
A Multi-Paradigm C++-based Hardware Description
Language

Chad D. Kersey (cdkersey@gatech.edu)

Advisor: Sudhakar Yalamanchili
Acting Advisor: Hyesoon Kim

Committee: Saibal Mukhodpadhyay, Tom Conte,
Tushar Krishna, Rich Vuduc, Jeff Young

Introduction

Overview

Hardware description languages

Generators
Hierarchical Design
Register Transfer Level
High-Level Synthesis

All intended to reduce workload for ASIC and FPGA design.

Also important target for generating, validating, and
developing models for system-level simulation.

1 / 46

Overview: Accelerator-Rich Architectures

Accelerators are an integral
part of computer
architectures.

Modern processors
incorporate a diverse array
of accelerator cores.

Each accelerator introduces
a unique design challenge;
these are not simply tiled
designs.

Designer productivity is
crucial for achieving
performance goals.

10nm Intel Ice Lake core showing

significant area devoted to

accelerator cores.

2 / 46

Overview: HDL-Based Design

Accelerators pose significant design, verification, and validation
task:

Need to quickly find lower bounds on performance, upper
bounds on area and TDP costs.

High-level synthesis may be well-suited for this initial sanity
check.

Using HLS leads to additional challenges:

Can we use our HLS model as the basis for a full design?

How do we interface our prototype with models of existing
designs?

Implement interfaces between our HLS and our existing design?
Now we have a new set of interfaces to maintain!

Best case: our tool supports both HLS and a low-level
paradigm. (e.g. SystemC), but what if we want to use a
different paradigm?

3 / 46

Overview: Conflicting HDLs

A design may lend itself well to a third tool, e.g. Bluespec.

But the majority of the design may already be completed
using another HDL.

With traditional HDLs we would have to add an interface
layer.

E.g. a Verilog module produced as the output of another tool.
Adds one more interface to maintain/keep consistent.

If our language includes support for generators, however, is it
possible to use the generator to implement the required
paradigm within the parent language?

Statement of Problem

Popular HDLs do not offer an extensible set of design paradigms
and seamless integration between them. Of those that are
extensible, none offer a full range of paradigms from gate-level
design through HLS.

4 / 46

Background

Background: Extensibility

A specific definition of HDL extensibility is used in the context of
this dissertation:

Criteria for Extensibility

New hardware description paradigms may be added.

Interoperability between paradigms.

Signal types compatible across design paradigms.

Extensibility is the solution to the problem of interoperability.

Generative HDLs in high-level languages (MyHDL, Chisel,
CHDL) are extensible.

5 / 46

Background: HDL Menagerie

Gate−Level

Structural

High−Level

Functional

RTL

Netlist

Verilog/VHDL RTL

Verilog/VHDL Behavioral

Bluespec

Sehwa

PamDC JHDL

HDLs using many approaches have been developed:

Traditional HLS approaches do not allow generators; poor
interoperability with other paradigms.
System C: RTL, TLM, and HLS in one; generators supported
in elaboration stage; not in synthesizable dialects.
MyHDL is an extensible Python-based HDL; best described as
“SystemC in Python”. Extensible because synthesis and
simulation environment are the same.
Chisel is a generative HDL, and has already been extended to
support RTL (when() blocks) and GAA.

6 / 46

Background: HDL Menagerie

Paradigms supported by sampling of HDLs. SystemC provides all

paradigm types here, but the set is fixed.
7 / 46

Background: Thesis Statement

Thesis Statement

By adopting a general-purpose language with strong support for
construction of domain specific languages, such as C++, as a
hardware description language and building a layered set of
abstractions around a core of simple primitives, we can produce
interoperable designs using a diverse set of paradigms, from
gate-level description to high-level synthesis.

8 / 46

Outline of Talk

Introduction

Background

CHDL - The core library, supporting netlist introspection.

Harmonica - Data parallel core implemented using CHDL.

CHDL-GAA - Implementation of GAA using CHDL.

Cheetah - Pipeline-oriented HDL.

