives the correct answer for all these objects then
it is correct for the entire training set and the process terminates. If not, a selection
of the incorrectly classified objects is added to the window and the process continues.
In this way, correct decision trees have been found after only a few iterations for
training sets of up to thirty thousand objects described in terms of up to 50 attributes.
Empirical evidence suggests that a correct decision tree is usually found more quickly
by this iterative method than by forming a tree directly from the entire training set.
However, O’Keefe (1983) has noted that the iterative framework cannot be
guaranteed to converge on a final trec unless the window can grow to include the en-
tire training set. This potential limitation has not yet arisen in practice.

The crux of the problem is how to form a decision tree for an arbitrary collection
C of objects. If C is empty or contains only objects of one class, the simplest decision
tree is just a leaf labelled with the class. Otherwise, let T be any test on an object with
possible outcomes Oy, O, ... Oyw. Each object in C will give one of these outcomes
for T, so T produces a partition {Cy, Ca, ... Cy} of C with C; containing those ob-
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for T, so T produces a partition {Cy, Cs, ... Cw} of C with C; containing those ob-
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jects having outcome O;. This is represented graphically by the tree form of Figure
4. If each subset C; in this figure could be replaced by a decision tree for C;, the result
would be a decision tree for all of C. Moreover, so long as two or more Ci’s are non-
empty, each C;is smaller than C. In the worst case, this divide-and-conquer strategy
will yield single-object subsets that satisfy the one-class requirement for a leaf. Thus,
provided that a test can always be found that gives a non-trivial partition of any set
of objects, this procedure will always produce a decision tree that correctly classifies
each object in C.

The choice of test is crucial if the decision tree is to be simple. For the moment,
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yield single-object subsets that satisiy the one-class requirement for a leal. us,
provided that a test can always be found that gives a non-trivial partition of any set
of objects, this procedure will always produce a decision tree that correctly classifies
each object in C.
The choice of test is crucial if the decision tree is to be simple. For the moment,
a test will be restricted to branching on the values of an attribute, so choosing a test
comes down to selecting an attribute for the root of the tree. The first induction pro-
grams in the ID series used a seat-of-the-pants evaluation function that worked
‘reasonably well. Following a suggestion of Peter Gacs, ID3 adopted an information-
based method that depends on two assumptions. Let C contain p objects of class P
and n of class N. The assumptions are:

(1) Any correct decision tree for C will classify objects in the same proportion as
their representation in C. An arbitrary object will be determined to belong to
class P with probability p/(p +n) and to class N with probability n/(p + n).

(2) When a decision tree is used to classify an object, it returns a class. A decision
tree can thus be regarded as a source of a message ‘P’ or ‘N’, with the expected
information needed to generate this message given by

I(p,n) = — P log P

n
— i
p+n B2 hoin  p+n 2 pin

If attribute A with values { Ai, Az, ... Ay} is used for the root of the decision tree,
it will partition C into {C;, C,, ... C,} where C; contains those objects in C that
have value A; of A. Let C; contain pj objects of class P and n; of class N. The expected
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it will partition C into {Cy, C,, ... C,} where C; contains those objects in C that
have value A; of A. Let C; contain p; objects of class P and n; of class N. The expected
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information required for the subtree for C; is I(pi, n;). The expected information re-
quired for the tree with A as root is then obtained as the weighted average

pit+1nj
p+n

BA) = 3

I(pi, nj)

where the weight for the ith branch is the proportion of the objects in C that belong
to C;. The information gained by branching on A is therefore

gain(A) = I(p, n) — E(A)

A good rule of thumb would seem to be to choose that attribute to branch on which
gains the most information.? ID3 examines all candidate attributes and chooses A to
maximize gain(A), forms the tree as above, and then uses the same process recursively
to form decision trees for the residual subsets Cy, C,, ... C,.

To illustrate the idea, let C be the set of objects in Table 1. Of the 14 objects, 9
are of class P and 5 are of class N, so the information required for classification is

9 9 5 5 .
I, n) = —— logs — — — logs —> = 0.940 bits
(P, 1) 14 %8274 " 14 %8 13 !




maximize gain(A), forms the tree as above, and then uses the same process recursively
to form decision trees for the residual subsets C;, C,, ... C..

