
Rk-means: Fast Clustering for Relational Data

Ryan R. Curtin Benjamin Moseley Hung Q. Ngo
RelationalAI

ryan@ratml.org
Tepper School of Business
Carnegie Mellon University
moseleyb@andrew.cmu.edu

RelationalAI
hung.q.ngo@relational.ai

XuanLong Nguyen Dan Olteanu Maximilian Schleich
Department of Statistics
University of Michigan
xuanlong@umich.edu

University of Oxford
dan.olteanu@cs.ox.ac.uk

University of Oxford
max.schleich@cs.ox.ac.uk

Abstract

Conventional machine learning algorithms
cannot be applied until a data matrix is avail-
able to process. When the data matrix needs
to be obtained from a relational database via a
feature extraction query, the computation cost
can be prohibitive, as the data matrix may be
(much) larger than the total input relation size.
This paper introduces Rk-means, or relational
k-means algorithm, for clustering relational
data tuples without having to access the full
data matrix. As such, we avoid having to run
the expensive feature extraction query and
storing its output. Our algorithm leverages
the underlying structures in relational data.
It involves construction of a small grid coreset
of the data matrix for subsequent cluster con-
struction. This gives a constant approxima-
tion for the k-means objective, while having
asymptotic runtime improvements over stan-
dard approaches of first running the database
query and then clustering. Empirical results
show orders-of-magnitude speedup, and Rk-
means can run faster on the database than
even just computing the data matrix.

1 Introduction

Clustering is an ubiquitous technique for exploratory
data analysis, whether applied to small samples or
industrial-scale data. In the latter setting, two steps are
typically performed: (1) data preparation, or extract-

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

RDBMS HDD dense in-memory
data matrix

centroids
(results)

join
(FEQ)

load k-means
clustering

(1) (2) (3)

(a) Typical k-means data science workflow. Alternate repre-
sentations can be used for the data in step (2) for greater
computational efficiency (e.g., streaming); and, approxima-
tion strategies are known for step (3). However, the dataset
often comes from an underlying database system, and in this
case the expensive FEQ join (1) is unavoidable.

RDBMS clustered
relations

centroids
(results)

FAQ
k-means
on individual
DB relations

weighted
k-means on
cross product

(b) The Rk-means data science workflow. We avoid ever
computing the expensive FEQ by instead clustering each
underlying relation (steps 1 and 2, Section 4); we then use
FAQs for efficient weighted k-means of the cross-product of
those relations (steps 3 and 4, Section 4). This gives signifi-
cant empirical and theoretical accelerations, and bounded
approximation—without ever computing the full data matrix.

Figure 1: Conventional k-means and Rk-means.

transform-load (ETL) operations, and (2) clustering
the extracted data—often with a technique such as the
popular k-means algorithm (Cady, 2017; Wu et al.,
2008). In this setting, data often reside in a relational
database, requiring a feature extraction query (FEQ)
to be performed, joining involved relations together
to form the data matrix: each row corresponds to a
data tuple and each column a feature. Then, the data
matrix is used as input to a clustering algorithm. This
matrix can be expensive to compute, and may take up

Rk-means: Fast Clustering for Relational Data

space asymptotically larger than the database itself.
Moreover, the join computation time may exceed the
time it takes to obtain clusters. As a result it is not
uncommon that the exploratory trip into the dataset
may be stopped right at the gate.

As an example, consider a retailer database consisting
of three tables: product, which contains data about p
products, store, which contains data about s stores,
and transaction, which contains the number of transac-
tions for each (product, store) combination on a given
day. A practitioner may want to cluster each (product,
store) combination as part of an analysis to determine
items with related sales patterns across different stores
for a given week. To do this, she constructs a data
matrix containing all (product, store) combinations
(including those with zero sales) for a given week, and
additional attributes for each product and store. This
can be achieved, for instance, by the following feature
extraction query, given in SQLite syntax:

SELECT P.id AS i, S.id AS s, P.type AS t, P.price AS p,
S.yelp_rating AS y, sum(ifnull(T.count, 0)) AS c

FROM product P, store S LEFT JOIN transactions T
ON T.product_id == P.id AND T.store_id == S.id

AND T.date BETWEEN ’2019-05-13’ AND ’2019-05-20’
GROUP BY P.id, S.id;

The result of this query is of size Θ(ps). But the
transaction table can be significantly smaller than
this, since many stores may have zero sales of a par-
ticular product in a given week. Thus, the size of the
data matrix can be asymptotically greater than the
total input relations’ sizes. Real-world FEQs possess a
similar explosion in both space and time complexity,
only at a much larger scale, since they generally involve
many more aggregations and tables. In Section 5, we
present a real dataset from a large US retailer. The
database has 6 tables of total size 1.5GB. The FEQ
result, however, takes up 18GB, and constructing it
takes longer than running a learning algorithm on it.

Stripping away the language of databases, a fundamen-
tal challenge is how to learn about the joint distribution
of a data population given only marginal samples re-
vealed by relational tables. This is possible when the
objective function of an underlying model admits some
factorization structure similar to conditional indepen-
dence in graphical models (Koller and Friedman, 2009).
This insight was exploited recently by database theo-
rists to devise algorithms evaluating a generic class of
relational queries called functional aggregate queries,
or FAQs (Abo Khamis et al., 2016). The ability to
answer FAQs quickly is a building block for a new class
of efficient algorithms for training supervised learning
models over relational data, without having to material-
ize (i.e. compute) the entire data matrix (Abo Khamis
et al., 2018b,a; Schleich et al., 2016).

The goal of this paper is to devise a method for fast clus-

tering of relational data, without having to materialize
the full data matrix. The challenge of unsupervised
learning tasks in general and the k-means algorithm in
particular is that the learning objective is not decom-
posable across marginal samples in relational tables.
To enable fast relational computation, we utilize the
idea of constructing a grid coreset—a small set of points
that provide a good summarization of the original (and
unmaterialized) data tuples, based on which a provably
good clustering can be obtained.

The resulting algorithm, which we call Rk-means, has
several remarkable properties. First, Rk-means has
a provable constant approximation guarantee relative
to the k-means objective, despite the fact that the
algorithm does not require access to the full data ma-
trix. Our approximation analysis is established via a
connection of Rk-means to the theory of optimal trans-
port (Villani, 2009). Second, Rk-means is enhanced
by leveraging structures prevalent in relational data:
categorical variables, functional dependencies, and the
topology of feature extraction queries. These structures
lead to exponential reduction in coreset size without
incurring loss in the coreset’s approximation error. We
show that Rk-means is provably more efficient both
in time and space complexity when comparing against
the application of the vanilla k-means to the full data
matrix. Finally, experimental results show significant
speedups with little loss in the k-means objective. We
observe orders-of-magnitude improvement in the run-
ning time compared to traditional methods. Rk-means
operates fine when other approaches would run out of
memory, enabling clustering on truly massive datasets.

2 Discussion of related work

Coresets for clustering. From early work on k-
means algorithm (Lloyd, 1982), ideas emerged for accel-
eration via coresets (Har-Peled and Mazumdar, 2004;
Bachem et al., 2018). Coresets have become the cor-
nerstone of modern streaming algorithms (Guha et al.,
2003; Braverman et al., 2017), massively parallel (MPC)
algorithms (Ene et al., 2011; Bahmani et al., 2012), and
are used to speed up sequential methods (Meyerson
et al., 2004; Sohler and Woodruff, 2018).

Unfortunately, existing algorithms for coreset construc-
tion do not readily lend themselves to the relational
setting; there are several hurdles. First of all, core-
sets are formed by constructing a set S of data points
(tuples) that represent the entire data set X well. Typ-
ically, S is a weighted representation of the data, where
each point in the universe contributes one unit of weight
to its closest point in X (Har-Peled and Mazumdar,
2018; Ene et al., 2011; Balcan et al., 2013). In our
relational setting, X can only be formed by computing
the FEQ, but our goal is to avoid materializing X.

Curtin, Moseley, Ngo, Nguyen, Olteanu, and Schleich

Unfortunately, for our setting, most existing coreset
algorithms construct S in phases by determining the
farthest points from S (Thorup, 2001; Arthur and Vas-
silvitskii, 2007; Har-Peled and Mazumdar, 2018). This
is difficult without X fully materialized. Another diffi-
culty is that, even if the points in S are given, weighting
the points in S is an open problem for relational algo-
rithms (Khamis et al., 2019): consider that for a point
x ∈ S, finding the number of closest points in (un-
materialized) X is non-trivial, as the points and their
attributes are stored across several tables. No method,
either deterministic or stochastic (e.g., sampling), is
known that runs in time asymptotically faster than
computing/materializing X. Our method avoids this
by constructing a grid coreset S which can be decom-
posed over the tables in such a way that computing
the weights of the points is a straightforward task.

Other Work. Our work draws inspiration from three
lines of existing work and ideas: coresets for cluster-
ing (above), database algorithms, and optimal trans-
port. As one example, database and disk hardware
optimizations have been considered to improve clus-
tering relational data (Ordonez, 2006; Ordonez and
Omiecinski, 2004). Recent advances include the work
of Abo Khamis et al. (2018b) and Schleich et al. (2016).
k-means has also been connected to optimal trans-
port, which goes back to at least (Pollard, 1982) (see
also (Graf and Luschgy, 2000)). Recently this connec-
tion has received increased interest in the statistics
and machine learning communities, resulting in fresh
new clustering techniques (del Barrio et al., 2017; Ho
et al., 2017; Ye et al., 2017). To our knowledge, these
related lines of work have not been explored together.
Motivated by clustering relational data, our attempt
at solving a clustering problem formulated as optimal
transport in the marginal (projected) spaces to scalably
perform k-means clustering appears to be the first.

Finally, it is worth noting that despite its popularity,
the basic k-means technique is not always a preferred
choice in clustering categorical or high-dimensional
data. One may either adopt other clustering tech-
niques (Hartigan, 1975; Kaufman and Roussew, 1990;
Everitt et al., 2011), or modify the basic k-means
method, e.g., by suitably placing weights on differ-
ent features of mixed data types and replacing metric
`2 by `p (Huang, 1998), or incorporating a regularizer
to combat high dimensionality (Witten and Tibshirani,
2010; Sun et al., 2012). As we shall see, the relational
techniques and associated theory that we introduce for
the basic k-means extend easily to such improvements.