Conclusions

9 / 46

Design of CHDL1

1C. Kersey and S. Yalamanchili. An Introspective Approach to Architecting
Hardware Using C++, OpenSuCo 2017

CHDL: Analogous Structures

CHDL is:

Generator-based: like PamDC and Chisel.

Structural: implements all logic as simple primitives.

Introspective: design can be accessed and modified
post-generation.

Analogous Structures

CHDL Structure Hardware Structure
C++ Function Module
Function Call Module Instantiation

Program Execution Elaboration, Simulation

10 / 46

CHDL: Features

CHDL, the core library, provides:

Data types representing nodes and vectors of signals.

Functions to instantiate basic logic operations.

Functions to perform basic integer arithmetic on vectors of
signals.

Operator overloads for logical, bitwise, arithmetic, and
comparison operations.

API for accessing and modifying the netlist of logic primitives.

Function for dumping the netlist of logic primitives as
synthesizable Verilog.

A set of simple optimizations.

Technology mapping to standard cell libraries.

11 / 46

CHDL: Features

CHDL-STL, the template library, provides:

Support for structured signal types.

Extended support for numeric types including fixed and
floating point real numbers.

Type-independent generators for Bloom filters, queues, and
stacks.

A set of memory interface types and a variety of memory
system component generators.

Implementation of RTL description, including optional
IF/ELSE macros.

12 / 46

CHDL: Flow

CHDL is a Generative HDL:

All CHDL designs are elaborated down to simple primitives.
The netlist of primitives is then simulated or emitted.

Use of CHDL:
1 Design is created as C++ program.
2 C++ program is run, building in-memory netlist.
3 Netlist is simulated, emitted as Verilog, or technology mapped.

Use of CHDL

Primitive Description
Inv() Inverter
Nand() 2-input nand
Reg() D flip-flop

Memory() SRAM bank

Input:

bvec<8> x;
x = Reg(x + Lit<8>(1));

Output:

Netlist with 8 DFFs.

CLA adder optimized to
incrementer.

13 / 46

CHDL: Netlist Introspection

CHDL provides an
API for manipulating
the netlist of
primitives.

Has been used to
implement novel
optimizations:

Sub-module
caching.
Register retiming.

Also used to
implement power
emulation and scan
chain insertion.

clk

Scan chain insertion and addition of BIST

may be performed using netlist

introspection.

14 / 46

CHDL: Netlist Introspection

CHDL provides an
API for manipulating
the netlist of
primitives.

Has been used to
implement novel
optimizations:

Sub-module
caching.
Register retiming.

Also used to
implement power
emulation and scan
chain insertion.

clkse so

si

Scan chain insertion and addition of BIST

may be performed using netlist

introspection.

14 / 46

CHDL: Netlist Introspection

Register retiming, a common optimization, has been implemented
using CHDL’s netlist introspection:

Allows addition of
pipeline stages by
adding empty
pipeline stages.

Selective
optimization to
avoid retiming
debugging signals.

Independent of
built-in CHDL
optimizations.

Can selectively
re-timing logic
prior to scan.

Logic depth and cell count as a function of

number of pipeline stages in a retimed design.

15 / 46

CHDL: Netlist Introspection

Power emulation has also been implemented using CHDL’s netlist
introspection:

Uses CHDL technology mapping algorithm.
Generates global pipelined sum tree (Wallace tree).
Static sampling to trade accuracy/area.

16 / 46

CHDL: Components

CHDL is composed of multiple component libraries:
CHDL core library

Primitive logic gates, node and vector data types.
Logical operator overloads provided for node.
Arithmetic, bitwise, and comparison operator overloads
provided for bvec<N>.
Optimization, technology mapping, netlist introspection.

CHDL Template Library
Additional arithmetic types and operations.
Structured data types.
RTL register types and operations.

17 / 46

CHDL: Example

RTL for Alternate Up-Down Counter

rtl_reg<node> up(Lit(1));
rtl_reg<bvec<7>> ctr;

IF(up) {
IF (ctr == Lit<7>(99)) {
up = Lit(0);

} ENDIF;
ctr++;

} ELSE {
IF (ctr == Lit<7>(1)) {
up = Lit(1);

} ENDIF;
ctr--;

} ENDIF;

Say we want to count
by 1 to 100 and back
to 0.

