
User-Friendly Sparse Matrices with Hybrid Storage and
Template-Based Expression Optimisation

Conrad Sanderson

conradsand.@.ieee.org

Data61, CSIRO, Australia

University of Queensland, Australia

Arroyo Consortium

Ryan Curtin

ryan.@.ratml.org

RelationalAI, USA

Arroyo Consortium

Abstract

Despite the importance of sparse matrices in numerous fields of science, software implementations remain

difficult to use for non-expert users, generally requiring the understanding of underlying details of the chosen

sparse matrix storage format. In addition, to achieve good performance, several formats may need to be used

in one program, requiring explicit selection and conversion between the formats. This can be both tedious and

error-prone, especially for non-expert users. Motivated by these issues, we present a user-friendly sparse matrix

class for the C++ language, with a high-level application programming interface deliberately similar to the

widely used MATLAB language. The class internally uses two main approaches to achieve efficient execution:

(i) a hybrid storage framework, which automatically and seamlessly switches between three underlying storage

formats (compressed sparse column, Red-Black tree, coordinate list) depending on which format is best suited

and/or available for specific operations, and (ii) template-based meta-programming to automatically detect

and optimise execution of common expression patterns. To facilitate relatively quick conversion of research

code into production environments, the class and its associated functions provide a suite of essential sparse

linear algebra functionality (eg., arithmetic operations, submatrix manipulation) as well as high-level functions

for sparse eigendecompositions and linear equation solvers. The latter are achieved by providing easy-to-use

abstractions of the low-level ARPACK and SuperLU libraries. The source code is open and provided under

the permissive Apache 2.0 license, allowing unencumbered use in both open-source projects and closed-source

commercial products.

Keywords: numerical linear algebra, sparse matrix, mathematical software, C++ language.

AMS MSC2010 codes: 65F50, 65Y04, 65Y15, 68N99, 68P05, 15A99.

1 Introduction

Recent decades have seen the frontiers of scientific computing increasingly push towards the use of

larger and larger datasets. In fact, frequently the data to be represented is so large that it cannot fully

fit into working memory. Fortunately, in many cases the data has many zeros and can be represented

in a compact manner, allowing users to work with sparse matrices of extreme size with few non-zero

elements. However, converting code from using dense matrices to using sparse matrices—a common

task when scaling code to larger data—is not always straightforward.

Existing open-source frameworks may provide several separate sparse matrix classes, each with

their own data storage format. For instance, SciPy [23] has 7 sparse matrix classes: bsr matrix,

coo matrix, csc matrix, csr matrix, dia matrix, dok matrix, and lil matrix. Each storage format is best

suited for efficient execution of a specific set of operations (eg., matrix multiplication vs. incremental

matrix construction). Other frameworks may provide only one sparse matrix class, with severe runtime

penalties if it is not used in the right way. This can be challenging and bewildering for users who simply

want to create and use sparse matrices, and do not have the time, expertise, or desire to understand

the advantages and disadvantages of each format. To achieve good performance, several formats may

need to be used in one program, requiring explicit selection and conversion between the formats. This

plurality of sparse matrix classes complicates the programming task, increases the likelihood of bugs,

and adds to the maintenance burden.

ar
X

iv
:1

81
1.

08
76

8v
1

 [
cs

.M
S]

 2
0

N
ov

 2
01

8

Motivated by the above issues, we present a user-friendly sparse matrix class for the C++ lan-

guage [29], with a high-level application programming interface (function syntax) that is deliberately

similar to MATLAB. The sparse matrix class uses a hybrid storage framework, which automatically

and seamlessly switches between three data storage formats, depending on which format is best suited

and/or available for specific operations:

• Compressed Sparse Column (CSC), used for efficient and nuanced implementation of core arith-

metic operations such as matrix multiplication and addition, as well as efficient reading of indi-

vidual elements;

• Red-Black Tree (RBT), used for both robust and efficient incremental construction of sparse

matrices (i.e., construction via setting individual elements one-by-one, not necessarily in order);

• Coordinate List (COO), used for low-maintenance and straightforward implementation of relat-

ively complex and/or lesser-used sparse matrix functionality.