3 The Rk-means algorithm

Although the Rk-means algorithm is motivated by ap-
plication to relational databases, its basic idea is also

Algorithm 1 Rk-means: k-means via grid-coreset
1: Input: query Q, number of clusters k
2: Input: [d] = S1 ∪ · · · ∪ Sm, κ ≥ 2
3: Output: centroids C ∈ Rk×d

4: for j = 1 to m do
5: Xj ← {xSj

| x ∈X}
6: wj ← weight function defined in (2)
7: Cj ← wkmeans1(Xj ,wj ,κ)
8: end for

9: G← C1 × . . .×Cm {the grid coreset}
10: wgrid ← weight function defined in (3)
11: C ← wkmeans2(G,wgrid, k)

of independent interest and can be easily described
without the database language.

First we define the weighted k-means problem, which
Rk-means solves (weights are also handy in combining
mixed data types (Huang, 1998)). Let X be a set of
points in Rd, and Y be a non-empty set of points in the
same space. Let d(x,Y) := miny∈Y ‖x− y‖ denote
the minimum distance from x to an element in Y . In
some cases, the `2 norm ‖ · ‖ may be replaced by the
`p norm ‖ · ‖p for some p ≥ 1. A weighted k-means
instance is a pair (X,w), where X is a set of points in
Rd and w : X → R+ is a weight function. Without loss
of generality, assume

∑
x∈X w(x) = 1. The task is to

find a set C = {µ1, · · · ,µk} of k centroids to minimize
the objective L(X,C,w) =

∑
x∈X w(x)d(x,C)2.

That is, we want to solve the problem OPT(X,w) :=
minC L(X,C,w). With Rk-means, we will do this by
projecting X onto different sets of coordinates, and
clustering each projection individually. To this end,
let [d] = S1 ∪ · · · ∪ Sm denote an arbitrary partition of
the dimensions [d] into non-empty subsets. For every
x ∈ Rd, and j ∈ [m], let xSj

denote the projection of
x onto the coordinates in Sj . Define the projection set
Xj and corresponding weight function wj :RSj→R by

Xj :=
{
xSj
| x ∈X

}
, (1)

wj(z) :=
∑

x∈X : xSj
=z

w(x). (2)

In words, the wj are the marginal measures of w on the
subspace of coordinates Sj . With these notations estab-
lished, Algorithm 1 presents the high-level description
of our algorithm, Rk-means.

For each j ∈ [m], in line 7 we perform k-means to obtain
κ individual clusters on each subspace Sj for some
κ ≥ 2. These are solved using some weighted k-means
algorithm denoted by wkmeans1 with approximation
ratio α.1 Then, using the results of these clusterings, we

1That is, wkmeans1 finds clusterings Ĉ where
L(X, Ĉ,w)/L(X,C∗,w) ≤ α, where C∗ =
argminC L(X,C,w).

Rk-means: Fast Clustering for Relational Data

assemble a cross-product weighted grid G of centroids,
and then perform k-means clustering on these using
the algorithm denoted wkmeans2 to reduce down to the
desired result of k centroids. Typically, we take κ =
O(k). Note also that Rk-means could easily be modified
to use a different κ value for different subspaces Sj .

Let X :=
⊎

g∈GXg denote a partition of X into |G|
parts, where Xg denote the set of points in X closer to
g than other grid points inG (breaking ties arbitrarily).
Then, the weight function wgrid : G→ R+ (line 11) is

wgrid(g) :=
∑

x∈Xg

w(x). (3)

Weighted k-means and optimal transport. We
will analyze Rk-means in the language of optimal trans-
port. The connection of k-means in general, and of our
algorithm to optimal transport in particular, provides
another interesting insight into our algorithm.

The optimal transport distance characterizes the dis-
tance between two probability measures, by measuring
the optimal cost of transporting mass from one to an-
other (Villani, 2009). Although this is defined more
generally for any two probability measures in abstract
spaces, for our purpose it is convenient to consider two
discrete probability measures P and P ′ on Rd.

Let Z and Z ′ be two finite point sets in Rd. Let δ
denote the Dirac measure. Let P :=

∑
z∈Z p(z)δz and

P ′ :=
∑

z′∈Z′ p
′(z′)δz′ be two measures with supports

Z and Z ′, respectively. The mass transportation plan
is formalized by a coupling: a joint distribution Q =
(q(z, z′))(z,z′)∈Z×Z , where the marginal constraints∑

z∈Z qz,z′ = p′(z′) and
∑

z′∈Z′ qz,z′ = p(z) hold.

Definition 3.1. For any p ≥ 1, the Wasserstein
distance of order p is defined by the minimization
of Q over all possible couplings: Wp(P ,P ′) =
minQ({

∑
z,z′ q(z, z′) ‖z − z′‖pp)}1/p.

Let P in =
∑

x∈Xw(x)δx be the discrete measure asso-
ciated with the input instance of our weighted k-means
problem; then, this can be expressed precisely as an op-
timal transport problem: M∗ = arg min W2

2(M ,P in),
where the optimization is over the space of discrete
measures M that have k support points (the set C of k
centroids). Note that OPT(X,w) = W2

2(M∗,P in). Re-
placing `2 by say `1, we obtain the k-median problem,
for which the objective becomes W1(M∗,P in).

Approximation Analysis. We next analyze the ap-
proximation ratio of Rk-means working with the W2

2

objective, provided that wkmeans1 has approximation
ratio α and wkmeans2 has approximation ratio γ.2 The
reason we might want to invoke different algorithms to

2The best known approximation ratio is 6.357 for data
in Euclidean space (Ahmadian et al., 2017).

solve these sub-problems is because, as we shall show in
the next section, we may want to exploit the (relational)
structures of the FEQ to construct a “nice” partition
S1 ∪ · · · ∪Sm. We show that the overall approximation
ratio of Rk-means is (

√
α +

√
γ +
√
αγ)2. In many

common cases, the database has structure that allows
α = 1, yielding an overall ratio of (1 + 2

√
γ)2.

For our analysis it is useful to understand Algorithm 1
in the language of optimal transport. For any finite
point set Y ⊂ Rd and a measure M =

∑
y∈Y p(y)δy

with support Y , define the marginal measures Mj on
coordinates Sj induced by M in the natural way, i.e.
Mj :=

∑
z∈Z pj(z)δz where pj is defined analogous

to wj in (2). Under this notation, P in induces the
marginal measures P in

j :=
∑

z∈Xj
wj(z)δz. Then, Al-

gorithm 1 can be described by the following steps:

(1) For each j ∈ [m], pick Mj to be the (α-
approximate) minimizer of W2

2(Mj ,P
in
j), where

Cj = supp(Mj) is the support ofMj and |Cj | = κ
(line 7).

(2) Collect the κd grid points G and let probability
measure Q be the one with support in G such that
Q minimizes W2

2(Q,P in). (We solve this problem
exactly!)

(3) Finally, return P which is the measure with exactly
k support points in Rd that (γ-approximately)
minimizes W2

2(P ,Q) (line 11).

This is precisely the solution obtained by Algorithm 1.
We present next some useful facts.

Lemma 3.2. For any discrete measure M on Rd,
W2

2(M ,P in) ≥
∑m
j=1 W

2
2(Mj ,P

in
j).

Proof. Immediate: a coupling of two measures induces
valid marginal couplings of marginal measures.
Proposition 3.3. (a) If κ ≥ |supp(M∗j)| ∀ j ∈ [m],
then W2(P in,P) ≤ (

√
γ+
√
α+
√
γα)W2(P in,M∗). (b)

For any κ ≥ 1, there exists a distribution P in such that
W2(P in,P)
W2(P in,M∗) ≥

√
1− e−m/(2κ)

√
3k3/(2m)

2κm1/2 .

The condition of part (a) is satisfied, for instance, by
setting κ = k. In practice, κ < k may suffice. Moreover,
part (b) dictates that κ must grow with k appropriately
for our algorithm to maintain a constant approximation
guarantee. Since solution C has cost L(X,C,w) =
W2

2(P ,P in), and OPT(X,w) = W2
2(M∗,P in), the fol-

lowing theorem is immediate from Prop. 3.3(a).
Theorem 3.4. Suppose wkmeans1 and wkmeans2 have
approximation ratios α and γ. Then by choosing
κ = k, the solution C given by Rk-means has the
following guarantee: L(X,C,w) ≤ (

√
γ +

√
α +√

γα)2OPT(X,w).

Specifically, if both sub-problems are solved optimally
(α = γ = 1), Rk-means is a 9-approximation.

Curtin, Moseley, Ngo, Nguyen, Olteanu, and Schleich

Proof of Prop. 3.3. (a) By the definition of Q, the op-
timal transport plan from P in to Q is such that each
support point s ∈ S is received by all x ∈ X nearest
to s compared to other points in S. So,

W2
2(P in,Q)

=
∑
x∈X

w(x)d(x,G)2 =
∑
x∈X

w(x)

m∑
j=1

d(πSjx,Cj)
2

=

m∑
j=1

∑
z∈Xj

wj(z)d(z,Cj)
2 =

m∑
j=1

W2
2(Mj ,P

in
j)

≤ α
m∑
j=1

W2
2(M∗j ,P in

j) ≤ α ·W2
2(M∗,P in).

The second to last inequality is due to the α-
approximation of wkmeans1, and condition that
|supp(Mj)| ≥ |supp(M∗j)|. The last inequality follows
from Lemma 3.2. Apply triangle inequality of W2

(cf. Villani (2009), pg. 106).

W2(P in,P) (4)

≤W2(P in,Q) + W2(Q,P) (5)

≤W2(P in,Q) +
√
γ ·W2(Q,M∗) (6)

≤W2(P in,Q)+
√
γ(W2(Q,P in)+W2(P in,M∗)) (7)

= (1 +
√
γ)W2(P in,Q) +

√
γ ·W2(P in,M∗) (8)

≤ (1 +
√
γ)
√
αW2(P in,M∗)+

√
γ ·W2(P in,M∗) (9)

=
(√
α+
√
γ +
√
αγ
)
·W2(M∗,P in). (10)

The second inequality is due to the fact that wkmeans2
has approximation ratio γ; the first and third are again
triangle inequalities. We conclude the proof.