More complicated
structures easier to
express as RTL.

CHDL-RTL provided
as part of the CHDL
template library.

Optional macros for
clarity.

18 / 46

CHDL: Conclusions

In this section we have seen:

CHDL is a generative C++ based HDL.

Provides netlist introspection, used to implement:

Module caching
Retiming
Power emulation

Generator-based paradigm, extended to RTL in CHDL
template library.

19 / 46

The Harmonica Core Design2

2C. Kersey, et al. Lightweight SIMT Core Designs for Intelligent 3D Stacked
DRAM, MEMSYS 2017

Harmonica: HARP

Harmonica implements the HARP instruction sets:

Project to produce Heterogeneous Architecture Research
Prototype.

Parameterized instruction sets e.g. 4w8/8/32/16:

4-word instruction and machine word/virtual address.
word-encoded instructions, not byte-encoded.
8 GP and 8 predicate registers per thread.
32 threads per warp and 16 total warps.

RISC architectures supporting exceptions and hardware
interrupts.

Instructions to control thread/warp spawn.

Instructions to handle control flow divergence.

20 / 46

Harmonica: Use of CHDL

Harmonica is entirely implemented in CHDL.

Uses structured signal support from template library.

RTL-like design style.

Uses C++ template support to allow parameterization of:

Machine word size.
Register file size.
Number of threads/warps.

Pipeline registers use CHDL template library buffer.

21 / 46

Harmonica: Core Design

GPRegs()

Writeback

Logic

Regs

Int/FPPred

Regs

Writeback

Logic

Mul

ALU

Div

Jmp

Ld/St

Bar

Fetch()

Warp

Table

Sched()

head

tail

L Exec()

Warp Table

PredRegs()

Cache

Inst. Data

Cache

S
w

itc
h

A
rb

ite
r

id maskpc

Harmonica Stats

Property Value
Code Size (lines) 2094
Instruction Set 51
Pipeline Depth 6+

Small code base and
instruction set.

Organized as one module
per major pipe stage.

Memory system may
dominate pipeline
latency.

22 / 46

Harmonica: Conclusions

We have seen that Harmonica is:

A SIMT RISC core.

Entirely implemented in CHDL.

A parameterized architecture enabling design space
exploration.

Enabled by CHDL’s core and template library features.

23 / 46

Guarded Atomic Actions for CHDL3

3Planned Submission to DAC 2020

Guarded Atomic Actions

Guarded Atomic Actions:

GAA allows modules to interact by invoking methods instead
of asserting a valid signal and waiting for a ready signal.

Enables code reuse while maintaining atomicity; method can
be invoked from multiple places in requesting module
simultaneously.

Eliminates need for custom arbiter/scheduler implementation
for ready/valid signals (∼ 100 lines per module for fair
scheduler for arbitrary number of requesters).

This implementation can be combined with RTL or CHDL
generators.

24 / 46

Guarded Atomic Actions

Guarded atomic actions:

Gate−Level

Structural

RTL

Functional

High−Level

Cheetah

CHDL

CHDL GAA

GAA sits between Cheetah and the

CHDL core and template libraries in

terms of level of abstraction.

Groups of assignments and
method invocations
organized into rules.

Rule firing also protected by
guard predicates.

Atomicity guaranteed; a rule
must fire eventually if its
predicate is satisfied.

Fairness determined by
particulars of
implementation.

CHDL implementation
implements a fair
scheduler.

25 / 46

Guarded Atomic Actions

Features

Bluespec Feature C++/CHDL Feature
module class/struct
method function

Verilog signal types CHDL signal types

register gaareg<T>
rule gaarule

Many GAA features mapped to C++/CHDL features by
convention.

Special templated register type; similar to CHDL-RTL.

Interoperable; gaareg<T> holds CHDL signals.

Rules may be generated algorithmically.