To illustrate the idea, let C be the set of objects in Table 1. Of the 14 objects, 9
are of class P and 5 are of class N, so the information required for classification is

9 9 5 5 .
I(p, = ——1] — - —1] — = 0.940 bit
(p, n) 1 08214 12 o2 its

Now consider the outlook attribute with values {sunny, overcast, rain}. Five of the
14 objects in C have the first value (sunny), two of them from class P and three from -
class N, so

P11 = 2 1031 3 I(pl, 1'11) = 0.971

and similarly

pz2 = 4 ny = 0 I(pz, 1’12) =0
ps =3 n3 =2 I(ps, n3) = 0.971

The expected information requirement after testing this attribute is therefore

5 4 5
E (outlook) 2 I(p1, ny) + 7 I (p2, n2) + 11 I(p3, n3)

0.694 bits

3 Since I(p,n) is constant for all attributes, maximizing the gain is equivalent to minimizing E(A), which
is the mutual information of the attribute A and the class. Pearl (1978a) contains an excellent account of
the rationale of information-based heuristics.




3 Since I(p,n) is constant for all attributes, maximizing the gain is equivalent to minimizing E(A), which
is the mutual information of the attribute A and the class. Pearl (1978a) contains an excellent account of
the rationale of information-based heuristics.
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The gain of this attribute is then
gain(outlook) = 0.940 — E(outlook) = 0.246 bits

Similar analysis gives

gain(temperature) = 0.029 bits
gain(humidity) = 0.151 bits
gain(windy) = 0.048 bits

so the tree-forming method used in ID3 would choose outlook as the attribute for
the root of the decision tree. The objects would then be divided into subsets according
to their values of the outlook attribute and a decision tree for each subset would be
induced in a similar fashion. In fact, Figure 2 shows the actual decision tree generated
by ID3 from this training set.

A special case arises if C contains no objects with some particular value A; of A,
giving an empty C;. ID3 labels such aleaf as ‘null’ so that it fails to classify any object
arriving at that leaf. A better solution would generalize from the set C from which
C; came, and assign this leaf the more frequent class in C.

The worth of ID3’s attribute-selecting heuristic can be assessed by the simplicity
of the resulting decision trees, or, more to the point, by how well those trees express



induced in a similar fashion. In fact, Figure 2 shows the actual decision tree generated
by ID3 from this training set.

A special case arises if C contains no objects with some particular value A; of A,
giving an empty C;. ID3 labels such aleaf as ‘null’ so that it fails to classify any object
arriving at that leaf. A better solution would generalize from the set C from which
C; came, and assign this leaf the more frequent class in C.

The worth of ID3’s attribute-selecting heuristic can be assessed by the simplicity
of the resulting decision trees, or, more to the point, by how well those trees express
real relationships between class and attributes as demonstrated by the accuracy with
which they classify objects other than those in the training set (their predictive ac-
curacy). A straightforward method of assessing this predictive accuracy is to use only
part of the given set of objects as a training set, and to check the resulting decision
tree on the remainder.

Several experiments of this kind have been carried out. In one domain, 1.4 million
chess positions described in terms of 49 binary-valued attributes gave rise to 715
distinct objects divided 65%:35% between the classes. This domain is relatively com-
plex since a correct decision tree for all 715 objects contains about 150 nodes. When
training sets containing 20% of these 715 objects were chosen at random, they pro-
duced decision trees that correctly classified over 84% of the unseen objects. In
another version of the same domain, 39 attributes gave 551 distinct objects with a
correct decision tree of similar size; training sets of 20% of these 551 objects gave
decision trees of almost identical accuracy. In a simpler domain (1,987 objects with
a correct decision tree of 48 nodes), randomly-selected training sets containing 20%
of the objects gave decision trees that correctly classified 98% of the unseen objects.
In all three cases, it is clear that the decision trees reflect useful (as opposed to ran-
dom) relationships present in the data.