(b) We need only construct an example of P in for the
case d = m. Although P in as an input to the algorithm
is a discrete measure, for our purposes it suffices to take
P in to be the uniform distribution on [0, 1]m (which
can be approximated arbitrarily well by a discrete
measure). It is simple to verify that if k0 = k1/m is
a natural number, then M∗ is a uniform distribution
on the regular grid of size k0 in each dimension. It
follows that W2

2(P in,M∗) ≤ m
12k30

= m
12k3/m

. The grid
points G range over the set S := [1/(2κ), 1− 1/(2κ)]m.
Moreover, Q is a uniform distribution on G. Now P
is the outcome of line (11) so the support of P must
lie in the convex hull S of G. The cost of each unit
mass transfer from an atom in the complement of set
[1/(4κ), 1 − 1/(4κ)]m to one in S is at least (1/4κ)2,
so W2

2(P in,P) ≥ (1/4κ)2 · [1− (1− 1/(2κ))m]. Lastly,
note that (1− 1/(2κ))m < e−m/2κ.

Regularized Rk-means It is possible to extend our
approach to accommodate regularization techniques.
This can be useful when the data are very high di-
mensional (Sun et al., 2012; Witten and Tibshirani,

2010). Thus, the clustering formulation can be ex-
pressed as a regularized optimal transport problem:
M∗ = arg min W2

2(M ,P in) + Ω(M) where the opti-
mization is over the space of discrete measures M that
have k support points (the set C of k centroids), and
the regularizer Ω(M) ≥ 0 typically decomposes over
the m-partition of variables: Ω(M) =

∑m
j=1 Ωj(Mj).

For instance, Ωj(Mj) may be taken to be a multiple
of the `1 norm of Mj ’s supporting atoms (e.g., group
lasso penalty). The algorithm has the same three steps
as before, with some modification in (1’) and (3’):

(1’) For each j ∈ [m], pick Mj to be the (α-
approximate) minimizer of W2

2(Mj ,P
in
j)+Ωj(Mj),

where Cj = supp(Mj) is the support of Mj and
|Cj | = κ (line 7).

(3’) Finally, return P which is the measure with exactly
k support points in Rd that (γ-approximately)
minimizes W2

2(P ,Q) + Ω(P) (line 11).

Proposition 3.5. If κ ≥ |supp(M∗j)| ∀ j ∈ [m], then
W2

2(P in,P)+Ω(P)

W2
2(P in,M∗)+Ω(M∗)

≤ 2α+ 4γ + 4αγ.

If both subproblems for regularized k-means can be
solved optimally, our method yields a 10-approximation
on the penalized W2

2 objective. We conclude by noting
that our technique extends easily to the Wp

p objective
for any p ≥ 1, but the approximation ratio will be
changed according to p.

4 Leveraging relational data

We now explain the “relational” part of the Rk-means
algorithm, where we exploit relational structures in the
data and the FEQ to achieve significant computational
savings. Three classes of relational structures prevalent
in RDBMSs are (a) categorical variables, (b) functional
dependencies (FDs), and (c) the topology of the FEQ.
We exploit these structures to carefully select the parti-
tion S1 ∪ · · · ∪Sm to use for Rk-means, to compute the
marginal sub-problems (Xj ,wj), the components Cj of
the coreset G, and the grid weight wgrid without materi-
alizing the entire coreset G. When selecting partitions,
there are two competing criteria: first, we need a par-
tition so that the approximation ratio α for wkmeans1
is as small as possible. For example, if |Sj | = 1 ∀ j,
so m = d, then we can apply the well-known optimal
solution for k-means in 1 dimension using dynamic
programming in O(n2k) time (Wang and Song, 2011);
this then provides α = 1. On the other hand, we want
the remainder of algorithm to be fast by keeping the
size of the grid G, namely |G| ≤ κm, small.

Categorical variables. Real-world relational
database queries typically involve many categorical
variables (e.g., color, month, or city). In practice, practi-
tioners may endow non-uniform weights for different

Rk-means: Fast Clustering for Relational Data

categorical variables, or categories (Huang, 1998). In
terms of representation, a common way to deal with cat-
egorical variables is to one-hot encode them, whereby
a categorical feature such as city is represented by an
indicator vector xcity = [1city=c1 ,1city=c2 , · · · ,1city=cL]
where {c1, . . . , cL} is the set of cities occurring in the
data. The subspace associated with these indicator vec-
tors is known as the categorical subspace of a categorical
variable. One-hot encoding substantially increases the
data matrix size via an increase in the dimensionality
of the data. Fortunately, this is not a problem—by
treating each categorical variable as a subset of the par-
tition, we can solve the weighted k-means subproblem
within a categorical subspace efficiently and optimally.

Theorem 4.1. Given a categorical weighted k-means
instance, an optimal solution is to put each of the first
k−1 highest weight indicator vectors in its own cluster,
and the remaining vectors in the same cluster.

This means that for a categorical variable with L cat-
egories, we can compute the optimal clustering for
the sub-problem in only O(nL logL) time. See Ap-
pendix C.1 for more details.

Functional dependencies. Next, we address the
second call to wkmeans2: its runtime is dependent on
the size of the gridG, which can be up to O(km), where
m is the number of features from the input. Databases
often contain functional dependencies (FDs), which
we can exploit to reduce the size of G. An FD is a
dimension whose value depends entirely on the value
of another dimension. For example, suppose a dataset
has such as storeID, zip, city, state, and country. Here,
storeID functionally determines zip, which determines
city, which in turns determines state, leading to country.
This common structure is known as an FD-chain, and
appears often in real-world FEQs. If we were to apply
Rk-means naively, these five features would contribute
a factor of k5 to the grid size. However, by using the
FD structure of the database, we show that only a
factor of 5k is contributed to the grid size, because
most of the k5 grid points g have wgrid(g) = 0 (see (3)).
More generally, when there is an FD-chain of p features,
their overall contribution to the grid size is a factor of
O(kp), not O(kp), and the grid points with non-zero
weights can be computed efficiently in time O(kp).
Theorem 4.2. Suppose all d input features can be
partitioned into m FD-chains of size d1, · · · , dm, re-
spectively. Then, the number of grid points g ∈ G with
non-zero wgrid weight is bounded by

∏m
i=1(1+di(k−1)).

Furthermore, the set of non-zero weight grid points can
be computed in time Õ(

∏m
i=1(1 + di(k − 1))).

Note that in the above theorem, if there was no FD,
then d features each form their own chain of size 1, in
which case

∏m
i=1(1+di(k−1)) = km; thus, the theorem

strictly generalizes the no-FD case.

Query structure. Finally, we explain how the
FEQ’s structure can be exploited to speed up the com-
putation of subproblems, the grid, and grid weights. In
particular, we make use of recent advances in relational
query evaluation algorithms (Abo Khamis et al., 2017,
2016; Ngo, 2018; Olteanu and Schleich, 2016). The
InsideOut algorithm from the FAQs framework in partic-
ular (Abo Khamis et al., 2017) allows us to compute
the grid weights without explicitly the grid points.

For concreteness, we describe the steps of Rk-means
as implemented in the database, noting the additional
speedups we can get over the description in Alg. 1.

Step 1 (lines 5 and 6). Project X into each subspace
Sj and compute the weight w of each point.

In a relational database, the projected sets Xj already
exist in normalized form (Abiteboul et al., 1995). In
fact, in sixth normal form (6NF) databases Date et al.
(2002), each relation in the database will generally
correspond to one variable. So, the sets Xj and their
marginal weights can be computed efficiently. This
step perfectly aligns with our strategy of picking the
partition S1 ∪ · · · ∪ Sm to match the database schema!

Step 2 (line 7). Find κ centroids in each subspace Sj.

If the subspace Sj corresponds to a single continuous
variable, we can solve the one-dimensional k-means
problem quickly and optimally (Wang and Song, 2011);
and if Sj corresponds to a categorical feature, then it
is solved trivially (and optimally) using Theorem 4.1.

Step 3 (lines 9 and 10). Construct the coreset G and
the associated weights wgrid.

When constructing G, it is unnecessary to represent
any points in G that have zero weight. We can use
the InsideOut database algorithm (Abo Khamis et al.,
2016) to efficiently compute nonzero weights, and then
extract only those grid points inG with nonzero weight.

Step 4 (line 11). Cluster the weighted coreset G.

We use a modified version of Lloyd’s weighted k-means
that exploits the structure of G and sparse represen-
tation of categorical values to speed up computation.
See Appendix C.3 for details.

Runtime analysis. We compare Rk-means to the
standard setting of first extracting the matrix X from
the database and then perform clustering onX directly.
The precise runtime statement requires defining a few
parameters such as “fractional hypertree width” and
“fractional edge cover number” of the FEQ. Details are
relegated to Appendix A, and we simply state the main
thrust of the runtime result:

Theorem 4.3. There are classes of feature extraction
queries (FEQs) for which the runtime of Rk-means is

Curtin, Moseley, Ngo, Nguyen, Olteanu, and Schleich

0

100

200

300

400

500

5 10 20 50 X 5 10 20 50 X 5 10 20 50 XW
al
l-c

lo
ck

ti
m
e
(s
ec
)

Step 1
Step 2
Step 3
Step 4

Data Matrix

YelpFavoritaRetailer
Figure 2: Breakdown of the compute time of Rk-means for each step of the algorithm with κ = k ∈ {5, 10, 20, 50}.
The time to compute X is provided as reference.

asymptotically less than |X|, and the ratio between |X|
and the runtime of Rk-means can be a polynomial in
N , the size of the largest input relation.

The key insight to read from this theorem is that Rk-
means can, in principle, run faster than simply ex-
porting the data matrix, without even running any
clustering algorithm (be it sampling-based, streaming,
etc.). Of course, the result only concerns a class of
FEQs “on paper”. Section 5 examines real FEQs, which
also demonstrate Rk-means’s runtime superiority.

5 Experimental results

We empirically evaluate the performance of Rk-means
on three real datasets for three sets of experiments: (1)
we break down and analyze the performance of each
step in Rk-means; (2) we benchmark the performance
and approximation of Rk-means against mlpack (Curtin
et al., 2018) (v. 3.1.0), a fast C++ machine learning li-
brary; and (3) we evaluate the performance and approx-
imation of Rk-means for setting κ < k; i.e., different
number of clusters for Steps 2 and 4.