The COO format is important to point out, as the source code for the sparse matrix class is

distributed and maintained as part of the open-source Armadillo library [25]. Due to its simpler

nature, the COO format facilitates functionality contributions from time-constrained and/or non-

expert users, as well as reducing maintenance and debugging overhead for the library maintainers.

To further promote efficient execution, the sparse matrix class implements a delayed evalu-

ation1 approach [19] based on C++ features such as operator overloading [29] and template meta-

programming [1, 31]. In contrast to simply using brute-force evaluation of mathematical expressions,

the delayed evaluation framework allows automatic compile-time analysis of such expressions, which

in turns allows for automatic detection and optimisation of common expression patterns.

Overall, the sparse matrix class provides an intuitive interface that is very close to a typical dense

matrix API; this can help with rapid transition of dense-specific code to sparse-specific code. In

addition, we demonstrate that the overhead of the hybrid format is minimal, and that the format is

able to choose the optimal representation for a variety of sparse linear algebra tasks. This makes the

format and implementation suitable for real-world prototyping and production usage.

Although there are many other sparse matrix implementations in existence, to our knowledge ours

is the first to offer a unified interface with automatic format switching under the hood. Most toolkits

are limited to either a single format or multiple formats the user must manually convert between. As

mentioned earlier, SciPy contains no fewer than seven formats, and the comprehensive SPARSKIT

package [24] contains 16. In these toolkits the user must manually convert between formats. On the

other hand, both MATLAB and GNU Octave [11] contain sparse matrix implementations, but they

supply only the CSC format [9], meaning that users must write their code in special ways to ensure

its efficiency [20].

We continue the paper as follows. In Section 2 we overview the functionality provided by the sparse

matrix class and its associated functions. The delayed evaluation approach is overviewed in Section 3.

In Section 4 we describe the underlying storage formats used by the class, and the scenarios that each

of the formats is best suited for. In Section 5 we discuss the costs for switching between the formats.

Section 6 provides an empirical evaluation showing the advantages of the hybrid storage framework

and the delayed evaluation approach. The salient points and avenues for further exploitation are

summarised in Section 7. This paper is a revised and extended version of our earlier work [26].

1 In delayed evaluation, the evaluation of a given compound mathematical expression is delayed until its value is

required (ie., assigned to a variable). This is in contrast to eager evaluation (also known as strict evaluation), where each

component of a compound expression is evaluated immediately.

2 Functionality

To allow prototyping directly in C++ as well as to facilitate relatively quick conversion of research

code into production environments, the sparse matrix class and its associated functions provide a user-

friendly suite of essential sparse linear algebra functionality, including fundamental operations such

as addition, matrix multiplication and submatrix manipulation. Various sparse eigendecompositions

and linear equation solvers are also provided. C++ language features such as overloading of operators

(eg., * and +) [29] are exploited to allow mathematical operations with matrices to be expressed in

a concise and easy-to-read manner. For example, given sparse matrices A, B, and C, a mathematical

expression such as

D = 1
2(A + B) · CT

can be written directly in C++ as

sp mat D = 0.5 * (A + B) * C.t();

where sp mat is our sparse matrix class. Low-level details such as memory management are hidden,

allowing the user to concentrate effort on mathematical details. Table 1 lists a subset of the available

functionality, while Figure 1 contains a complete C++ program which briefly demonstrates usage of

the sparse matrix class. Sparse eigendecompositions and linear equation solutions are accomplished

through integration with low-level routines in the de facto standard ARPACK [17] and SuperLU

libraries [18]. The resultant high-level functions automatically take care of the cumbersome and error-

prone low-level management required with these libraries.