This discussion of 1D3 is rounded off by looking at the computational require-
ments of the procedure. At each non-leaf node of the decision tree, the gain of each
untested attribute A must be determined. This gain in turn depends on the values p;
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and n; for each value A; of A, so every object in C must be examined to determine
its class and its value of A. Consequently, the computational complexity of the pro-
cedure at each such node is O(ICIl-|Al), where |Al is the number of attributes
above. ID3’s total computational requirement per iteration is thus proportional to
the product of the size of the training set, the number of attributes and the number
of non-leaf nodes in the decision tree. The same relationship appears to extend to the
entire induction process, even when several iterations are performed. No exponential
growth in time or space has been observed as the dimensions of the induction task
increase, so the technique can be applied to large tasks.

5. Noise

So far, the information supplied in the training set has been assumed to be entirely
accurate. Sadly, induction tasks based on real-world data are unlikely to find this
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ments of the procedure. At each non-leaf node of the decision tree, the gain of each
untested attribute A must be determined. This gain in turn depends on the values p;

Outline of ID3 algorithm:

1. Create a root decision tree node for the whole dataset.

2. Calculate the information gain for every possible split of
every dimension of the dataset.

3. Split the dataset into two subsets along the dimension
for which information gain (after splitting) is maximized.

4. Create a new decision tree node for each subset and re-
curse to step 2.
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Okay. Your implementation will be written in ———
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® A link to the left child
A link to the right child
The dimension we are splitting on
The split value to determine if a point goes left or right




First let's design our data structure...

We want it to be as small as possible. We absolutely must hold:

® A link to the left child
A link to the right child

The dimension we are splitting on
The split value to determine if a point goes left or right

Class probabilities for prediction







DecisionTree

size_t splitDim;
double splitValue;
DecisionTreex left;
DecisionTreex right;

arma: :vec classProbs;







Next, we want to use the

ZP ) logy P(c)

ceC

where C is the set of possible class labels. This quantity is maximized when
P(c) =1 (i.e. when all labels are of one class).




Next, we want to use the

ZP ) logy P(c)

ceC

where C is the set of possible class labels. This quantity is maximized when
P(c) =1 (i.e. when all labels are of one class).

Let's write an implementation (using the Armadillo C4++ matrix library)...




// Labels should be in [0, numClasses).
< LabelsType>
double InfoGain ( LabelsType& labels, size t numClasses)

{




// Labels should be in [0, numClasses).
< LabelsType>
double InfoGain ( LabelsType& labels, size t numClasses)
{
// Count the number of elements in each class (calculate P(C)).
arma: :uvec counts (numClasses, arma::fill::zeros);
(size t 1 = 0; 1 < labels.n_elem; ++1)

counts[labels([1]]++;




// Labels should be in [0, numClasses).
< LabelsType>

double InfoGain ( LabelsType& labels, size_t numClasses)
{

// Count the number of elements in each class (calculate P(C)).

arma: :uvec counts (numClasses, arma::fill::zeros);

(size_t 1 = 0; 1 < labels.n_elem; ++1)
counts[labels[i]]++;

double gain = 0.0;
(size t 1 = 0; 1 < numClasses; ++1)

double f = ((double) counts[i] / (double) labels.n_elem);
(f > 0.0) // Work around divergence!!
gain += f x std::1log2(f);




// Labels should be in [0, numClasses).
< LabelsType>

double InfoGain ( LabelsType& labels, size_t numClasses)
{

// Count the number of elements in each class (calculate P(C)).

arma: :uvec counts (numClasses, arma::fill::zeros);

(size_t 1 = 0; 1 < labels.n_elem; ++1)
counts[labels[i]]++;

double gain = 0.0;
(size t 1 = 0; 1 < numClasses; ++1)

double f = ((double) counts[i] / (double) labels.n_elem);
(f > 0.0) // Work around divergence!!
gain += f x std::1log2(f);

gain;
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How do we split a node?

Let's borrow from the CART strategy...

® Find the information gain of the unsplit node.