Explicit gaa generate() function.

26 / 46

Guarded Atomic Actions

One value
method,
Get().

Three action
methods:

Set()
Inc()
Clear()

No explicit
guard
predicates.

struct counter {
void Set(bvec<8> val) {
Action().
Assign(ctr, val);

}

void Inc() {
Action().
Assign(ctr, ctr + Lit<8>(1));

}

bvec<8> Get() { return ctr; }
void Clear() { Set(Lit<8>(0)); }

gaareg<bvec<8> > ctr;
};

27 / 46

Guarded Atomic Actions: Evaluation

GAA Examples

Description Lines
Generic GCD; Euclid’s Algorithm 31
Project 3D points onto plane 54
N dining philosophers 14
Sieve of Eratosthenes 48

Examples have short line counts.

Rely on CHDL data type/operator implementations.
Ready/valid and register write conflict avoidance automated.
Fair arbitration between requesters with no additional code.
Use of GAA eliminates ∼ 100 lines per module.

Generic; GCD can be done on integers or polynomials in
GF (2p).

28 / 46

Guarded Atomic Actions

Scheduling in GAA:

Atomicity provided by eliminating simultaneous writes.

If conflicting rules fire on same cycle, one must be chosen.

Static priority scheme is a reasonable option; designer may
enforce fairness.

Scheduling in CHDL-GAA:

Atomicity and fairness both enforced.

Two algorithms available:

Both rotate priorities and provide for fairness.
Dynamic scheduling algorithm selects all runnable rules.
Static scheduling algorithm selects runnable rule sets, chosen
by graph coloring.

29 / 46

Guarded Atomic Actions: Scheduling

Static scheduling algorithm:

Construct graph:

Rules as nodes.
Edges for conflicts.

Color graph.

Generate scheduler.

Max one color per cycle.
Choose based on priority.
Rotate priorities for fairness.

Properties of static
scheduling:

Rules are statically
assigned to sets.

Firable set chosen based
on priority.

Trades area vs dynamic
scheduler for
performance.

Performance suffers as %
of rules firing decreases.

30 / 46

Guarded Atomic Actions: Scheduling

Static scheduling algorithm:

Construct graph:

Rules as nodes.
Edges for conflicts.

Color graph.

Generate scheduler.

Max one color per cycle.
Choose based on priority.
Rotate priorities for fairness.

Properties of static
scheduling:

Rules are statically
assigned to sets.

Firable set chosen based
on priority.

Trades area vs dynamic
scheduler for
performance.

Performance suffers as %
of rules firing decreases.

30 / 46

Guarded Atomic Actions: Scheduling

Write

Conflict

Propagated
Fired

Blocked

R
u

le

Destination

Pri. 0

Register

Dynamic scheduler:

Matrix of rules and
registers.

Writes propagated in
priority order.

Priority 0 row rotated.

Trades area and complexity for
performance in certain cases.

Highest-priority rule on cycle t
is lowest-priority on next cycle.

Relies on optimizations to
produce a high-performance
hardware implementation:

If no rules write the same
register, scheduler should be
optimized away.
If rules are mutually
exclusive, scheduler should be
optimized away.

31 / 46

Guarded Atomic Actions: Conclusions

GAA can be implemented as a combination of generators and
new template classes on top of CHDL.

Steps have to be taken to ensure atomicity and fairness.
CHDL-GAA provides two options:

Static scheduler; graph coloring based approach.
Dynamic scheduler; schedules rules individually.

GAA enables re-use of code by automating ready/valid signal
interfaces.

32 / 46

Cheetah: A Pipeline-Oriented HDL4

4Planned Submission to DAC 2020

Cheetah: Pipelined Designs

In pipelined designs:

Signals may have different names as they propagate through.

Harmonica spends 56 lines describing inter-stage interfaces.
These must be manually updated each time a signal is added.
Stages must pass signals they do not use.

Stage inputs may require arbiters and multiplexers.

Stall signals may require custom handling.

Buffers, if added, must be interfaced as well.

Productivity can be realized by automating pipelined designs in the
same way that GAA automates interfaces.