The experiments show that the coresets of Rk-means
are often significantly smaller than the data matrix. As
a result, Rk-means can scale easily to large datasets,
and can compute the clusters with a much lower mem-
ory footprint than mlpack. When κ = k, Rk-means is
orders-of-magnitude faster than the end-to-end compu-
tation for mlpack—up to 115×. Typically, the approxi-
mation level is very minor. Also, setting κ < k can lead
to further performance speedups (sometimes exceeding
200×!) with only moderate increase in approximation.

Setup. We prototyped Rk-means on top of the LM-
FAO engine ?. Rk-means is implemented in multi-
threaded C++11; this makes mlpack a comparable
implementation. All experiments were performed on
an AWS x1e.8xlarge instance, which has 1 TiB of
RAM and 32 vCPUs. All Relations are given sorted
by their join attributes.

To construct the data matrix that forms the input to
mlpack, we use PostgreSQL 10.6 (psql) to evaluate
the FEQ. The seminal k-means++ algorithm (Arthur

Retailer Favorita Yelp
Relations 5 6 6
Attributes 39 15 25
One-hot Enc. 95 1470 1617
Rows in D 84M 125M 8.7M
Size of D 1.5GB 2.5GB 0.2GB
Rows in X 84M 127M 22M
Size of X 18GB 7GB 2.4GB

Rows in Coreset G
κ = 5 1.43M 14.94K 2.69M
κ = 10 9.58M 85.88K 11.71M
κ = 20 38.16M 632.5K 11.89M
κ = 50 73.75M 7.87M 12.46M

Table 1: Statistics for the input database D, data
matrix X, and coresets G for the three dataset.

and Vassilvitskii, 2007) is used for initializing the k-
means cluster. We run Rk-means and mlpack + psql
five times and report the average approximation and
runtime. The timeout for all experiments was set to six
hours (21,600 seconds) per trial. Our runtime results
omit data loading/saving times. For mlpack + psql,
psql must exportX to disk, and then mlpack must then
read it from disk! Rk-means has no need to do this,
and thus the runtime numbers are skewed in mlpack’s
favor. This skew may be significant: loading and saving
a large CSV file may take hours.

Datasets. We use three real datasets: (1) Retailer is
used by a large US retailer for sales forecasting; (2)
Favorita (Favorita Corp., 2017) is a public dataset for
retail forecasting; and (3) Yelp is from the public Yelp
Dataset Challenge (Yelp, 2017) and used to predict
users’ ratings of businesses. Table 1 presents key statis-
tics for the three datasets, including the size of data
matrix X and the coreset G for each dataset and dif-
ferent κ-values. |G| is highly data dependent. For
Favorita, G is orders-of-magnitude smaller than the
data matrix. For Retailer, when κ = 20 and κ = 50, |G|
approaches |X|, but Rk-means still provides a speedup.
Additional dataset details are given in Appendix D.

Breakdown of Rk-means. Figure 2 shows the time
it takes Rk-means to cluster the three datasets for dif-
ferent values of k with κ = k. The total time is broken
down into the four steps of the algorithm from Section 4.
We provide the time it takes psql to compute X as ref-

Rk-means: Fast Clustering for Relational Data

Retailer k = 5 k = 10 k = 20 k = 50 k=20, κ = 10 k = 50, κ = 20
Compute X (psql) 175.47 175.47 175.47 175.47 175.47 175.47
Clustering (mlpack) 65.41 158.81 385.67 1,453.88 385.67 1,453.88
Rk-means 15.66 54.59 230.17 650.20 63.51 344.31
Relative Speedup 15.38× 6.12× 2.44× 2.51× 8.84× 4.73×
Relative Approx. 0.20 0.08 0.03 0.00 0.03 0.02
Favorita k = 5 k = 10 k = 20 k = 50 k=20, κ = 10 k = 50, κ = 20
Compute X (psql) 156.86 156.86 156.86 156.86 156.86 156.86
Clustering (mlpack) 1,002.54 6,449.32 11,794.49 >21,600.00 11,794.49 >21,600
Rk-means 27.95 57.72 118.36 334.65 57.65 120.77
Relative Speedup 41.49× 114.59× 100.98× >64.55× 207.30× >178.86×
Relative Approx. 2.99 0.35 0.12 – 1.93 –
Yelp k = 5 k = 10 k = 20 k = 50 k=20, κ = 10 k = 50, κ = 20
Compute X (psql) 33.83 33.83 33.83 33.83 33.83 33.83
Clustering (mlpack) 210.59 640.43 2,107.83 11,474.24 2,107.83 11,474.24
Rk-means 43.37 107.71 195.22 405.11 114.34 241.34
Relative Speedup 5.64× 6.26× 10.97× 28.41× 18.73× 47.68×
Relative Approx. 0.37 0.26 0.13 0.05 0.27 0.20

Table 2: End-to-end runtime and approximation comparison of Rk-means and mlpack on each dataset. The first
four columns use different κ = k values; the last two show results for setting κ < k.

erence (gray bar). In many cases, Rk-means can cluster
Retailer and Favorita faster than it takes psql to even
compute the data matrix! The relative performance of
the four steps is data dependent. For Retailer, most of
the time is spent on constructing G in Step 3, which is
relatively large. For Favorita, however, Step 2 takes the
longest, as there is one continuous variable with many
distinct values, and the DP algorithm for clustering
runs in time quadratic in the number of distinct values.
Here, performance could be improved by clustering
this dimension with a different k-means algorithm; this
would increase the approximation somewhat.

Comparison with mlpack. The left columns of Ta-
ble 2 compares the runtime and approximation of Rk-
means against mlpack on the three datasets for dif-
ferent k values with κ = k. The approximation is
given relative to the objective value obtained by ml-
pack. Speedup is given by comparing the end-to-end
performance of Rk-means and mlpack (ignoring disk
I/O time), which for mlpack includes the time needed
by psql to materializeX. Overall, Rk-means often out-
performs even just the clustering step from mlpack, and
when end-to-end computation is considered, Rk-means
gives up to 115× speedup. mlpack timed out after six
hours for Favorita with k = 50. In addition, Rk-means
has a much smaller memory footprint than mlpack: for
instance, on Favorita with k = 20, mlpack uses over
900GiB of RAM to cluster the dataset, whereas Rk-
means only requires 18Gib. To try and reduce RAM
usage, we benchmarked against mlpack with sparse
matrices from the Armadillo library (Sanderson and
Curtin, 2018); this did reduce RAM usage, but the
overhead of working with sparse data structures meant
an overall slowdown. Overall, in our simulations, the
approximation level is moderate, and consistently well
below the 9-approximation bound from Theorem 3.4.

Our simulations show a high level of agreement in the
clusterings obtained by the algorithms: for Retailer
with k = 20, the average normalized mutual informa-
tion is 0.743 between five mlpack k-means clusterings,
and 0.711 between Rk-means and mlpack clusterings.

Setting κ < k for Step 2. We next evaluate the effect
of setting κ to a smaller value than the number of clus-
ters k. This exploits the speed/approximation tradeoff:
smaller κ helps reduce the size of G, at the cost of more
approximation. Table 2 presents for each dataset the
results for setting k = 20,κ = 10 and k = 50,κ = 20,
and compares them to the relative performance and
approximation over computing k clusters in mlpack.

By setting κ < k, Rk-means can compute the k clusters
up to 208× faster than mlpack and 3.6× faster than
when κ = k, while the approximation remains moderate.
Our results are data dependent—but as the database
scales, our speedups will be even more significant.

6 Conclusion

We introduce Rk-means, a method to construct k-
means clustering coresets on relational data directly
from the database. Rk-means gives a provably good
clustering of the entire dataset, without ever material-
izing the data set; this also yields asymptotic improve-
ments in running time. Experimentally, we observe
that the coreset has size up to 180x smaller than the
size of the data matrix and this results in orders-of-
magnitude improvements in runtime, while still provid-
ing empirically good clusterings. Although our work
here primarily focuses on k-means clustering, we believe
our construction of grid coresets and the accompanying
theory is useful for other unsupervised learning tasks
and plan to explore such possibilities in future work.

Curtin, Moseley, Ngo, Nguyen, Olteanu, and Schleich

7 Acknowledgements

This project has received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 682588. B. Moseley
was supported in part by NSF grants CCF-1725543,
1733873, 1845146, a Google Research Award, a Bosch
junior faculty chair and an Infor faculty award. X.
Nguyen was supported in part by grant NSF CAREER
DMS-1351362 and a grant from Toyota Research Insti-
tute.

Bibliography

Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases. Addison-Wesley, 1995.
ISBN 0-201-53771-0. URL http://webdam.inria.
fr/Alice/.

Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra.
FAQ: questions asked frequently. In PODS, pages
13–28, 2016.

Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra.
Juggling functions inside a database. SIGMOD Rec.,
46(1):6–13, 2017.

Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong
Nguyen, Dan Olteanu, and Maximilian Schleich.
Ac/dc: In-database learning thunderstruck. In
2nd Workshop on Data Mgt for End-To-End ML,
DEEM’18, pages 8:1–8:10, 2018a.

Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong
Nguyen, Dan Olteanu, and Maximilian Schleich. In-
database learning with sparse tensors. In PODS,
pages 325–340, 2018b.

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson,
and Justin Ward. Better guarantees for k-means and
euclidean k-median by primal-dual algorithms. In
FOCS, pages 61–72, 2017.

D. Arthur and S. Vassilvitskii. k-means++: The advan-
tages of careful seeding. In SODA, page 1027–1035,
2007.

Olivier Bachem, Mario Lucic, and Andreas Krause.
Scalable k -means clustering via lightweight coresets.
In SIGKDD, pages 1119–1127, 2018.

Bahman Bahmani, Benjamin Moseley, Andrea Vattani,
Ravi Kumar, and Sergei Vassilvitskii. Scalable k-
means++. PVLDB, 5(7):622–633, 2012.

Maria-Florina Balcan, Steven Ehrlich, and Yingyu
Liang. Distributed k-means and k-median clustering
on general communication topologies. In Advances in
Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held Decem-
ber 5-8, 2013, Lake Tahoe, Nevada, United States.,
pages 1995–2003, 2013.

