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The Big Tradeoff

speed vs. portability and readability

If we’re careful, we can get speed, portability, and

readability by using C++.
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R.R. Curtin, J.R. Cline, N.P. Slagle, W.B. March, P. Ram, N.A. Mehta, A.G. Gray, “mlpack: a
scalable C++ machine learning library”, in The Journal of Machine Learning Research, vol. 14,
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What does mlpack implement?

mlpack implements a lot of standard machine learning techniques and

also new, cutting-edge techniques.



How do we get mlpack?

Linux (Debian/Ubuntu): $ sudo apt-get install libmlpack-dev

Linux (Red Hat/Fedora): $ sudo dnf install mlpack-devel

OS X (Homebrew): $ brew tap brewsci/science &&

brew install mlpack

Windows (nuget): > nuget add mlpack-windows

Or install from source:

$ git clone https://github.com/mlpack/mlpack

$ mkdir mlpack/build && cd mlpack/build

$ cmake ../

$ make -j8 # Probably good to use many cores.

$ sudo make install

https://www.mlpack.org/docs/mlpack-3.0.4/doxygen/build.html

https://keon.io/mlpack/mlpack-on-windows/

https://www.mlpack.org/docs/mlpack-3.0.4/doxygen/build.html
https://keon.io/mlpack/mlpack-on-windows/


Installing from Python

Use pip:

$ pip install mlpack3

Or use conda:

$ conda install -c mlpack mlpack



Command-line programs

You don’t need to be a C++ expert.

# Train AdaBoost model.

$ mlpack_adaboost -t training_file.h5 -l training_labels.h5 \

> -M trained_model.bin

# Predict with AdaBoost model.

$ mlpack_adaboost -m trained_model.bin -T test_set.csv \

> -o test_set_predictions.csv



Command-line programs

You don’t need to be a C++ expert.

# Train AdaBoost model.

$ mlpack_adaboost -t training_file.h5 -l training_labels.h5 \

> -M trained_model.bin

# Predict with AdaBoost model.

$ mlpack_adaboost -m trained_model.bin -T test_set.csv \

> -o test_set_predictions.csv

# Find the 5 nearest neighbors of the data in dataset.txt, storing the

# indices of the neighbors in ’neighbors.csv’.

$ mlpack_knn -r dataset.txt -k 5 -n neighbors.csv
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Python bindings

Can be dropped directly into a Python workflow.

>>> import numpy as np

>>> from mlpack import pca

>>> x = np.genfromtxt(’my_data.csv’, delimiter=’,’)

>>> x.shape

(2048, 10)

>>> result = pca(input=x, new_dimensionality=5, verbose=True)

[INFO ] Performing PCA on dataset...

[INFO ] 99.9491% of variance retained (5 dimensions).

>>> result[’output’].shape

(2048, 5)

>>>
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Python bindings

Documentation is straightforward and extensive.

>>> from mlpack import cf

>>> help(cf)



Help on built-in function cf in module mlpack.cf:

cf(...)

Collaborative Filtering

This program performs collaborative filtering (CF) on the given dataset. Given

a list of user, item and preferences (the ’training’ parameter), the program

will perform a matrix decomposition and then can perform a series of actions

related to collaborative filtering. Alternately, the program can load an

existing saved CF model with the ’input_model’ parameter and then use that

model to provide recommendations or predict values.

The input matrix should be a 3-dimensional matrix of ratings, where the first

dimension is the user, the second dimension is the item, and the third

dimension is that user’s rating of that item. Both the users and items should

be numeric indices, not names. The indices are assumed to start from 0.

A set of query users for which recommendations can be generated may be

specified with the ’query’ parameter; alternately, recommendations may be

generated for every user in the dataset by specifying the

’all_user_recommendations’ parameter. In addition, the number of

recommendations per user to generate can be specified with the

’recommendations’ parameter, and the number of similar users (the size of the

neighborhood) to be considered when generating recommendations can be

specified with the ’neighborhood’ parameter.

For performing the matrix decomposition, the following optimization algorithms

can be specified via the ’algorithm’ parameter:

’RegSVD’ -- Regularized SVD using a SGD optimizer

’NMF’ -- Non-negative matrix factorization with alternating least squares



’NMF’ -- Non-negative matrix factorization with alternating least squares

update rules

’BatchSVD’ -- SVD batch learning

’SVDIncompleteIncremental’ -- SVD incomplete incremental learning

’SVDCompleteIncremental’ -- SVD complete incremental learning

A trained model may be saved to with the ’output_model’ output parameter.