In effect, the aggregate of the sparse matrix class, operator overloading and associated functions

on sparse matrices is an instance of a Domain Specific Language (sparse linear algebra) embedded

within the host C++ language [21, 27]. This allows complex algorithms relying on sparse matrices

to be easily developed and integrated within a larger C++ program, making the sparse matrix class

directly useful in application/product development.

#include <armadillo>

using namespace arma;

int main()

{

// generate random sparse 1000x1000 matrix with 1% density of non-zero values,

// with uniform distribution of values in the [0,1] interval

sp_mat A = sprandu(1000, 1000, 0.01);

// multiply A by its transpose

sp_mat B = A * A.t();

// add scalar to main diagonal

B.diag() += 0.1;

// declare dense vector and matrix

vec eigvals; mat eigvecs;

// find 3 eigenvectors with largest magnitude

eigs_sym(eigvals, eigvecs, B, 3);

return 0;

}

Figure 1: A small C++ program to demonstrate usage of the sparse matrix class.

Function Description

sp mat X(100,200) Declare sparse matrix with 100 rows and 200 columns

sp cx mat X(100,200) As above, but use complex elements

X(1,2) = 3 Assign value 3 to element at location (1,2) of matrix X

X = 4.56 * A Multiply matrix A by scalar

X = A + B Add matrices A and B

X = A * B Multiply matrices A and B

X = kron(A, B) Kronecker tensor product of matrices A and B

X(span(1,2), span(3,4)) Provide read/write access to submatrix of X

X.diag(k) Provide read/write access to diagonal k of X

X.print() Print matrix X to terminal

X.save(filename, format) Store matrix X as a file

speye(rows, cols) Generate sparse matrix with values on diagonal set to one

sprandu(rows, cols, density) Generate sparse matrix with random non-zero elements

sum(X, dim) Sum of elements in each column (dim=0) or row (dim=1)

min(X, dim); max(X, dim) Obtain extremum value in each column (dim=0) or row (dim=1)

X.t() or trans(X) Return transpose of matrix X

repmat(X, rows, cols) Replicate matrix X in block-like fashion

norm(X, p) Compute p-norm of vector or matrix X

normalise(X, p, dim) Normalise each column (dim=0) or row (dim=1) to unit p-norm

trace(A.t() * B) Compute trace of ATB without explicit transpose and multiplication

diagmat(A + B) Obtain diagonal matrix from A + B without full matrix addition

eigs gen(eigval, eigvec, X, k) Compute k largest eigenvalues and eigenvectors of matrix X

svds(U, s, V, X, k) Compute k singular values and singular vectors of matrix X

X = spsolve(A, b) Solve sparse system Ax = b for x

Table 1: Selected functionality of the sparse matrix class, with brief descriptions. Several optional additional

arguments have been omitted for brevity. See http://arma.sourceforge.net/docs.html#SpMat for more detailed

documentation.

3 Template-Based Optimisation of Compound Expressions

The sparse matrix class uses a delayed evaluation approach, allowing several operations to be com-

bined to reduce the amount of computation and/or temporary objects. In contrast to brute-force

evaluations, delayed evaluation can provide considerable performance improvements as well as re-

duced memory usage [32]. The delayed evaluation machinery is accomplished through template meta-

programming [1, 31], where a type-based signature of a compound expression (set of consecutive math-

ematical operations) is automatically constructed. The C++ compiler is then automatically induced

to detect common expression patterns at compile time, followed by selecting the most computationally

efficient implementations.

As an example of the possible efficiency gains, let us consider the expression trace(A.t() * B),

which often appears as a fundamental quantity in semidefinite programs [30]. These computations are

thus used in a wide variety of diverse fields, most notably machine learning [5, 13, 16]. A brute-force

implementation would evaluate the transpose first, A.t(), and store the result in a temporary matrix

T1. The next operation would be a time consuming matrix multiplication, T1 * B, with the result

stored in another temporary matrix T2. The trace operation (sum of diagonal elements) would then

be applied on T2. The explicit transpose, full matrix multiplication and creation of the temporary

matrices is suboptimal from an efficiency point of view, as for the trace operation we require only the

diagonal elements of the A.t() * B expression.