® For each dimension...
For each possible binary split in that dimension...
See if this split provides a new best information gain.
® If the best found split’'s information gain is better than the information
gain of the unsplit node, then split!




volid BestBinarySplit ( size_t dimension,
::maté& data,
::uvec& labels,

size_t numClasses,

double& bestGain,
double& bestSplitValue)
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volid BestBinarySplit ( size_t dimension,
arma: :mat& data,
arma: :uvecé& labels,
size_t numClasses,
double& bestGain,
double& bestSplitValue)

// Sort the labels.
arma: :uvec sortedIndices = arma::
arma: :uvec sortedLabels(labels.n_elem);

(size_ t 1 = 0; 1 < sortedLabels.n_elem; ++1)

sortedLabels[i1i] = labels[sortedIndices[i]];

sort_index (data.row(dimension)) ;




arma::vec gains (data.n_cols - 1);
gains.fill (-DBL_MAX) ;
(size_t 1 = 1; 1 <= gains.n_elem; ++1i)

(data (dimension, sortedIndices[i]) ==
data (dimension, sortedIndices[i - 1]))

4

// Calculate the gain for the left and right child.
double leftGain = InfoGain (
sortedLabels.subvec (0, 1 - 1), numClasses);
double rightGain = InfoGain (
sortedLabels.subvec (i, data.n_cols - 1), numClasses);

// Calculate the fraction of points in the left and right children.
double leftRatio = double (i) / double (sortedLabels.n_elem);

gains[i — 1] = leftRatio * leftGain + (1. - leftRatio) *» rightGain;




arma::vec gains (data.n_cols - 1);
gains.fi
(siz

(da
da

t children.
.n_elem);

rightGain;




arma::vec gains (data.n_cols - 1);
gains.fi
(siz

(da
da

t children.
.n_elem);

rightGain;




arma::vec gains (data.n_cols - 1);
gains.fill (-DBL_MAX) ;
(size_t 1 = 1; 1 <= gains.n_elem; ++1i)

(data (dimension, sortedIndices[i]) ==
data (dimension, sortedIndices[i - 1]))

4

// Calculate the gain for the left and right child.
double leftGain = InfoGain (
sortedLabels.subvec (0, 1 - 1), numClasses);
double rightGain = InfoGain (
sortedLabels.subvec (i, data.n_cols - 1), numClasses);

// Calculate the fraction of points in the left and right children.
double leftRatio = double (i) / double (sortedLabels.n_elem);

gains[i — 1] = leftRatio * leftGain + (1. - leftRatio) *» rightGain;




// (after filling gains vector with possible gains...

// These were passed by reference, so we just have to set them.

bestGain = gains.max () ;
bestSplitValue = data(dimension,
sortedIndices[gains.index_max () + 1]);
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Let's borrow from the CART strategy...

® Find the information gain of the unsplit node.

® For each dimension...
For each possible binary split in that dimension...
See if this split provides a new best information gain.
® If the best found split’'s information gain is better than the information
gain of the unsplit node, then split!




vold SplitNode (DecisionTreex node,
arma: :mat& data,
arma: :uvecé& labels,
size t numClasses)

(data.n_cols ==
; // no split



vold SplitNode (DecisionTreex node,
arma: :mat& data,
arma: :uvecé& labels,
size t numClasses)

(data.n_cols == 1)
; // no split

// Get baseline gain.
double bestGain = InfoGain(labels, numClasses) ;
size_ t bestDim = data.n_rows;
double bestSplitValue;



// Find the best possible split.
(size_ t dim = 0; dim < data.n_rows; ++dim)

double dimGain, splitVal;
BestBinarySplit (dim, data, labels, numClasses, dimGain, splitVal);

(dimGain > bestGain)

bestGain = dimGain;
bestDim = dim;
bestSplitValue = splitVal;




(bestDim != data.n_rows)

node—>splitDim = bestDim;
node—>splitValue = bestSplitValue;

arma::mat left, right; arma::uvec leftlabels, rightlLabels;
(size_t 1 = 0; 1 < data.n_cols; ++1)

(data (bestDim, i) < bestSplitValue) // Point is on the left.

left = arma::join_rows (left, data.col(1i));
leftLabels = arma::join_cols(leftlLabels, labels.subvec (i, 1));

// Point is on the right.

right = arma::join_rows (right, data.col(1i));
rightLabels = arma::join_cols(rightLabels, labels.subvec(i,1i));




(bestDim != data.n_rows)

node—>
node—>

the left.