To train a CF model on a dataset ’training_set’ using NMF for decomposition

and saving the trained model to ’model’, one could call:

>>> cf(training=training_set, algorithm=’NMF’)

>>> model = output[’output_model’]

Then, to use this model to generate recommendations for the list of users in

the query set ’users’, storing 5 recommendations in ’recommendations’, one

could call

>>> cf(input_model=model, query=users, recommendations=5)

>>> recommendations = output[’output’]

Input parameters:

- algorithm (string): Algorithm used for matrix factorization. Default

value ’NMF’.

- all_user_recommendations (bool): Generate recommendations for all

users.

- copy_all_inputs (bool): If specified, all input parameters will be

deep copied before the method is run. This is useful for debugging

problems where the input parameters are being modified by the algorithm,

but can slow down the code.

- input_model (CFType): Trained CF model to load.
_ _
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Pros of C++

C++ is great!

● Generic programming at compile time via templates.

● Low-level memory management.

● Little to no runtime overhead.

● Well-known!

● The Armadillo library gives us good linear algebra primitives.

using namespace arma;

extern mat x, y;

mat z = (x + y) * chol(x) + 3 * chol(y.t());
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Cons of C++

C++ is not great!

● Templates can be hard to debug because of error messages.

● Memory bugs are easy to introduce.

● The new language revisions are not making the language any

simpler...
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What if I don’t want the Euclidean distance?



Genericity

Why write an algorithm for one specific situation?

// The numeric parameter is the value of p for the p-norm to

// use. 1 = Manhattan distance, 2 = Euclidean distance, etc.

NearestNeighborSearch n(dataset, 1);

n.Search(query_set, 3, neighbors, distances);

Ok, this is a little better!



Genericity

Why write an algorithm for one specific situation?

// ManhattanDistance is a class with a method Evaluate().

NearestNeighborSearch<ManhattanDistance> n(dataset);

n.Search(query_set, 3, neighbors, distances);

This is much better! The user can specify whatever

distance metric they want, including one they write

themselves.



Genericity

Why write an algorithm for one specific situation?

// This will _definitely_ get me best paper at ICML! I can

// feel it!

class MyStupidDistance

{

static double Evaluate(const arma::vec& a,

const arma::vec& b)

{

return 15.0 * std::abs(a[0] - b[0]);

}

};

// Now we can use it!

NearestNeighborSearch<MyStupidDistance> n(dataset);

n.Search(query_set, 3, neighbors, distances);



Genericity

Why write an algorithm for one specific situation?

// We can also use sparse matrices instead!

NearestNeighborSearch<MyStupidDistance, arma::sp_mat>

n(sparse_dataset);

n.Search(sparse_query_set, 3, neighbors, distances);



Genericity

Why write an algorithm for one specific situation?

// Nearest neighbor search with arbitrary types of trees!

NearestNeighborSearch<EuclideanDistance, arma::mat, KDTree> kn;

NearestNeighborSearch<EuclideanDistance, arma::sp_mat, CoverTree> cn;

NearestNeighborSearch<ManhattanDistance, arma::mat, Octree> on;

NearestNeighborSearch<ChebyshevDistance, arma::sp_mat, RPlusTree> rn;

NearestNeighborSearch<MahalanobisDistance, arma::mat, RPTree> rpn;

NearestNeighborSearch<EuclideanDistance, arma::mat, XTree> xn;

R.R. Curtin, “Improving dual-tree algorithms”. PhD thesis, Georgia Institute of Technology, At-
lanta, GA, 8/2015.
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What about virtual inheritance?

class MyStupidDistance : public Distance

{

virtual double Evaluate(const arma::vec& a,

const arma::vec& b)

{

return 15.0 * std::abs(a[0] - b[0]);

}

};

NearestNeighborSearch n(dataset, new MyStupidDistance());
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Why templates?

What about virtual inheritance?

class MyStupidDistance : public Distance

{

virtual double Evaluate(const arma::vec& a,

const arma::vec& b)

{

return 15.0 * std::abs(a[0] - b[0]);

}

};

NearestNeighborSearch n(dataset, new MyStupidDistance());

n.Search(3, neighbors, distances);

vtable lookup penalty!
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Why templates?