33 / 46

Cheetah

Cheetah is a pipeline-oriented HDL:

Generates pipelines from algorithmic description.

Basic block in input treated as a pipeline stage.

Many threads may be active at a time; one per pipeline stage.

Special signal type plvar<T> for pipeline-carried values.

Relies on CHDL’s generator and DSL support.

Feature Description
PlSpawn() Set valid signal for stage; spawn “thread”.
PlLabel() Create a named pipeline stage.
PlStage() Create anonymous pipeline stage.
PlJmp() Conditional jump to named pipeline stage.
PlBuf() n-entry pipeline buffer.

34 / 46

Cheetah: Example

Pipelined multiply
with FIFO
(ready/valid)
interface.

FIFO input to
pipeline
interface.

Pipeline stages
can be labeled
or anonymous.

PlStall()
returns stall
signal.

typedef fp32_t word_t;
const int N = sz<word_t>::value;

plvar<word_t> a, b, p;

PlLabel("start"); {
word_t in_a, in_b;
node in_ready = !PlStall();
OUTPUT(in_ready);
Flatten(in_a) = Input<N>("in_a");
Flatten(in_b) = Input<N>("in_b");
a.set(in_a);
b.set(in_b);
PlSpawn(Input("in_valid"));

}

35 / 46

Cheetah: Example

Pipelined multiply
with FIFO
(ready/valid)
interface.

Additional
anonymous
stages for
retiming.

Final stage
interfaces FIFO
output to
pipeline.

const int EX_STG = 10;

PlLabel("mul");
p.set(a.get() * b.get());

for (int i = 0; i < EX_STG; ++i)
PlStage();

PlLabel("finish"); {
bvec<N> out_p = Flatten(p.get());
node out_valid = PlValid();
OUTPUT(out_p);
OUTPUT(out_valid);
PlStall(Input("out_ready"));

}

35 / 46

Pipelined multiply example:

Uses CHDL-STL for arithmetic functions.

Most lines devoted to interface.

Relies on register retiming for performance.

Pipeline registers automatically inserted.

Additional buffers may be added with Buffer().

Simplified diagram excluding stall signals.

Multiply

b[15:0]

a[15:0]

valid

product

valid

ready

ready

xN

36 / 46

Cheetah: Liveness Analysis

node z;

bvec<3> y;

bvec<4> x;

z = INPUT;

x = 0;

x<10 else

x = x + 1;

output(y);

output(z);

y = INPUT;

Liveness analysis ensures pipeline

registers only generated as necessary.

Liveness analysis is used for
pipeline register/buffer
construction.

Performed at bit granularity.
Only live bits are included in
pipeline registers.

All signals in a successor
block’s live-in will be
provided by a predecessor’s
live-out.

Note: Inner loop is
prioritized to avoid deadlock.

37 / 46

Cheetah: Liveness Analysis

else

bvec<4> x;

node z;

x = 0;

x = x + 1;

x<10

z = INPUT;

output(z);

y = INPUT;

bvec<3> y;

output(y);

Liveness analysis ensures pipeline

registers only generated as necessary.

Liveness analysis is used for
pipeline register/buffer
construction.

Performed at bit granularity.
Only live bits are included in
pipeline registers.

All signals in a successor
block’s live-in will be
provided by a predecessor’s
live-out.

Note: Inner loop is
prioritized to avoid deadlock.

37 / 46

Cheetah

Multiply

b[15:0]

a[15:0]

valid

product

valid

ready

ready

xN

The multiply example contains no cycles, fan-in, or fan-out; a typical

design, e.g. Harmonica, does.

Multiply example contains no conditional branches, cycles.

Consider design of Harmonica core:

Dispatch to multiple functional units.
Cycle of warps through system.

Cheetah automates stalling, steers signals with multiplexers.