(bestDim != data.n_rows)

node—>splitDim = bestDim;
node—>splitValue = bestSplitValue;

arma::mat left, right; arma::uvec leftlabels, rightlLabels;
(size_t 1 = 0; 1 < data.n_cols; ++1)

(data (bestDim, i) < bestSplitValue) // Point is on the left.

left = arma::join_rows (left, data.col(1i));
leftLabels = arma::join_cols(leftlLabels, labels.subvec (i, 1));

// Point is on the right.

right = arma::join_rows (right, data.col(1i));
rightLabels = arma::join_cols(rightLabels, labels.subvec(i,1i));




// Recurse and build the children.

node—->left = DecisionTree () ;

SplitNode (node->1left, left, leftLabels, numClasses);
node->right = DecisionTree () ;

SplitNode (node->right, right, rightLabels, numClasses);




// We are not going to split the node.

// Calculate leaf probabilities.
arma: :uvec counts (numClasses);
(size_ t 1 = 0; 1 < labels.n_elem; ++1)
++counts[labels[i]];

node—>classProbs.set_size (numClasses) ;
(size_ t 1 = 0; 1 < numClasses; ++1)
node—>classProbs[i] = double (counts[i])

/ double (numClasses) ;







® InfoGain():
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® InfoGain():

® BestBinarySplit ():
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® InfoGain():

® BestBinarySplit ():

® SplitNode():




® InfoGain():

® BestBinarySplit ():

® SplitNode():

That’s all we need!




InfoGain ():

BestBinarySplit ():

SplitNode ():

That’s all we need!

// Create and build the tree on our data!
DecisionTree*x tree = DecisionTree () ;
SplitNode (tree, data, labels, numClasses);

$ gt++ -0 tree tree.cpp -03 -march=native -DARMA_NO_DEBUG -larmadillo

m
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Every time we recurse we are copying data in SplitNode ():

// Split the data.

arma::mat left, right;

arma: :uvec leftlLabels, rightLabels;
(size t 1 = 0; 1 < data.n_cols; ++1)

(data (bestDim, i) < bestSplitValue)

left = arma::join_rows (left, data.col(1i));
leftLabels = arma::join_cols(leftlLabels, labels.subvec (i, 1));

right = arma::join_rows (right, data.col(1));
rightLabels = arma::join_cols (rightLabels,
labels.subvec (i, 1));




calli+2)




Every time we recurse we are copying data in SplitNode ():

// Split the data.

arma::mat left, right;

arma: :uvec leftlLabels, rightLabels;
(size t 1 = 0; 1 < data.n_cols; ++1)

(data (bestDim, i) < bestSplitValue)

left = arma::join_rows (left, data.col(1i));
leftLabels = arma::join_cols(leftlLabels, labels.subvec (i, 1));

right = arma::join_rows (right, data.col(1));
rightLabels = arma::join_cols (rightLabels,
labels.subvec (i, 1));




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

(data (bestDim, left) < bestSplitValue && left < right)
++left;

(data (bestDim, right) >= bestSplitValue && left < right)
——right;

(left >= right)

4

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

[0 6 3 4 1 1 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

[0 6 3 4 1 1 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

[0 6 3 4 1 1 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

[0 6 3 4 1 1 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

(01 3 41 6 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

[0 1 3 41 6 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

[0 1 341 6 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

[0 1 341 6 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

[0 1 3 1 4 6 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

split value: 3.5

[0 1 3 1 4 6 7]

data.swap_cols (left, right);
labels.swap_rows (left, right);




Instead use an in-place quick-sort-like approach:

// Split the data, but in-place. Just like gquicksort!
size_t left = 0, right = data.n_cols - 1;
(left < right)

(data (bestDim, left) < bestSplitValue && left < right)
++left;

(data (bestDim, right) >= bestSplitValue && left < right)
——right;

(left >= right)

4

data.swap_cols (left, right);
labels.swap_rows (left, right);




// Build children recursively using Armadillo subviews.

// (The definition of SplitNode () requires very slight

// modification.)

node->left = DecisionTree () ;

SplitNode (node->1left, data.cols (0, left - 1),
labels.subvec (0, left - 1), numClasses);

node->right = DecisionTree () ;

SplitNode (node->right, data.cols(left, data.n_cols - 1),
labels.subvec (left, data.n_cols - 1), numClasses);
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Information gain is 0 when we have a perfect split:

ZP ) log, P(c)

ceC




Information gain is 0 when we have a perfect split:

ZP ) log, P(c)

ceC

So if we see a gain of 0, we can't do any better. This will often happen
for decision tree nodes with few points!