Template-based expression optimisation can avoid the unnecessary operations. Let us declare two

lightweight objects, Op and Glue, where Op objects are used for representing unary operations, while

http://arma.sourceforge.net/docs.html#SpMat

Glue objects are used for representing binary operations. The objects are lightweight as they do not

store actual sparse matrix data; instead the objects only store references to matrices and/or other Op

and Glue objects. Ternary and more complex operations are represented through combinations of Op

and Glue objects. The exact type of each Op and Glue object is automatically inferred from a given

mathematical expression through template meta-programming.

In our example, the expression A.t() is automatically converted to an instance of the lightweight

Op object with the following type:

Op<sp mat, op trans>

where Op<...> indicates that Op is a template class, with the items between ‘<’ and ‘>’ specifying

template parameters. In this case the Op<sp mat, op trans> object type indicates that a reference to

a matrix is stored and that a transpose operation is requested. In turn, the compound expression

A.t() * B is converted to an instance of the lightweight Glue object with the following type:

Glue< Op<sp mat, op trans>, sp mat, glue times>

where the Glue object type in this case indicates that a reference to the preceding Op object is stored,

a reference to a matrix is stored, and that a matrix multiplication operation is requested. In other

words, when a user writes the expression trace(A.t() * B), the C++ compiler is induced to represent

it internally as trace(Glue< Op<sp mat, op trans>, sp mat, glue times>(A,B)).

There are several implemented forms of the trace() function, one of which is automatically chosen

by the C++ compiler to handle the Glue< Op<sp mat, op trans>, sp mat, glue times> expression. The

specific form of trace() takes references to the A and B matrices, and executes a partial matrix multi-

plication to obtain only the diagonal elements of the A.t() * B expression. All of this is accomplished

without generating temporary matrices. Furthermore, as the Glue and Op objects only hold references,

they are in effect optimised away by modern C++ compilers [31]: the resultant machine code appears

as if the Glue and Op objects never existed in the first place.

The template-based delayed evaluation approach has also been employed for other functions, such

as the diagmat() function, which obtains a diagonal matrix from a given expression. For example, in

the expression diagmat(A + B), only the diagonal components of the A + B expression are evaluated.

4 Underlying Sparse Storage Formats

The three underlying storage formats (CSC, RBT, COO) were chosen to give overall efficient execution

across several use cases, as well as minimising the difficulty of implementation and code maintenance

burden where possible. Specifically, our focus is on the following main use cases:

(i) flexible ad-hoc construction and element-wise modification of sparse matrices via unordered

insertion of elements, where each new element is inserted at a random location;

(ii) incremental construction of sparse matrices via quasi-ordered insertion of elements, where each

new element is inserted at a location that is past all the previous elements according to column-

major ordering;

(iii) multiplication of dense vectors with sparse matrices;

(iv) multiplication of two sparse matrices;

(v) operations involving bulk coordinate transformations, such as flipping matrices column- or row-

wise.

Below we briefly describe each storage format and its benefits and limitations. We use N to

indicate the number of non-zero elements of the matrix, while n rows and n cols indicate the number

of rows and columns, respectively.


0 8 0 0

9 0 6 0

0 0 5 0

0 7 0 0

0 0 0 4

 values
rows

col offsets

9 8 7 6 5 4
1 0 3 1 2 4

0 1 3 5 6

(5, 8)

(1, 9) (11, 6)

(8, 7) (12, 5)

(19, 4)

values
rows

columns

9 8 7 6 5 4
1 0 3 1 2 4
0 1 1 2 2 3

(a) (b) (c) (d)

Figure 2: Illustration of sparse matrix representations: (a) example sparse matrix with 5 rows, 4 columns

and 6 non-zero values, shown in traditional mathematical notation; (b) corresponding CSC representation;

(c) corresponding RBT representation, where each node is expressed by (i, v), with i indicating a linearly

encoded matrix location and v indicating the value held at that location; (d) corresponding COO representation.