38 / 46

Cheetah

GPRegs()

Writeback

Logic

Regs

Int/FPPred

Regs

Writeback

Logic

Mul

ALU

Div

Jmp

Ld/St

Bar

Fetch()

Warp

Table

Sched()

head

tail

L Exec()

Warp Table

PredRegs()

Cache

Inst. Data

Cache

S
w

itc
h

A
rb

ite
r

id maskpc

The multiply example contains no cycles, fan-in, or fan-out; a typical

design, e.g. Harmonica, does.

Multiply example contains no conditional branches, cycles.

Consider design of Harmonica core:
Dispatch to multiple functional units.
Cycle of warps through system.

Cheetah automates stalling, steers signals with multiplexers.

38 / 46

Cheetah: Mandelbrot Set

Mandelbrot Set

Mathematical curiosity with
surprisingly complex structure.

Simple iterative definition. Set of
complex numbers c for which
z0 = 0, zi+1 = z2i + c does not
diverge.

Divergence proven if |zi | ≥ 2 Most
implementations iteration-limited.

Mandelbrot set provides example with control flow.

Each point takes multiple trips through pipeline.

Pixels are emitted as absolute value exceeds 2 or iteration
count exceeded. (i.e. chaotically)

39 / 46

Cheetah: Mandelbrot Set

Output

Pixel

Spawn

Pixel

Threads

Compute

c

Iteration

Iteration

. . .

Pipelined architecture for

visualizing Mandelbrot set.

Templated complex type cpx<T>.

Fixed or floating point, uses
CHDL-STL numeric types.

Multiple iterations may be
performed per trip through
pipeline. Parameter selects number
of iterations.

Number of iterations and stages
per iteration can be set as
parameters.

Spawn loop passes integers to
pipeline that computes c.

Could dispatch to available
iteration unit. Matters less for high
iteration limits.

40 / 46

Cheetah: Evaluation

Cheetah Examples

Description Lines
Simple single-issue processor 107
Mandelbrot visualizer 58

Line counts similar to C implementations.

Complementary to GAA; GAA automates interfaces, Cheetah
automates pipelining.

Instruction set processor example has 10 instruction types;
only supports real number (fixed or float) arithmetic.

41 / 46

Cheetah: Conclusions

A high-level paradigm may be implemented as a DSL in a
generative HDL.

If we treat pipeline stages as analogous to basic blocks, we
can use liveness analysis to insert pipeline registers.

We can still precisely control the hardware implementation in
a high-level paradigm like a pipeline-oriented HDL.

This is effective both for fixed-function hardware and
instruction set processors.

42 / 46

Concluding Remarks

Future Directions

CHDL is extensible to the point that high-level algorithmic
description can be elaborated into gates, but these still don’t
look the same as C++ implementations of the same
algorithms.

“Homoiconic” languages (e.g. Lisp) could support
user-transparent HLS; this could be brought to C++ too with
a compile-time parsing step.

A serial complement to Cheetah in which each basic block
becomes a clock cycle in a state machine is also in
development.

Combining this with Cheetah could allow explorations of
design spaces including both pipelined and multicycle
implementations of various pieces.

43 / 46

Engineering Contributions

A wide range of work has been done feeding in to this program of
research:

QSim generic simulation interface and QEMU-based
front-end.

HARP assembly language toolchain and benchmark suite.

CHDL core implementations including Iqyax
(MIPS1-compatible) and Harmonica.

CHDL/SST integration to the point that multiple Iqyax cores
could run with a shared, coherent cache.

Prototype CHDL/SystemC (simulator) integration.

CHDL-GAA and Cheetah layers for CHDL.

44 / 46

Most Relevant Publications

C. Kersey, A. Rodrigues, and
S. Yalamanchili

A Universal Parallel Front-end for
Execution Driven Microarchitecture
Simulation, RAPIDO 2012

Instruction set independent, ergo
universal, API for architectural
modeling.

Provides interface between
instruction set and timing
simulation.

Front-end used for high-level
Harmonica simulator.

45 / 46

Most Relevant Publications

C. Kersey and S. Yalamanchili

An Introspective Approach to
Architecting Hardware Using C++,
OpenSuCo 2017

Introduced the concept of netlist
introspection.

Serves as document of CHDL in
general as well.