Using inheritance to call a function costs us instructions:

Distance* d =

new MyStupidDistance();

d->Evaluate(a, b);

MyStupidDistance::Evaluate(a, b);

; push stack pointer

movq %rsp, %rdi

; get location of function

movq $_ZTV1A+16, (%rsp)

; call Evaluate()

call _ZN1A1aEd

; just call Evaluate()!

call _ZN1B1aEd.isra.0.constprop.1

Up to 10%+ performance penalty in some situations!
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Compile-time expressions

What about math? (Armadillo)

In C:

extern double** a, b, c, d, e;

extern int rows, cols;

// We want to do e = a + b + c + d.

mat_copy(e, a, rows, cols);

mat_add(e, b, rows, cols);

mat_add(e, c, rows, cols);

mat_add(e, d, rows, cols);
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Compile-time expressions

What about math? (Armadillo)

In C with a custom function:

extern double** a, b, c, d, e;

extern int rows, cols;

// We want to do e = a + b + c + d.

mat_add4_into(e, a, b, c, d, rows, cols);

Fastest! (one pass)

void mat_add4_into(double** e, double** a, double** b,

double** c, double** d, int rows, int cols)

{

for (int r = 0; r < rows; ++r)

for (int c = 0; c < cols; ++c)

e[r][c] = a[r][c] + b[r][c] + c[r][c] + d[r][c];

}
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Compile-time expressions

What about math? (Armadillo)

In MATLAB:

e = a + b + c + d

Beautiful!
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Compile-time expressions

What about math? (Armadillo)

In C++ (with Armadillo):

using namespace arma;

extern mat a, b, c, d;

mat e = a + b + c + d;

No temporaries, only one pass! Just as fast as the fastest C

implementation.
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Compile-time expressions

What about math? (Armadillo)

In C++ (with Armadillo):

using namespace arma;

extern mat a, b, c, d;

mat e = a + b + c + d;

C++ allows us templated operator overloading:

template<typename T1, typename T2>

const op<T1, T2, add> operator+(const T1& x, const T2& y);

The expression yields type op<op<op<mat, mat, add>, mat, add>, mat, add>.

// This can accept an op<...> type.

template<typename T1, typename T2>

mat::operator=(const op<T1, T2, add>& op);



Compile-time expressions

What about math? (Armadillo)

In C++ (with Armadillo):

using namespace arma;

extern mat a, b, c, d;

mat e = a + b + c + d;

C++ allows us templated operator overloading:

template<typename T1, typename T2>

const op<T1, T2, add> operator+(const T1& x, const T2& y);

The expression yields type op<op<op<mat, mat, add>, mat, add>, mat, add>.

// This can accept an op<...> type.

template<typename T1, typename T2>

mat::operator=(const op<T1, T2, add>& op);

The assignment operator "unwraps" the operation and generates optimal

code.



Take-home

● Templates give us generic code.

● Templates allow us to generate fast code.



Deep Neural Networks with mlpack

With ensmallen, we can do deep learning.



Deep Neural Networks with mlpack

With ensmallen, we can do deep learning.

using namespace mlpack::ann;

extern arma::mat data, responses, testData;

// Create a 3-layer sigmoid neural network with 10 outputs.

FFN<NegativeLogLikelihood<>, RandomInitialization> model;

model.Add<Linear<>>(data.n_rows, 100);

model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 100);

model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 10);

model.Add<LogSoftMax<>>();
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model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 10);
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// Train the model.

SGD<> optimizer(0.001 /* step size */, 1024 /* batch size */,

100000 /* max iterations */);

model.Train(data, responses, optimizer);



Deep Neural Networks with mlpack

With ensmallen, we can do deep learning.

using namespace mlpack::ann;

extern arma::mat data, responses, testData;

// Create a 3-layer sigmoid neural network with 10 outputs.

FFN<NegativeLogLikelihood<>, RandomInitialization> model;

model.Add<Linear<>>(data.n_rows, 100);

model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 100);

model.Add<SigmoidLayer<>>();

model.Add<Linear<>>(100, 10);

model.Add<LogSoftMax<>>();

// Train the model.

SGD<> optimizer(0.001 /* step size */, 1024 /* batch size */,

100000 /* max iterations */);

model.Train(data, responses, optimizer);

// Predict on test points.

arma::mat predictions;

model.Predict(testData, predictions);



Benchmarks

Did C++ get us what we wanted?