(size t 1 ; 1 <= gains.n_elem; ++1)

(data (dimension, sortedIndices[i])
data (dimension, sortedIndices[i -

4

// Calculate the gain for the left and right child.
double leftGain = InfoGain (
sortedLabels.subvec (0, 1 - 1), numClasses);
double rightGain = InfoGain (
sortedLabels.subvec (i, data.n_cols - 1), numClasses) ;

// Calculate the fraction of points in the left and right children.
double leftRatio = double (i) / double(sortedLabels.n_elem);

leftRatio x leftGain + (1. - leftRatio) *» rightGain;




(size t 1 ; 1 <= gains.n_elem; ++1)

(data (dimension, sortedIndices[i])
data (dimension, sortedIndices[i -

4

// Calculate the gain for the left and right child.
double leftGain = InfoGain (
sortedLabels.subvec (0, 1 - 1), numClasses);
double rightGain = InfoGain (
sortedLabels.subvec (i, data.n_cols - 1), numClasses) ;

// Calculate the fraction of points in the left and right children.
double leftRatio = double (i) / double(sortedLabels.n_elem);

gains[i — 1] = leftRatio % leftGain + (1. - leftRatio) x» rightGain;
(gains[1i - 1] 0.0)
; // The split is optimal---stop searching.




(size_ t dim = 0; dim < data.n_rows; ++dim)

double dimGain, splitVal;
BestBinarySplit (dim, data, labels, numClasses, dimGain, splitVal);

(dimGain > bestGain)

bestGain = dimGain;
bestDim = dim;
bestSplitValue = splitVal;




(size_ t dim = 0; dim < data.n_rows; ++dim)

double dimGain, splitVal;
BestBinarySplit (dim, data, labels, numClasses, dimGain, splitVal);

(dimGain > bestGain)

bestGain = dimGain;
bestDim = dim;
bestSplitValue = splitVal;

(bestGain == 0.0)
; // Split is optimal-—--stop searching.
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Modern processors have far more than one core...

An easy way to exploit this is with

|
L}

OpenMP allows us to define individual tasks with the

v

B om

directive. We can use one of these each time we recurse...







// Recurse and build children.

node—->left = DecisionTree () ;

SplitNode (node->1left, data.cols (0, left - 1),
labels.subvec (0, left - 1), numClasses);

node—->right = DecisionTree () ;

SplitNode (node->right, data.cols(left, data.n_cols - 1),
labels.subvec (left, data.n_cols - 1), numClasses);




// Recurse and build children.
(data.n_cols > 100)

// Build children in parallel.
//

// Build children serially.

node—->left = DecisionTree () ;

SplitNode (node->1left, data.cols (0, left - 1),
labels.subvec (0, left - 1), numClasses);

node—->right = DecisionTree () ;

SplitNode (node—->right, data.cols(left, data.n_cols - 1),
labels.subvec (left, data.n_cols - 1), numClasses);




(data.n_cols > 100)

// Build children in parallel.
fpragma omp task
{

node—->left = DecisionTree () ;
SplitNode (node->1left, data.cols (0, left - 1),
labels.subvec (0, left - 1), numClasses);

fpragma omp task
{
node—->right = DecisionTree () ;
SplitNode (node->right, data.cols(left, data.n_cols - 1),
labels.subvec (left, data.n_cols - 1), numClasses);

fpragma omp taskwait

// Build serially




Now we have to compile with the

|
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Most modern processors support (single instruction multiple data)
instructions.

(a} Scalar Operation (b) SIMD Operation

A,




Most modern processors support (single instruction multiple data)
Instructions.

gcc (and clang) can and may (depending on options) auto-vectorize

simple loops:

(size_t 1 = 0; 1 < numClasses; ++1)

double f = ((double) counts[i] / (double) labels.n_elem);

(f > 0.0)
gain += f x std::1og2(f);

|
L}

v

B om



But what about more complicated indirect-access-type loops?