45 / 46

Most Relevant Publications

C. Kersey, H. Kim, and S. Yalamanchili

Lightweight SIMT Core Designs for
Intelligent 3D Stacked DRAM,
MEMSYS 2017

Analyzed Harmonica in role of
near-memory accelerator.

Area, power modeling performed
using CHDL.

45 / 46

Conclusions

We have seen that:

HDL-based design does not offer many opportunities for
open-ended multi-paradigm design without duplicated design
or maintenance effort.

CHDL provides:

A generator-based C++ HDL that is extensible.
Support for a variety of novel features by allowing netlist
introspection, including scan chain insertion.
Extended features that include RTL support, GAA, and
pipeline-oriented high-level synthesis via Cheetah.

This thesis contributes specific examples of accelerator and
processor designs built using CHDL (Harmonica and Iqyax)
and proposes tools and approaches to automate the
development of complex designs.

46 / 46

Bonus Slides!

Background: MyHDL

MyHDL is an extensible Python-based HDL:

Best described as “SystemC in Python”.

Especially considering SystemC is Verilog in C++.

Because it is Python, better support for, e.g., reflection.

Academic work (Jaic et al. 2015) brought support for
structured signals.

May dump fully-elaborated design as synthesizable VHDL or
Verilog.

No support for HLS; may emit behavioral code.

Good support for domain specific languages although none
implemented yet.

46 / 46

CHDL: Netlist Introspection

Module caching improves the performance

of the elaboration and optimization phases.

Module caching is a
technique which:

Stores cached,
optimized netlists of
submodules to disk.

Improves performance
on subsequent runs.

46 / 46

Harmonica: Harpbench

Description Data Size

Breadth-first search PA road network.
1090920 nodes,
3083796 edges

Radix sort Random integers 1048576 elements

Binary search. Random integers.
1048576 elements,
1048576 lookups

Hash table lookup Random integers
1048576 elements,
1048576 lookups

Sum integer vector Random integers 16777216 elements

Select from table Random values
1048576 elements,
1037940 matching
rows

46 / 46

Harmonica: Area

8 816 1632 328 8

8

16 16

16

Lanes

8Regs

32

Lanes

Regs 32

Lanes

Regs

Lanes

Regs

8 8

3216

16 16

8 1632

32 32

8

8 8

3216

16 16

8 1632

32 32

8

8 8

3216

16 16

8 1632

32 32

8

8 8

3216

16 16

8 1632

32 32

8 3216 8 1632 8 3216 32

0 0

0.5 0.5

1 1

1.5 1.5

2 2

A
re

a
 (

m
m

^2
)

A
re

a
 (

m
m

^2
)

0

0.5

1

0

1.5

0.5

2

1

A
re

a
 (

m
m

^2
)1.5

2

A
re

a
 (

m
m

^2
)

4 8 16 3221

8 warps

4 8 16 3221

32 warps

4 8 16 3221

64 warps

4 8 16 3221

16 warps

Logic

Static RAM

Logic/SRAM area in FreePDK15

Covers a wide range of values depending on lane/reg/warp
count.

Note SRAM area dominates for large thread counts.

46 / 46

Harmonica: Bandwidth

32-lane version saturates available bandwidth on some
benchmarks.

At an area of approx. 1 sq. mm per core.

Bandwidth utilization is cache-dependent.

46 / 46

Cheetah: Pipeline Scheduling

Some considerations are taken by Cheetah to ensure the pipeline
does not deadlock or generate cyclic combinational logic:

Stall signals are propagated back along trees; this means that
the internal stall signal and the stall signal being presented to
an upstream block may be produced by different logic.

Priority may be set for any edge in the pipeline graph.

Inner loops are given higher priority by default.

46 / 46

Cheetah: Instruction Set Processors

Cheetah was designed with instruction set based accelerators in
mind:

Mis-speculations, forwarding results, etc. can be broadcast
using non-plval CHDL signals.

May be used for full designs or individual functional units and
combined with other paradigms.

Dissertation includes floating point processor example with
simple branch prediction.

46 / 46