Vladimir Braverman, Gereon Frahling, Harry Lang,
Christian Sohler, and Lin F. Yang. Clustering high
dimensional dynamic data streams. In Proceedings
of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-
11 August 2017, pages 576–585, 2017.

Field Cady. The Data Science Handbook. John Wiley
& Sons, 2017.

Ryan R. Curtin, Marcus Edel, Mikhail Lozhnikov, Yan-
nis Mentekidis, Sumedh Ghaisas, and Shangtong
Zhang. mlpack 3: a fast, flexible machine learning
library. J. Open Source Software, 3:726, 2018.

C.J. Date, H. Darwen, and N. Lorentzos. Temporal
Data & The Relational Model. Elsevier, 2002.

E. del Barrio, J. A. Cuesta-Albertos, C. Matran, and
A. Mayo-Iscar. Robust clustering tools based on
optimal transportation. Statistics and Computing,
pages 1–22, 2017.

Alina Ene, Sungjin Im, and Benjamin Moseley. Fast
clustering using mapreduce. In Proceedings of the
17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego,
CA, USA, August 21-24, 2011, pages 681–689, 2011.

B. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster
Analysis. Wiley & Sons, 2011.

Favorita Corp. Corporacion Favorita Grocery Sales
Forecasting: Can you accurately predict sales for a
large grocery chain? https://www.kaggle.com/c/
favorita-grocery-sales-forecasting/, 2017.

S. Graf and H. Luschgy. Foundations of quantization
for probability distributions. Springer-Verlag, New
York, 2000.

Martin Grohe and Dániel Marx. Constraint solving via
fractional edge covers. ACM Trans. Algorithms, 11
(1):4:1–4:20, 2014.

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev
Motwani, and Liadan O’Callaghan. Clustering data
streams: Theory and practice. IEEE Trans. Knowl.
Data Eng., 15(3):515–528, 2003.

S. Har-Peled and S. Mazumdar. On coresets for k-
means and k-median clustering. In SODA, 2004.

Sariel Har-Peled and Soham Mazumdar. Coresets for k-
means and k-median clustering and their applications.
CoRR, abs/1810.12826, 2018. URL http://arxiv.
org/abs/1810.12826.

J. A. Hartigan. Clustering algorithms. Wiley, New
York, 1975.

N. Ho, X. Nguyen, M. Yurochkin, H. H. Bui, V. Huynh,
and D. Phung. Multilevel clustering via Wasserstein
means. In ICML, pages 1501–1509, 2017.

http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/
https://www.kaggle.com/c/favorita-grocery-sales-forecasting/
https://www.kaggle.com/c/favorita-grocery-sales-forecasting/
http://arxiv.org/abs/1810.12826
http://arxiv.org/abs/1810.12826

Rk-means: Fast Clustering for Relational Data

Z. Huang. Extensions to the k-means algorithm for
clustering large data sets of categorical values. Data
mining and Knowledge discovery, 2:283–304, 1998.

L. Kaufman and P. J. Roussew. Finding Groups in
Data - An Introduction to Cluster Analysis. Wiley
& Sons, 1990.

Mahmoud Abo Khamis, Ryan Curtin, Benjamin Mose-
ley, Hung Ngo, XuanLong Nguyen, Dan Olteanu,
and Maximilian Schleich. On functional aggregate
queries with additive inequalities. In PODS, 2019.

Daphne Koller and Nir Friedman. Probabilistic graph-
ical models. Adaptive Computation and Machine
Learning. MIT Press, Cambridge, MA, 2009. Princi-
ples and techniques.

Stuart P. Lloyd. Least squares quantization in PCM.
IEEE Trans. Inf. Theory, 28(2):129–136, 1982.

Dániel Marx. Tractable hypergraph properties for con-
straint satisfaction and conjunctive queries. J. ACM,
60(6):42:1–42:51, 2013.

Adam Meyerson, Liadan O’Callaghan, and Serge A.
Plotkin. A k -median algorithm with running time
independent of data size. Machine Learning, 56(1-3):
61–87, 2004.

Hung Q. Ngo. Worst-case optimal join algorithms:
Techniques, results, and open problems. In PODS,
pages 111–124, 2018.

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri
Rudra. Worst-case optimal join algorithms. Journal
of the ACM (JACM), 65(3):1–40, 2018.

Dan Olteanu and Maximilian Schleich. Factorized
databases. SIGMOD Rec., 45(2):5–16, 2016.

Carlos Ordonez. Integrating k-means clustering with a
relational DBMS using SQL. IEEE Trans. Knowl.
Data Eng., 18(2):188–201, 2006.

Carlos Ordonez and Edward Omiecinski. Efficient disk-
based k-means clustering for relational databases.
IEEE Trans. Knowl. Data Eng., 16(8):909–921, 2004.

D. Pollard. Quantization and the method of k-means.
IEEE Trans. Inf. Theory, 28(2):199–204, 1982.

C. Sanderson and R.R. Curtin. A user-friendly hybrid
sparse matrix class in C++. In Proceedings of the
2018 International Congrees on Mathematical Soft-
ware (ICMS), pages 422–430. Springer, 2018. ISBN
978-3-319-96418-8.

Maximilian Schleich, Dan Olteanu, and Radu Ciucanu.
Learning linear regression models over factorized
joins. In SIGMOD, pages 3–18, 2016.

Christian Sohler and David P. Woodruff. Strong
coresets for k-median and subspace approximation:
Goodbye dimension. In 59th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS

2018, Paris, France, October 7-9, 2018, pages 802–
813, 2018.

W. Sun, J. Wang, and Y. Fang. Regularized k-means
clustering of high-dimensional data and its asymp-
totic consistency. Electronic Journal of Statistics, 9:
148–167, 2012.

Mikkel Thorup. Quick k-median, k-center, and facility
location for sparse graphs. In Automata, Languages
and Programming, 28th International Colloquium,
ICALP 2001, Crete, Greece, July 8-12, 2001, Pro-
ceedings, pages 249–260, 2001.

Todd L. Veldhuizen. Leapfrog Triejoin: A simple,
worst-case optimal join algorithm. arXiv preprint
arXiv:1210.0481, 2012.

Cédric Villani. Optimal transport, volume 338 of
Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 2009.

Haizhou Wang and Mingzhou Song. Ckmeans.1d.dp:
Optimal k-means clustering in one dimension by dy-
namic programming. The R Journal, 3(2):29, 2011.

D. Witten and R. Tibshirani. A framework for feature
selection in clustering. Journal of the American
Statistical Association, 105:713–726, 2010.

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep
Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J.
McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu,
Zhi-Hua Zhou, Michael Steinbach, David J. Hand,
and Dan Steinberg. Top 10 algorithms in data mining.
Knowl. Inf. Syst., 14(1):1–37, 2008.

J. Ye, P. Wu, J. Wang, and J. Li. Fast discrete distribu-
tion clustering using barycenter with sparse support.
IEEE Trans. Signal Proc., 65(9):2317–2332, 2017.

Yelp. Yelp dataset challenge, https://www.yelp.com/
dataset/challenge/, 2017.

https://www.yelp.com/dataset/challenge/
https://www.yelp.com/dataset/challenge/

Curtin, Moseley, Ngo, Nguyen, Olteanu, and Schleich

Rk-means: Fast Clustering for Relational Data: Supplementary
Material

Ryan R. Curtin Benjamin Moseley Hung Q. Ngo
RelationalAI

ryan@ratml.org
Tepper School of Business
Carnegie Mellon University
moseleyb@andrew.cmu.edu

RelationalAI
hung.q.ngo@relational.ai

XuanLong Nguyen Dan Olteanu Maximilian Schleich
Department of Statistics
University of Michigan
xuanlong@umich.edu

University of Oxford
dan.olteanu@cs.ox.ac.uk

University of Oxford
max.schleich@cs.ox.ac.uk

Abstract

This supplementary material contains details
from Rk-means omitted from the main paper
due to space constraints.

A Background on Database Queries
and FAQs

Recent advancements in the database community have
produced new classes of query plans and join algo-
rithms Abo Khamis et al. (2017, 2016); Ngo (2018);
Olteanu and Schleich (2016) for the efficient evalua-
tion of general database queries. These general algo-
rithms hinge on the expression of a database query as
a functional aggregate query, or FAQ Abo Khamis et al.
(2016).

Loosely speaking, an FAQ is a collection of aggrega-
tions (be they sum, max, min, etc.) over a number
of functions known as factors3, in the same sense as
that used in graphical models. In particular, if there
was only one aggregation (such as sum), then an FAQ
is just a sum-product form typically used to compute
the partition function. An FAQ is more general as it
can involve many marginalization operators, one for
each variable, and they can interleave in arbitrary way.
Every relational database query can be expressed in
this way. Consider the example query of Section 1:

3A full formal definition of FAQs can be found in Abo
Khamis et al. (2016), but is not required for our work here
so we omit it.

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

for this, the task of the database query evaluator is
to compute max(transactions.count) for every tuple
(i, s, t, p, y) that exists in the output. We can express
this as a function:

φ(i, s, t, p, y) =

max
c

max
i

max
s
ψP (i, t, p)ψT (i, s, c)ψS(s, y). (11)

In this we have three factors ψP (·), ψT (·), and ψS(·),
which correspond to the product, transactions, and
store tables, respectively. We define ψP (i, t, p) =
1 if the tuple (i, t, p) exists in the product ta-
ble and 0 otherwise; we define ψS(s, y) similarly.
We define ψT (i, s, c) = c if the tuple (i, s, c) ex-
ists in the transactions table and 0 otherwise.
Thus, given any tuple (i, s, t, p, y), we can compute
max(transactions.count)= φ(i, s, t, p, y).

In order to efficiently solve an FAQ (of which Equa-
tion (11) is but one example), the InsideOut algorithm
of Abo Khamis et al. (2016) may be used; InsideOut is
a variable elimination algorithm, inspired from vari-
able elimination in graphical model, with several new
twists. One twist is to adapt worst-case optimal join al-
gorithms Ngo et al. (2018); Veldhuizen (2012) to speed
up computations by exploiting sparsity in the data. An-
other twist is that the algorithm has to carefully pick
a variable order to minimize the runtime, while at the
same time respect the correctness and semantic of the
query. Unlike in the case of computing a sum-product
where the summation opeartors are commutative, in a
FAQ the operators may not be commutative.

