
GPU-based dual-tree nearest neighbor search

Ryan R. Curtin and Chad D. Kersey

December 15, 2015

1 Introduction
Nearest neighbor search is important, for some reason. Either way, it’s what
a bunch of people spend time thinking about. Some people who think about
it think that dual-tree algorithms [?] provide a good solution, especially when
the dimensionality of the data is low. More recently, a formalized dual-tree
algorithm has been presented [?], which generalizes previous dual-tree nearest
neighbor search approaches [?, ?, ?].

Formally, the problem of nearest neighbor search is as follows: given a query
set Sq ∈ Rd and a reference set Sr ∈ Rd, find

argmaxpr∈Sr
d(pq, pr) (1)

for all points pq ∈ Sq and for some distance metric d(·, ·). A dual-tree approach
to this problem can be understood roughly as building a tree (the query tree) on
the query set Sq, building a tree (the reference tree) on the reference set Sr, and
then traversing both trees simultaneously, pruning away branches of the dual
recursion where no descendant points of the reference node can possibly be near-
est neighbors of the query node. In some sense, this strategy is a generalization
of the more well-known and common single-tree approaches [?, ?, ?].

2 Proposed algorithm
GPUs have long been considered unsuitable for tree-based recursive algorithms
because of their SIMD structure. However, dual-tree algorithms present a fas-
cinating candidate for parallelization because of the huge fanout of each level of
the recursion. While a typical single-tree kd-tree nearest neighbor search algo-
rithm has a fanout of two at each level, the dual-tree kd-tree traversal will have
a fanout of four. This means that very quickly, there will be more combinations
of nodes to visit than processors. And that means that we can effectively utilize
the SIMD nature of GPUs with few wasted cycles1.

Roughly speaking, the dual-tree nearest neighbor search algorithm can be
understood as the following few steps. (Here, it is not written recursively, as it
usually is.)

1I hope.

1

1. Obtain an unpruned node combination (Nq,Nr) from the set of still-to-
be-visited combinations C.

2. Determine if that node combination can be pruned.

3. If the node can be pruned, return to step 1.

4. Calculate base cases between all query points held in Nq and all reference
points held in Nr.2

5. Update the bounds of Nq for pruning.

6. Add each child combination of (Nq,Nr) to C.3

7. Return to step 1.

There are numerous strategies for how to select the next unpruned node
combination [?, ?, ?]. With GPUs, though, we need not select only one node
combination—we can select many at once! This allows us to outline a basic
algorithm (Algorithm 2).

2Here we mean the points held in the node, not the descendant points. Otherwise, pruning
would save us nothing since we would do all the work at the first level!

3For binary trees like the kd-tree, this is four combinations.
6This probably means that each node in our tree should hold an exact (or maximum)

number of points, instead of the typical mlpack kd-tree which only holds points in the leaves.
6If better candidates are found, they should be inserted into the appropriate rows of N

and D using a simple insertion sort procedure that can take exactly O(k) time and may be
done in parallel. But how do we guarantee that all threads are inserting? Shit, I didn’t think
about that part, or the thread safety or anything...

6Chad, this is where I need help. I have basic ideas, but not more than that.

2

Algorithm 1 Basic GPU dual-tree k-nearest neighbor algorithm outline.
1: Input: query tree Tq ∈ Rm×d, reference tree Tr ∈ Rn×d.
2: Output: nearest neighbors N ∈ Rn×k, distances D ∈ Rm×k.

3: Initialize D, filling with ∞.
4: Initialize combination+score list C ← {(root(Tq), root(Tr), 0)}.
5: p← number of GPU threads

6: {Main work loop.}
7: while |C| < p do
8: for all thread i do
9: {Get a combination.}

10: c← C[i]

11: Initialize resulting score array s[4].

12: Perform base case between each point pq ∈ Nq and each point pr ∈
Nr.45

13: s[0] = score of (Nql,Nrl).
14: s[1] = score of (Nql,Nrr).
15: s[2] = score of (Nqr,Nrl).
16: s[3] = score of (Nqr,Nrr).

17: {Insert results into end of |C|. Each thread is inserting four things...}
18: l← |C|
19: C[l + 4i] = (Nql,Nrl, s[0]).
20: C[l + 4i+ 1] = (Nql,Nrr, s[1]).
21: C[l + 4i+ 2] = (Nqr,Nrl, s[2]).
22: C[l + 4i+ 3] = (Nqr,Nrr, s[3]).
23: end for

24: Sort C so that the p lowest scores are in the first p slots (in any order).
Entries where p =∞ should be truncated from the list.6

25: end while

26: return N , D

3