Following C++ convention [29], we use zero-based indexing.

4.1 Compressed Sparse Column (CSC)

The CSC format [24] uses column-major ordering where the elements are stored column-by-column,

with consecutive non-zero elements in each column stored consecutively in memory. Three arrays are

used to represent a sparse matrix:

(i) the values array, which is a contiguous array of N floating point numbers holding the non-zero

elements,

(ii) the rows array, which is a contiguous array of N integers holding the corresponding row indices

(ie., the n-th entry contains the row of the n-th element), and

(iii) the col offsets array, which is a contiguous array of n cols+1 integers holding offsets to the values

array, with each offset indicating the start of elements belonging to each column.

Following C++ convention [29], all arrays use zero-based indexing, ie., the initial position in each array

is denoted by 0. For consistency, element locations within a matrix are also encoded as starting at

zero, ie., the initial row and column are both denoted by 0. Furthermore, the row indices for elements

in each column are kept sorted in ascending manner. In many applications, sparse matrices have more

non-zero elements than the number of columns, leading to the col offsets array being typically much

smaller than the values array.

Let us denote the i-th entry in the col offsets array as c[i], the j-th entry in the rows array as r[j],

and the n-th entry in the values array as v[n]. The number of non-zero elements in column i is

determined using c[i+ 1] − c[i], where, by definition, c[0] is always 0 and c[n cols] is equal to N .

If column i has non-zero elements, then the first element is obtained via v[c[i]], and r[c[i]] is the

corresponding row of the element. An example of this format is shown in Figure 2(b).

The CSC format is well-suited for efficient sparse linear algebra operations such as vector-matrix

multiplication. This is due to consecutive non-zero elements in each column being stored next to

each other in memory, which allows modern CPUs to speculatively read ahead elements from the

main memory into fast cache memory [22]. The CSC format is also suited for operations that do not

change the structure of the matrix, such as element-wise operations on the non-zero elements (eg.,

multiplication by a scalar). The format also affords relatively efficient random element access; to

locate an element (or determine that it is not stored), a single lookup to the beginning of the desired

column can be performed, followed by a binary search [6] through the rows array to find the element.

While the CSC format provides a compact representation yielding efficient execution of linear

algebra operations, it has two main disadvantages. The first disadvantage is that the design and

implementation of efficient algorithms for many sparse matrix operations (such as matrix-matrix

multiplication) tend to be non-trivial [3, 24]. This stems not only from the sparse nature of the data,

but also due to the need to (i) explicitly keep track of the column offsets, and (ii) keep the row indices

for elements in each column sorted in ascending manner. In our experience, the process of designing

and implementing efficient matrix processing algorithms in CSC is a time-consuming affair — it is

both finicky and prone to subtle bugs.

The second disadvantage of CSC is the computational effort required to insert a new element [9]. In

the worst-case scenario, memory for three new larger-sized arrays (containing the values and locations)

must first be allocated, the position of the new element determined within the arrays, data from the

old arrays copied to the new arrays, data for the new element placed in the new arrays, and finally

the memory used by the old arrays deallocated. As the number of elements in the matrix grows, the

entire process becomes slower.

There are opportunities for some optimisation, such as using oversized storage to reduce memory

allocations, where a new element past all the previous elements can be readily inserted. However, this

does not help when a new non-zero element is inserted between two existing non-zero elements. It

is also possible to perform batch insertions with some speedup by first sorting all the elements to be

inserted and then merging with the existing data arrays. While the above approaches can be effective,

they require the user to explicitly deal with cumbersome low-level storage details instead of focusing

on high-level functionality.