To characterize the runtime of this algorithm, we must
first observe that each database query and thus FAQ
corresponds to a hypergraph H = {V, E}. The ver-
tices V of this hypergraph correspond to the vari-

Rk-means: Fast Clustering for Relational Data

ψP

ψT

ψS
t p

i
c

s

y

Figure 3: Example hypergraphH for the example query
and FAQ in Equation 11.

ables of the FAQ expression; in our example, we have
V = {i, s, t, p, y, c}. The hyperedges E , then, corre-
spond to each factor ψP (·), ψT (·), and ψS(·)—which
in turn correspond to the tables in the database. This
hypergraph H is shown in Figure 3.

Roughly, InsideOut proceeds by first selecting a variable
ordering σ, reordering the FAQ accordingly, and then
solving the inner subproblems repeatedly, in much the
same way variable elimination works for inference in
graphcal models Koller and Friedman (2009). The
runtime of InsideOut is dependent on a notion of width
of H called FAQ-width, or faqw(·). Fully describing
this width is beyond the scope of this paper and we
encourage readers to refer to Abo Khamis et al. (2016)
for full details. The FAQ-width is a generalized version
of fractional hypertree width of Grohe and Marx (2014)
(denoted by fhtw). When the FAQ query does not have
free variables, faqw = fhtw. Given some FAQ with
hypergraph H, via Section 4.3.4 of Abo Khamis et al.
(2017), InsideOut runs in time Õ(N faqwH(σ) +Z), where
we assume that the support of each factor4 is no more
than O(N), and Z is the number of tuples in the
output. As an example, the hypergraph of Figure 3
has faqwH(σ) = 1. Overall, InsideOut gives us the most
efficient known way to evaluate problems that can be
formulated as FAQs.

B Missing details from Section 3

B.1 Proposition 3.5

Proof of Prop. 3.5. As before the optimal transport
plan from P in to Q is such that each support point
s ∈ S is received by all x ∈X nearest to s compared
to other points in S. So,

W2
2(P in,Q) + Ω(M)

=

m∑
j=1

W2
2(Mj ,P

in
j) + Ω(M) (12)

≤ α
m∑
j=1

(W2
2(M∗j ,P in

j) + Ωj(M
∗
j)) (13)

≤ α(W2
2(M∗,P in) + Ω(M∗)). (14)

4Or in our case, the number of tuples in the table corre-
sponding to that factor.

The second to last inequality is due to the α-
approximation of (regularized) wkmeans1, and condition
that |supp(Mj)| ≥ |supp(M∗j)|. The last inequality fol-
lows from Proposition 3.2 and the definition of Ω. By
the triangle inequality of W2, as before

W2(P in,P) (15)

≤W2(P in,Q) + W2(Q,P) (16)

≤W2(P in,Q) +
√
γW2

2(Q,M∗) + γΩ(M∗)− Ω(P)

(17)

≤W2(P in,Q) +
(
2γW2

2(P in,Q) + 2γW2
2(P in,M∗)

+ γΩ(M∗)− Ω(P))
1
2 . (18)

Hence, by Cauchy-Schwarz and combining with (14)
we obtain

W2
2(P in,P)

≤ 2

{
(1 + 2γ)W2

2(P in,Q) (19)

+ 2γW2
2(P in,M∗) + γΩ(M∗)− Ω(P)

}
(20)

≤ (2α+ 4γ + 4αγ)W2
2(P in,M∗)

+ (2α+ 2γ + 4αγ)Ω(M∗)

− (2 + 4γ)Ω(M)− 2Ω(P). (21)

The conclusion is immediate by noting that Ω is a
non-negative function.

C Missing details from Section 4

C.1 Categorical variables

As we have mentioned, real-world relational database
queries often involve a significant number of categorical
variables, such as color, month, or city. The most com-
mon way to deal with categorical variables in practical
settings is to one-hot encode them, whereby a categori-
cal feature such as city is represented by an indicator
vector

xcity =
[
1city=c1 1city=c2 · · ·1city=cL

]
(22)

where {c1, . . . , cL} is the set of cities occuring in the
data. The subspace associated with these indicator vec-
tors is known as the categorical subspace of a categorical
variable. This one-hot representation substantially in-
creases the data matrix size via an increase in the
dimensionality of the data. For example, a dataset of
about 30 mostly categorical features with hundreds or
thousands of categories for each feature will have its
dimensionality exploded to the order of thousands with
one-hot encoding.

Curtin, Moseley, Ngo, Nguyen, Olteanu, and Schleich

The k-means subproblem within a categorical subspace
is solvable efficiently and optimally, without one-hot
encoding. This optimal solution can be computed in
the same time it takes to find the number of points in
each category, which is a vast improvement on either
an optimal dynamic program or Lloyd’s algorithm.
Furthermore, it helps keep m as low as the number of
database attributes in the query.

Consider a weighted k-means subproblem solved by
wkmeans1 defined on a categorical subspace induced by
a categorical featureK that has L categories. Then, the
instance is of the form (I, v), where I is the collection
of L indicator vectors 1e, one for each element e ∈
Dom(K). (One can think of I as the identity matrix
of order L.) Define the weight function v as

v(1e) =
∑

x∈X,xK=e

w(x). (23)

For any set F ⊆ Dom(K), let vF denote the vector
(v(1e))e∈F . Also, ‖vF ‖1 and ‖vF ‖2 denote the `1 and
`2 norm, respectively. It is useful to rewrite the cate-
gorical weighted k-means problem:
Proposition C.1. The categorical weighted k-means
instance (I, v) admits the following optimization objec-
tive:

OPT(I, v) = ‖v‖1 −max
F

∑
F∈F

‖vF ‖22
‖vF ‖1

, (24)

where F ranges over all partitions of Dom(K) into k
parts.

Proof. First, consider a subset F ⊆ Dom(K) of the cat-
egories; the centroid µ of (weighted) indicator vectors
1e, e ∈ F , can be written down explicitly:

µe =

{
0 e /∈ F
ve
‖vF ‖1

v ∈ F ,
(25)

The weighted sum of squared distances between 1e for
all e ∈ F to µ is∑

e∈F
(‖µ‖22 − µ

2
e + (µe − 1)2)ve

=
‖vF ‖22
‖vF ‖1

+
∑
e∈F

((µe − 1)2 − µ2
e)ve

=
‖vF ‖22
‖vF ‖1

+
∑
e∈F

(−2µe + 1)ve

= ‖vF ‖1 − ‖vF ‖
2
2 / ‖vF ‖1 .

Thus, the weighted k-means objective takes the form

min
F

∑
F∈F

(
‖vF ‖1 − ‖vF ‖

2
2 / ‖vF ‖1

)
(26)

= ‖v‖1 −max
F

∑
F∈F
‖vF ‖22 / ‖vF ‖1 , (27)

which concludes the proof.

In (24), note that ‖v‖1 is the total weight of input
points; hence, we can equivalently solve the inner max-
imization problem. With the categorical weighted k-
means objective in place, we can derive the optimal
clustering. To do so, We next need the following ele-
mentary lemma.

Lemma C.2. Suppose that x, a1, a2, b1, b2 > 0, b21 ≥
a1, b22 ≥ a2 and x ≥ max{a1/b1, a2/b2}. Then x +

a1+a2
b1+b2

≥ max

{
x2+a1
x+b1

+ a2
b2

, x
2+a2
x+b2

+ a1
b1

}
.

Proof. It suffices to establish x+ a1+a2
b1+b2

≥ x2+a1
x+b1

+ a2
b2
,

or equivalently

x− x2 + a1

x+ b1
≥ a2

b2
− a1 + a2

b1 + b2
,

which can be simplified as

x(b1 + b2 + a1/b1 − a2/b2) ≥ a1b2/b1 + a2b1/b2. (28)

To verify this inequality, consider two cases. If a1/b1 ≥
a2/b2, then LHS ≥ x(b1 + b2) ≥ (a2/b2)b1 + (a1/b1)b2.
On the other hand, if a2/b2 > a1/b1. Since b2−a2/b2 ≥
0,

LHS ≥ (a2/b2)(b1 + b2 + a1/b1 − a2/b2)

= a2b1/b2 + a2 + a1a2/(b1b2)− a2
2/b

2
2

= a2b1/b2 + a1b2/b1

+ (b2 − a2/b2)(a2/b2 − a1/b1)

≥ a2b1/b2 + a1b2/b1.

Thus the proof is complete.

Then, the optimal solution to the categorical k-means
instance is an immediate consequence:

Corollary C.3. Let (e1, . . . , eL) be a permutation of
Dom(K) such that ve1 ≥ ve2 ≥ . . . ≥ veL . Then for any
k ≥ 2 and any k-partition F of Dom(K), there holds

ve1 + . . .+ vek−1
+

∑L
i=k v

2
i∑L

i=k vi
≥
∑
F∈F

‖vF ‖22
‖vF ‖1

.

Proof. We prove the claim by induction on k. Let
F ∈ F be the set containing the element {e1}. If there
is only one element in F then we apply the induc-
tion hypothesis on the remaining terms. Otherwise,
F contains at least two elements. Let G ∈ F be an
arbitrary element of F where G 6= F . Define F ′ to

Rk-means: Fast Clustering for Relational Data

be the partition obtained from F by replacing (F ,G)
with ({e1},F ∪G− {e1}). Then, Lemma C.2 can be
applied to get∑

F∈F

‖vF ‖22
‖vF ‖1

≤
∑
F∈F ′

‖vF ‖22
‖vF ‖1

.

Induction on the tail k − 1 terms completes the proof.

Theorem 4.1 follows trivially from the above corol-
lary. Corollary C.3 and the objective for k-means on a
single attribute in the equation of Proposition C.1 es-
tablishes precisely the structure of the optimal solution
for data consisting of a single categorical variable.