Benchmarks

Task 1: z = 2(x′ + y) + 2(x+ y′).

extern int n;

mat x(n, n, fill::randu);

mat y(n, n, fill::randu);

mat z = 2 * (x.t() + y) + 2 * (x + y.t()); // only time this line

n arma numpy octave R Julia

1000 0.029s 0.040s 0.036s 0.052s 0.027s

3000 0.047s 0.432s 0.376s 0.344s 0.041s

10000 0.968s 5.948s 3.989s 4.952s 3.683s

30000 19.167s 62.748s 41.356s fail 36.730s



Benchmarks

Task 3: z = abcd for decreasing-size matrices.

extern int n;

mat a(n, 0.8 * n, fill::randu);

mat b(0.8 * n, 0.6 * n, fill::randu);

mat c(0.6 * n, 0.4 * n, fill::randu);

mat d(0.4 * n, 0.2 * n, fill::randu);

mat z = a * b * c * d; // only time this line

n arma numpy octave R Julia

1000 0.042s 0.051s 0.033s 0.056s 0.037s

3000 0.642s 0.812s 0.796s 0.846s 0.844s

10000 16.320s 26.815s 26.478s 26.957s 26.576s

30000 329.87s 708.16s 706.10s 707.12s 704.032s

Armadillo can automatically select the correct ordering for multiplication.



Benchmarks

Task 4: z = a′(diag(b)−1)c.

extern int n;

vec a(n, fill::randu);

vec b(n, fill::randu);

vec c(n, fill::randu);

double z = as_scalar(a.t() * inv(diagmat(b)) * c); // only time this line

n arma numpy octave R Julia

1k 8e-6s 0.100s 2e-4s 0.014s 0.057s

10k 8e-5s 49.399s 4e-4s 0.208s 18.189s

100k 8e-4s fail 0.002s fail fail

1M 0.009s fail 0.024s fail fail

10M 0.088s fail 0.205s fail fail

100M 0.793s fail 1.972s fail fail

1B 8.054s fail 19.520s fail fail



kNN benchmarks

dataset d N mlpack mlpy matlab scikit shogun Weka

isolet 617 8k 15.65s 59.09s 50.88s 44.59s 59.56s 220.38s
corel 32 68k 17.70s 95.26s fail 63.32s fail 29.38s
covertype 54 581k 18.04s 27.68s >9000s 44.55s >9000s 42.34s
twitter 78 583k 1573.92s >9000s >9000s 4637.81s fail >9000s
mnist 784 70k 3129.46s >9000s fail 8494.24s 6040.16s >9000s
tinyImages 384 100k 4535.38s 9000s fail >9000s fail >9000s



vs. Spark

We can use mmap() for out-of-core learning since our algorithms are

generic!



vs. Spark

We can use mmap() for out-of-core learning since our algorithms are

generic!

D. Fang, P. Chau. M3: scaling up machine learning via memory mapping, SIGMOD/PODS 2016.



What didn’t I talk about in depth?

● optimization toolkit (ensmallen)

● hyper-parameter tuner

● tree infrastructure for problems like nearest neighbor search

● reinforcement learning code

● matrix decomposition infrastructure

● benchmarking system

● automatic binding generator

● preprocessing utilities

● ...and surely more I am not thinking of...



What’s coming?

mlpack 3.1.1 was just released and ready for production use!

http://mlpack.org/blog/mlpack-3-released.html

http://www.mlpack.org/

https://github.com/mlpack/mlpack/

http://mlpack.org/blog/mlpack-3-released.html
http://www.mlpack.org/
https://github.com/mlpack/mlpack/


Further out

Armadillo-like library for GPU matrix operations: Bandicoot

http://coot.sourceforge.io/

Two separate use case options:

● Bandicoot can be used as a drop-in accelerator to Armadillo,

offloading intensive computations to the GPU when possible.

● Bandicoot can be used as its own library for GPU matrix programming.

http://coot.sourceforge.io/


Further out

Armadillo-like library for GPU matrix operations: Bandicoot

http://coot.sourceforge.io/

Two separate use case options:

● Bandicoot can be used as a drop-in accelerator to Armadillo,

offloading intensive computations to the GPU when possible.

● Bandicoot can be used as its own library for GPU matrix programming.

using namespace coot;

mat x(n, n, fill::randu); // matrix allocated on GPU

mat y(n, n, fill::randu);

mat z = x * y; // computation done on GPU

http://coot.sourceforge.io/


Questions and comments?

http://www.mlpack.org/

https://github.com/mlpack/mlpack/

http://www.mlpack.org/
https://github.com/mlpack/mlpack/
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