The CSC format was chosen over the related Compressed Sparse Row (CSR) format [24] for two

main reasons: (i) to ensure compatibility with external libraries such as the SuperLU solver [18], and

(ii) to ensure consistency with the surrounding infrastructure provided by the Armadillo library, which

uses column-major dense matrix representation to take advantage of low-level functions provided by

LAPACK [2].

4.2 Red-Black Tree (RBT)

To address the efficiency problems with element insertion at arbitrary locations, we first represent

each element as a 2-tuple, l = (index, value), where index encodes the location of the element as

index = row + column × n rows. Zero-based indexing is used. This encoding implicitly assumes

column-major ordering of the elements. Secondly, rather than using a simple linked list or an array

based representation, the list of the tuples is stored as a Red-Black Tree (RBT), a self-balancing binary

search tree [6].

Briefly, an RBT is a collection of nodes, with each node containing the 2-tuple described above and

links to two children nodes. There are two constraints: (i) each link points to a unique child node, and

(ii) there are no links to the root node. The index within each 2-tuple is used as the key to identify

each node. An example of this structure for a simple sparse matrix is shown in Figure 2(c). The

ordering of the nodes and height of the tree (number of node levels below the root node) is controlled

so that searching for a specific index (ie., retrieving an element at a specific location) has worst-case

complexity of O(logN). Insertion and removal of nodes (ie., matrix elements), also has the worst-case

complexity of O(logN). If a node to be inserted is known to have the largest index so far (eg., during

incremental matrix construction), the search for where to place the node can be omitted, which in

practice can considerably speed up the insertion process.

With the above element encoding, traversing an RBT in an ordered fashion (from the smallest to

largest index) is equivalent to reading the elements in column-major ordering. This in turn allows for

quick conversion of matrix data stored in RBT format into CSC format. The location of each element

is simply decoded via row = (index mod n rows), and column = bindex/n rowsc, where, for clarity,

bzc is the integer version of z, rounded towards zero. These operations are accomplished via direct

integer arithmetic on CPUs.

In our hybrid storage framework, the RBT format is used for incremental construction of sparse

matrices, either in an ordered or unordered fashion, and a subset of element-wise operations (such

as inplace addition of values to specified elements). This in turn enables users to construct sparse

matrices in the same way they might construct dense matrices—for instance, a loop over elements to

be inserted without regard to storage format.

While the RBT format allows for fast element insertion, it is less suited than CSC for efficient

linear algebra operations. The CSC format allows for exploitation of fast caches in modern CPUs due

to the consecutive storage of non-zero elements in memory [22]. In contrast, accessing consecutive

elements in the RBT format requires traversing the tree (following links from node to node), which

in turn entails accessing node data that is not guaranteed to be consecutively stored in memory.

Furthermore, obtaining the column and row indices requires explicit decoding of the index stored in

each node, rather than a simple lookup in the CSC format.

4.3 Coordinate List Representation (COO)

The Coordinate List (COO) is a general concept where a list L = (l1, l2, · · · , lN) of 3-tuples represents

the non-zero elements in a matrix. Each 3-tuple contains the location indices and value of the element,

ie., l = (row, column, value). The format does not prescribe any ordering of the elements, and a simple

linked list [6] can be used to represent L. However, in a computational implementation geared towards

linear algebra operations [24], L is often represented as a set of three arrays:

(i) the values array, which is a contiguous array of N floating point numbers holding the non-zero

elements of the matrix;

(ii) the rows array, a contiguous array of N integers holding the row index of the corresponding

value; and

(iii) the columns array, a contiguous array of N integers holding the column index of the corresponding

value.

As per the CSC format, all arrays use zero-based indexing, ie., the initial position in each array is 0.