C.2 Reducing the coreset size with FDs

Next, we address the second call to wkmeans2: its run-
time is dependent on the size of the grid G, which can
be up to O(km), where m is the number of features
from the input. Databases often contain functional
dependencies (FDs), which we can exploit to reduce
the size of G. An FD is a dimension whose value
depends entirely on the value of another dimension.
For example, for a retailer dataset that includes geo-
graphic information, one might encounter features such
as storeID, zip, city, state, and country. Here, storeID func-
tionally determines zip, which determines city, which in
turns determines state, leading to country. This common
structure is known as an FD-chain, and appears often
in real-world FEQs.

If we were to apply Rk-means without exploiting the
FDs, the features storeID, zip, city, state, and country
would contribute a factor of k5 to the grid size. How-
ever, by using the functional dependency structure of
the database, we show that only a factor of 5k is con-
tributed to the grid size, because most of the k5 grid
points g have wgrid(g) = 0 as defined in (3). More
generally, whenever there is an FD chain of (simple)
functional dependencies including p features, their over-
all contribution to the grid size is a factor of O(kp)
instead of O(kp), and the grid points with non-zero
weights can be computed efficiently in time O(kp).
Lemma C.4. Suppose all d input features are categor-
ical and form an FD-chain. Then, the total number of
grid points g ∈ G with non-zero wgrid weight is at most
d(k − 1) + 1.

Proof. Suppose the features are K1, . . . ,Kd, where
Ki functionally determine Ki+1, and Dom(Ki) =
{ei1, ei2, · · · , eini

}. Without loss of generality, we also
assume that the elements in Dom(Ki) are sorted in
descending order of weights:

w(1ei1) ≥ w(1ei2) ≥ · · · ≥ w(1eini
). (29)

From Corollary C.3, we know the set Ci of k centroids
of each of the categorical subspace for Ki: there is
a centroid µij = 1eij for each j ∈ [k − 1], and then a
centroid µik of the rest of the indicator vectors. The ele-
ments eij for j ∈ [k−1] shall be called “heavy” elements,
and the rest are “light” elements.

Now, consider an input vector x = (x1, . . . ,xd) where
xi ∈ Dom(Ki). Under one-hot encoding, this vec-
tor is mapped to a vector of indicator vectors 1x :=
(1x1

, · · · ,1xd
). We need to answer the question: which

grid point in G = C1×· · ·×Cd is 1x closest to? Since
the `22-distance is decomposable into component sum,
we can determine the closest grid point by looking at
the closest centroid in Ci for 1xi

, for each i ∈ [d].

If xi ∈ {ei1, . . . , eik−1}, then the corresponding one-hot-
encoded version 1xi

is itself one of the centroids in Ci,
and thus it is its own closest centroid. Otherwise, the
closest centroid to 1xi is µik, because

∥∥1xi − µik
∥∥2
< 2,

and
∥∥1xi − µij

∥∥2
= 2 for every j ∈ [k − 1].

Let µi(xi) ∈ Ci denote the closest centroid inCi to 1xi .
The closest grid point to 1x is completely determined:
g = (µ1(x1), · · · ,µd(xd)). Furthermore, let i ∈ [d]
denote the smallest index such that xi is heavy. Then,
we can write g as

g = (µ1
k, · · · ,µi−1

k ,1xi ,µ
i+1(xi+1), · · · ,µd(xd))

(30)

Note that once xi is fixed, due to the FD-chain the
entire suffix (1xi ,µ

i+1(xi+1), · · · ,µd(xd) of g is deter-
mined. Hence, the number of different gs can only be
at most d(k− 1) + 1: there are d+ 1 choices for i (from
0 to d), and k − 1 choices for xi if i > 0.

Theorem 4.2 follows trivially from the above lemma,
because the `22-distance is the sum over the `22-distances
of the subspaces.

C.3 Analysis of Step 4 of Rk-means

Here we discuss the optimization and acceleration of
Step 4 of the Rk-means implementation as described in
Section 4. Recall that the categorical subspace k-means
problem is solved trivially using Theorem 4.1, where
we sort all the weights, and the heaviest k− 1 elements
form their own centroid, while the remaining vectors
are clustered together (the “light cluster”).

If Sj is a categorical subspace corresponding to a cat-
egorical variable K where Dom(K) = {e1, . . . , eL}.
Without loss of generality, assume w(1e1) ≥ · · · ≥
w(1eL), then the centroid of the light cluster is an

Curtin, Moseley, Ngo, Nguyen, Olteanu, and Schleich

L-dimensional vector c = (se)e∈Dom(K)

sei :=

{
0 i ∈ [k − 1]

w(1ei
)∑L

j=k w(1ej
)

i ≥ k (31)

This encoding is sound and space-inefficient.

Remember also that Step 4 clusters the coreset G using
a modified version of Lloyd’s weighted k-means that
exploits the structure of G and sparse representation
of categorical values. We show how to improve the dis-
tance computation ‖cj − µj‖2 for sub-space Sj , where
cj and µj are the j-th components of a grid point and
respectively of a centroid for G. Since this subspace
corresponds to a categorical variable K with, say, Lj
categories, it is mapped into Lj sub-dimensions. Let
cj = [s1, . . . , sLj

] and µj = (t1, . . . , tLj
). Using the ex-

plicit one-hot encoding of its categories, we would need
O(Lj) time to compute ‖cj − µj‖2 =

∑
`∈[Lj](s`− t`)2.

We can instead achieve O(1) time as shown next. There
are k distinct values for cj by our coreset construction,
each represented by a vector of size Lj with one non-
zero entry for k − 1 of them and Lj − k + 1 non-zero
entries for one of them.

If cj = 1e is an indicator vector for some element e ∈ K
(e is one of the k − 1 heavy categories), then

‖cj − µj‖2 = ‖1e − µj‖2 = 1− 2te + ‖µj‖2 . (32)

If cj is a light cluster centroid,

‖cj − µj‖2 = ‖cj‖2 + ‖µj‖2 − 2 〈cj ,µj〉 . (33)

In (32), by pre-computing ‖µj‖2 we only spend O(1)-
time per heavy element e. In (33), by also pre-
computing ‖cj‖2 and 〈cj ,µj〉, and by noticing that
cj is (Lj − k + 1)-sparse, we spend O(Lj − k)-time
here. Overall, we spend time O(Lj) for computing
‖cj − µj‖2 per categorical dimension, modulo the pre-
computation time.

Step 4 thus requires O(|G|mk +
∑
j∈[m] Ljk) =

O(|G|mk + Dkm) per iteration, whereas a generic
approach would take time O(

∑
j∈[m] |G|kLj) =

O(|G|Dkm). Our modified weighted k-means algo-
rithm thus saves a factor proportional to the total
domain sizes of the categorical variables, which may
be as large as D.

C.4 Theorem 4.3

Proof of Theorem 4.3. Let N denote the maximum
number of tuples in any input relation of the FEQ,
|X| the number of tuples in the data matrix, fhtw the
fractional hypertree width of the FEQ t the number of
iterations of Lloyd’s algorithm, d denote the number

of features pre-one-hot encoding, r number of input
relations to the FEQ, D the real dimensionality of the
problem after one-hot-encoding.

We analyze the time complexity for each of the four
steps of the Rk-means algorithm.

Step 1 projects X into each subspace Sj and compute
the total weight of each projected point:

∀j ∈ [d] : wj(xSj
) :=

∑
x[d]\{Sj}

∏
F∈E

RF (xF) (34)

Each of the d FAQs (34) in Step 1 can be computed in
time Õ(rd2N fhtw) using InsideOut, as we have reviewed
in Section A.

In Step 2, the optimal clustering in each dimension
takes time Õ(Lj) for each categorical variable j (whose
domain size is Lj , and O(kN2) for each continuous
variable, with an overall runtime of O(kdN2).

Step 3 constructs G, whose size is bounded by |X|
and by the FD result of Theorem 4.2. In practice,
this number can be much smaller since we skip the
data points whose weights are zero. To perform this
step we construct a tree decomposition of FEQ with
with equal fhtw (this step is data-independent, only
dependent on the size of FEQ). Then, from each value
xj of an input variable Xj , we determine its centroid
c(xj) which was computed in step 2. By conditioning
on combinations of (c1, . . . , cj), we can compute wgrid

one for each combiation in Õ(dN fhtw)-time, for a total
run time of Õ(rd|G|N fhtw).

Step 4 – as analyzed in Section C.3 – clusters G in
time O((|G|+D)kmt), where t is the number of itera-
tions of k-means used in Step 4. The most expensive
computation is due to the one-dimensional clustering
for the continuous variables and the computation of
the coreset.

To compare the total runtime with |X|, we only need
to note that |X| can be as large as Nρ∗ , where ρ∗
is the fractional edge covering number of the FEQ’s
hypergraph Ngo (2018). Depending on the query, ρ∗ is
always at least 1, and can be as large as the number
of features d. Furthermore, there are classes of queries
where fhtw is bounded by a constant, yet ρ∗ is un-
bounded Marx (2013). This means, for classes of FEQs
where ρ∗ > max{fhtw, 2} the ratio between |X| and Rk-
means’s runtime will be Õmega(Nρ∗−max{fhtw,2}/t),
which is unbounded.

For reference, we compare the asymptotic runtime of
Rk-means to the standard implementation of Lloyd’s
algorithm. The standard implementation contains two
steps: (1) compute the one-hot-encoded data matrix

Rk-means: Fast Clustering for Relational Data

X, and (2) run Lloyd’s algorithm on X. The first
step, materializingX, takes time Õ(rd2N fhtw +D|X|).
The second step, running Lloyd algorithm, takes time
Õ(tkD|X|), as is well known. Thus, the standard
approach takes time Õ(rd2N fhtw + tkD|X|).

D Missing details from Section 5

We provide a more detailed description of the three
datasets introduced in Section 5.

Retailer has five relations: Inventory stores the number
of inventory units for each date, location, and stock
keeping unit (sku); Location keeps for each store: its
zipcode, the distance to the closest competitors, and
the type of the store; Census provides 14 attributes
that describe the demographics of a given zipcode,
including population size or average household income;
Weather stores statistics about the weather condition
for each date and store, including the temperature
and whether it rained; Items keeps track of the price,
category, subcategory, and category cluster of each sku.