// Count the number of elements in each class.
arma: :uvec counts (numClasses, arma::fill::zeros);
(size_t 1 = 0; 1 < labels.n_elem; ++1)
counts[labels([1]]++;




But what about more complicated indirect-access-type loops?

// Count the number of elements in each class.
arma: :uvec counts (numClasses, arma::fill::zeros);
(size_t 1 = 0; 1 < labels.n_elem; ++1)
counts[labels([1]]++;

This turns out to be a really hard problem. We want something like this:
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counts
counts
counts
counts

Then a must be some kind of partial count of the number of labels in each
class.

m



(seems like a non sequitor)

Most modern processors also support the (population count)
instruction. In a single instruction, we can count the number of 1 bits in
a 64-bit vector.

OxFFOOFFO00 — 16 in a single instruction!




(seems like a non sequitor)

Most modern processors also support the (population count)
instruction. In a single instruction, we can count the number of 1 bits in

a 64-bit vector.

OxFFOOFFO00 — 16 in a single instruction!

® \We want a partial count.
® Population counts can count 64 one-bit values extremely quickly.




(seems like a non sequitor)

Most modern processors also support the (population count)
instruction. In a single instruction, we can count the number of 1 bits in

a 64-bit vector.

OxFFOOFFO00 — 16 in a single instruction!

® \We want a partial count.
® Population counts can count 64 one-bit values extremely quickly.




(seems like a non sequitor)

Most modern processors also support the (population count)
instruction. In a single instruction, we can count the number of 1 bits in
a 64-bit vector.

OxFFOOFFO00 — 16 in a single instruction!

® \We want a partial count.
® Population counts can count 64 one-bit values extremely quickly.

One bitset for whether or not the label is class 0, one bitset for whether or
not the label is class 1, and so forth...

L]



So given the labels
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So given the labels
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So given the labels

we want to construct the bitsets

4 4 4 4 4

4 4

o, 1, 0, O
0, 0, 1, 1

1, 0, 0, O,
0, 0, 0, O

4

0, 1
, 0, 0y
0, O,
1, 0,

[0,

4 4 ’

4 POPCNTs to evaluate 8 labels vs. 8 iterations of a loop! (and with more
labels it gets significantly faster...)




So the overall strategy is going to be this:
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So the overall strategy is going to be this:

® InBestBinarySplit (), when we sort the labels, instead assemble
the sorted bitsets.




So the overall strategy is going to be this:

® InBestBinarySplit (), when we sort the labels, instead assemble
the sorted bitsets.
® In InfoGain (), use the sorted bitsets to do something like below:

// Four POPCNT instructions! (or go buy an AVX-512 processor!)
= popcnt64d (bitset [0] [1]
= popcnt64d (bitset[1] [1]
= popcnt64d (bitset[2] [1]
= popcnt64d (bitset [3] [1]

) 7
) 7
)I
)I

AVX2 vector add instruction!
+=
+=
+=
+=




Let's talk about memory alignment issues.
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http://www.mlpack.org
https://github.com/mlpack/mlpack/

More decision trees and fast implementations?

AN
VAN
SN NN

mIlpack

A fast C++4 machine learning library with emphasis
on flexibility and efficiency. Now with Python bind-

ings! More implementation tricks there than what's
been shown here.

http://www.mlpack.org
https://github.com/mlpack/mlpack/
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https://github.com/mlpack/mlpack/
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IMPLEMENTATION. He says the great job you
did has 1nspired him to give you much more

WORK. It seems for now that your JOB 1is
secure.
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Your BOSS 1s 1impressed with your
IMPLEMENTATION. He says the great job you
did has 1nspired him to give you much more
WORK. It seems for now that your JOB 1is
secure.

? 1lnventory
You possess the following TRICKS:

— Avo1ld unnecessary coplies and memory
allocations.

— Terminate the algorithm early 1f
possible.

— Use parallelism when possible.

— Explolit SIMD or other processor—specific
instructions.

There are many more TRICKS. Search the
WORLD to find more.

2
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YOUR 5CORE IS5 IM THE TOF FIUE |

INPFUT YOUR INITIALS :

http: //www.mlpack.org/
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