The array-based representation of COO is related to CSC, with the main difference that for each

element the column indices are explicitly stored. This leads to the primary advantage of the COO

format: it can greatly simplify the implementation of matrix processing algorithms. It also tends to be

a natural format many non-expert users expect when first encountering sparse matrices. However, due

to the explicit representation of column indices, the COO format contains redundancy and is hence

less efficient (spacewise) than CSC for representing sparse matrices. An example of this is shown in

Figure 2(d).

To contrast the differences in effort required in implementing matrix processing algorithms in CSC

and COO, let us consider the problem of sparse matrix transposition. When using the COO format

this is trivial to implement: simply swap the rows array with the columns array and then re-sort the

elements so that column-major ordering is maintained. However, the same task for the CSC format

is considerably more specialised: an efficient implementation in CSC would likely use an approach

such as the elaborate TRANSP algorithm by Bank and Douglas [3], which is described through a 47-line

pseudocode algorithm with annotations across two pages of text.

Our initial implementation of sparse matrix transposition used the COO based approach. COO

was used simply due to shortage of available time for development and the need to flesh out other parts

of sparse matrix functionality. When time allowed, we reimplemented sparse matrix transposition to

use the abovementioned TRANSP algorithm. This resulted in considerable speedups, due to no longer

requiring the time-consuming sort operation. We verified that the new CSC-based implementation is

correct by comparing its output against the previous COO-based implementation on a large set of test

matrices.

The relatively straightforward nature of COO format hence makes it well-suited for: (i) func-

tionality contributed by time-constrained and/or non-expert users, (ii) relatively complex and/or

less-common sparse matrix operations, and (iii) verifying the correct implementation of algorithms

in the more complex CSC format. The volunteer driven nature of the Armadillo project makes its

vibrancy and vitality depend in part on contributions received from users and the maintainability

of the codebase. The number of core developers is small (ie., the authors of this paper), and hence

difficult-to-understand or difficult-to-maintain code tends to be avoided, since the resources are simply

not available to handle that burden.

The COO format is currently employed for less-commonly used tasks that involve bulk coordinate

transformations, such as reverse() for flipping matrices column- or row-wise, and repelem(), where a

matrix is generated by replicating each element several times from a given matrix. While it is certainly

possible to adapt these functions to directly use the more complex CSC format, at the time of writing

we have spent our time-constrained efforts on optimising and debugging more commonly used parts

of the sparse matrix class.

5 Automatically Switching Between Storage Formats

To avoid the problems associated with selection and manual conversion between formats, our sparse

matrix class uses a hybrid storage framework that automatically and seamlessly switches between the

data storage formats described in Section 4. By default, matrix elements are stored in CSC format.

When required, data in CSC format is internally converted to either the RBT or COO format, on

which an operation or set of operations is performed. The matrix is automatically converted (‘synced’)

back to the CSC format the next time an operation requiring the CSC format is performed.

The actual underlying storage details and conversion operations are completely hidden from the

user, who may not necessarily be knowledgeable about (or care to learn about) sparse matrix storage

formats. This allows for simplified user code, which in turn increases readability and lowers mainten-

ance. In contrast, other toolkits without automatic format conversion can cause either slow execution

(as a non-optimal storage format might be used), or require many manual conversions. As an example,

Figure 3 shows a short Python program using the SciPy toolkit [23] and a corresponding C++ program

using the hybrid sparse matrix class. Manually initiated format conversions are required for efficient

execution in the SciPy version; this causes both development time and code required to increase. If

the user does not carefully consider the type of their sparse matrix at all times, they are likely to write

inefficient code. In contrast, in the C++ program the format conversion is done automatically and

behind the scenes.

A potential drawback of the automatic conversion between formats is the added computational

cost. However, it turns out that COO/CSC conversions can be done in time that is linear in the

number of non-zero elements in the matrix, and that CSC/RBT conversions can be done at worst in

log-linear time. Since most sparse matrix operations are more expensive (eg., matrix multiplication),

the conversion overhead turns out to be mostly negligible in practice. Below we present straightforward

algorithms for conversion and note their asymptotic complexity in terms of the O notation [6]. This

is followed by discussing practical considerations that are not directly taken into account by the

O notation.