Favorita has six relations: Sales stores the number of
units sold for items for a given date and store, and an
indicator whether or not the unit was on promotion
at this time; Items provides additional information
about the skus, such as the item class and price; Stores
keeps additional information on stores, like the city
they are located it; Transactions stores the number of
transaction for each date and store; Oil provides the
oil price for each date; and Holiday indicates whether
a given day is a holiday. The original dataset gave the
units_sold attribute with a precision of three decimals
places. This resulted in a very many distinct values
for this attribute, which has a significant impact on
the Step 2 of the Rk-means algorithm. We decreased
the precision for this attribute to two decimal places,
which decreases the number of distinct values by a
factor of four. This modification has no effect on the
final clusters or their accuracy.

Yelp has five relations: Review gives the review rating
that a user gave to a business and the date of the
review; User provides information about the users, in-
cluding how many reviews the made, when they join,
and how many fans they have; Business provides infor-
mation about the businesses that are reviewed, such
as their location and average rating; Category provide
information about the categories, i.e. Restaurant, and
respectively attributes of the business, Attributes is
an aggregated relation, which stores the number of
attributes (i.e., open late) that have been assigned to a
business. A business can be categorized in many ways,
which is the main reason why the size of the join is
significantly larger than the underlying relations.

Bibliography

Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases. Addison-Wesley, 1995.
ISBN 0-201-53771-0. URL http://webdam.inria.
fr/Alice/.

Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra.
FAQ: questions asked frequently. In PODS, pages
13–28, 2016.

Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra.
Juggling functions inside a database. SIGMOD Rec.,
46(1):6–13, 2017.

Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong
Nguyen, Dan Olteanu, and Maximilian Schleich.
Ac/dc: In-database learning thunderstruck. In
2nd Workshop on Data Mgt for End-To-End ML,
DEEM’18, pages 8:1–8:10, 2018a.

Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong
Nguyen, Dan Olteanu, and Maximilian Schleich. In-
database learning with sparse tensors. In PODS,
pages 325–340, 2018b.

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson,
and Justin Ward. Better guarantees for k-means and
euclidean k-median by primal-dual algorithms. In
FOCS, pages 61–72, 2017.

D. Arthur and S. Vassilvitskii. k-means++: The advan-
tages of careful seeding. In SODA, page 1027–1035,
2007.

Olivier Bachem, Mario Lucic, and Andreas Krause.
Scalable k -means clustering via lightweight coresets.
In SIGKDD, pages 1119–1127, 2018.

Bahman Bahmani, Benjamin Moseley, Andrea Vattani,
Ravi Kumar, and Sergei Vassilvitskii. Scalable k-
means++. PVLDB, 5(7):622–633, 2012.

Maria-Florina Balcan, Steven Ehrlich, and Yingyu
Liang. Distributed k-means and k-median clustering
on general communication topologies. In Advances in
Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held Decem-
ber 5-8, 2013, Lake Tahoe, Nevada, United States.,
pages 1995–2003, 2013.

Vladimir Braverman, Gereon Frahling, Harry Lang,
Christian Sohler, and Lin F. Yang. Clustering high
dimensional dynamic data streams. In Proceedings
of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-
11 August 2017, pages 576–585, 2017.

Field Cady. The Data Science Handbook. John Wiley
& Sons, 2017.

Ryan R. Curtin, Marcus Edel, Mikhail Lozhnikov, Yan-
nis Mentekidis, Sumedh Ghaisas, and Shangtong

http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/

Curtin, Moseley, Ngo, Nguyen, Olteanu, and Schleich

Zhang. mlpack 3: a fast, flexible machine learning
library. J. Open Source Software, 3:726, 2018.

C.J. Date, H. Darwen, and N. Lorentzos. Temporal
Data & The Relational Model. Elsevier, 2002.

E. del Barrio, J. A. Cuesta-Albertos, C. Matran, and
A. Mayo-Iscar. Robust clustering tools based on
optimal transportation. Statistics and Computing,
pages 1–22, 2017.

Alina Ene, Sungjin Im, and Benjamin Moseley. Fast
clustering using mapreduce. In Proceedings of the
17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego,
CA, USA, August 21-24, 2011, pages 681–689, 2011.

B. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster
Analysis. Wiley & Sons, 2011.

Favorita Corp. Corporacion Favorita Grocery Sales
Forecasting: Can you accurately predict sales for a
large grocery chain? https://www.kaggle.com/c/
favorita-grocery-sales-forecasting/, 2017.

S. Graf and H. Luschgy. Foundations of quantization
for probability distributions. Springer-Verlag, New
York, 2000.

Martin Grohe and Dániel Marx. Constraint solving via
fractional edge covers. ACM Trans. Algorithms, 11
(1):4:1–4:20, 2014.

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev
Motwani, and Liadan O’Callaghan. Clustering data
streams: Theory and practice. IEEE Trans. Knowl.
Data Eng., 15(3):515–528, 2003.

S. Har-Peled and S. Mazumdar. On coresets for k-
means and k-median clustering. In SODA, 2004.

Sariel Har-Peled and Soham Mazumdar. Coresets for k-
means and k-median clustering and their applications.
CoRR, abs/1810.12826, 2018. URL http://arxiv.
org/abs/1810.12826.

J. A. Hartigan. Clustering algorithms. Wiley, New
York, 1975.

N. Ho, X. Nguyen, M. Yurochkin, H. H. Bui, V. Huynh,
and D. Phung. Multilevel clustering via Wasserstein
means. In ICML, pages 1501–1509, 2017.

Z. Huang. Extensions to the k-means algorithm for
clustering large data sets of categorical values. Data
mining and Knowledge discovery, 2:283–304, 1998.

L. Kaufman and P. J. Roussew. Finding Groups in
Data - An Introduction to Cluster Analysis. Wiley
& Sons, 1990.

Mahmoud Abo Khamis, Ryan Curtin, Benjamin Mose-
ley, Hung Ngo, XuanLong Nguyen, Dan Olteanu,
and Maximilian Schleich. On functional aggregate
queries with additive inequalities. In PODS, 2019.

Daphne Koller and Nir Friedman. Probabilistic graph-
ical models. Adaptive Computation and Machine
Learning. MIT Press, Cambridge, MA, 2009. Princi-
ples and techniques.

Stuart P. Lloyd. Least squares quantization in PCM.
IEEE Trans. Inf. Theory, 28(2):129–136, 1982.

Dániel Marx. Tractable hypergraph properties for con-
straint satisfaction and conjunctive queries. J. ACM,
60(6):42:1–42:51, 2013.

Adam Meyerson, Liadan O’Callaghan, and Serge A.
Plotkin. A k -median algorithm with running time
independent of data size. Machine Learning, 56(1-3):
61–87, 2004.

Hung Q. Ngo. Worst-case optimal join algorithms:
Techniques, results, and open problems. In PODS,
pages 111–124, 2018.

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri
Rudra. Worst-case optimal join algorithms. Journal
of the ACM (JACM), 65(3):1–40, 2018.

Dan Olteanu and Maximilian Schleich. Factorized
databases. SIGMOD Rec., 45(2):5–16, 2016.

Carlos Ordonez. Integrating k-means clustering with a
relational DBMS using SQL. IEEE Trans. Knowl.
Data Eng., 18(2):188–201, 2006.

Carlos Ordonez and Edward Omiecinski. Efficient disk-
based k-means clustering for relational databases.
IEEE Trans. Knowl. Data Eng., 16(8):909–921, 2004.

D. Pollard. Quantization and the method of k-means.
IEEE Trans. Inf. Theory, 28(2):199–204, 1982.

C. Sanderson and R.R. Curtin. A user-friendly hybrid
sparse matrix class in C++. In Proceedings of the
2018 International Congrees on Mathematical Soft-
ware (ICMS), pages 422–430. Springer, 2018. ISBN
978-3-319-96418-8.

Maximilian Schleich, Dan Olteanu, and Radu Ciucanu.
Learning linear regression models over factorized
joins. In SIGMOD, pages 3–18, 2016.

Christian Sohler and David P. Woodruff. Strong
coresets for k-median and subspace approximation:
Goodbye dimension. In 59th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 802–
813, 2018.

W. Sun, J. Wang, and Y. Fang. Regularized k-means
clustering of high-dimensional data and its asymp-
totic consistency. Electronic Journal of Statistics, 9:
148–167, 2012.

Mikkel Thorup. Quick k-median, k-center, and facility
location for sparse graphs. In Automata, Languages
and Programming, 28th International Colloquium,
ICALP 2001, Crete, Greece, July 8-12, 2001, Pro-
ceedings, pages 249–260, 2001.

https://www.kaggle.com/c/favorita-grocery-sales-forecasting/
https://www.kaggle.com/c/favorita-grocery-sales-forecasting/
http://arxiv.org/abs/1810.12826
http://arxiv.org/abs/1810.12826

Rk-means: Fast Clustering for Relational Data

Todd L. Veldhuizen. Leapfrog Triejoin: A simple,
worst-case optimal join algorithm. arXiv preprint
arXiv:1210.0481, 2012.

Cédric Villani. Optimal transport, volume 338 of
Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 2009.

Haizhou Wang and Mingzhou Song. Ckmeans.1d.dp:
Optimal k-means clustering in one dimension by dy-
namic programming. The R Journal, 3(2):29, 2011.

D. Witten and R. Tibshirani. A framework for feature
selection in clustering. Journal of the American
Statistical Association, 105:713–726, 2010.

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep
Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J.
McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu,
Zhi-Hua Zhou, Michael Steinbach, David J. Hand,
and Dan Steinberg. Top 10 algorithms in data mining.
Knowl. Inf. Syst., 14(1):1–37, 2008.

J. Ye, P. Wu, J. Wang, and J. Li. Fast discrete distribu-
tion clustering using barycenter with sparse support.
IEEE Trans. Signal Proc., 65(9):2317–2332, 2017.

Yelp. Yelp dataset challenge, https://www.yelp.com/
dataset/challenge/, 2017.

https://www.yelp.com/dataset/challenge/
https://www.yelp.com/dataset/challenge/

	Introduction
	Discussion of related work
	The Rk-means algorithm
	Leveraging relational data
	Experimental results
	Conclusion
	Acknowledgements
	Background on Database Queries and FAQs
	Missing details from Section 3
	Proposition 3.5

	Missing details from Section 4
	Categorical variables
	Reducing the coreset size with FDs
	Analysis of Step 4 of Rk-means
	Theorem 4.3

	Missing details from Section 5