5.1 Conversion Between COO and CSC

Since the COO and CSC formats are quite similar, the conversion algorithms are straightforward. In

fact the only parts of the formats to be converted are the columns and col offsets arrays with the rows

and values arrays remaining unchanged.

The algorithm for converting COO to CSC is given in Figure 4(a). In summary, the algorithm first

determines the number of elements in each column (lines 6-8), and then ensures that the values in the

col offsets array are consecutively increasing (lines 9-10) so that they indicate the starting index of

elements belonging to each column within the values array. The operations listed on line 5 and lines

9-10 each have a complexity of approximately O(n cols), while the operation listed on lines 6-8 has

X = scipy.sparse.rand(1000, 1000, 0.01)

manually convert to LIL format

to allow insertion of elements

X = X.tolil()

X[1,1] = 1.23

X[3,4] += 4.56

random dense vector

V = numpy.random.rand((1000))

manually convert X to CSC format

for efficient multiplication

X = X.tocsc()

W = V * X

sp_mat X = sprandu(1000, 1000, 0.01);

// automatic conversion to RBT format

// for fast insertion of elements

X(1,1) = 1.23;

X(3,4) += 4.56;

// random dense vector

rowvec V(1000, fill::randu);

// automatic conversion of X to CSC

// prior to multiplication

rowvec W = V * X;

Figure 3: Left panel: a Python program using the SciPy toolkit, requiring explicit conversions between sparse

format types to achieve efficient execution; if an unsuitable sparse format is used for a given operation, SciPy

will emit TypeError or SparseEfficiencyWarning. Right panel: A corresponding C++ program using the sparse

matrix class, with the format conversions automatically done by the class.

1 proc COO to CSC

2 input: N , n cols (integer scalars)

3 input: values, rows, columns (COO arrays)

4 allocate array col offsets with length n cols + 1

5 forall j ∈ [0,n cols]: col offsets[j] ← 0

6 forall i ∈ [0, N):

7 j ← columns[i] + 1

8 col offsets[j] ← col offsets[j] + 1

9 forall j ∈ [1,n cols]:

10 col offsets[j]← col offsets[j] + col offsets[j-1]

11 output: values, rows, col offsets (CSC arrays)

1 proc CSC to COO

2 input: N , n cols (integer scalars)

3 input: values, rows, col offsets (CSC arrays)

4 allocate array columns with length N

5 k ← 0

6 forall j ∈ [0,n cols):

7 M ← col offsets[j+1]− col offsets[j]

8 forall l ∈ [0,M):

9 columns[k+l] ← j

10 k ← k + M

11 output: values, rows, columns (COO arrays)

(a) (b)

Figure 4: Algorithms for: (a) conversion from COO to CSC, and (b) conversion from CSC to COO. Matrix

elements in COO format are assumed to be stored in column-major ordering. All arrays and matrix locations

use zero-based indexing. N indicates the number of non-zero elements, while n cols indicates the number of

columns. Details for the CSC and COO arrays are given in Section 4.

a complexity of O(N), where N is the number of non-zero elements in the matrix and n cols is the

number of columns. The complexity is hence O(N + 2n cols). As in most applications the number

of non-zero elements will be considerably greater than the number of columns, the overall asymptotic

complexity in these cases is O(N).

The corresponding algorithm for converting CSC to COO is shown in Figure 4(b). In essence the

col offsets array is unpacked into a columns array with length N . As such, the asymptotic complexity

of this operation is O(N).

5.2 Conversion Between CSC and RBT

The conversion between the CSC and RBT formats is also straightforward and can be accomplished

using the algorithms shown in Figure 5. In essence, the CSC to RBT conversion involves encoding the

1 proc CSC to RBT

2 input: N , n rows, n cols (integer scalars)

3 input: values, rows, col offsets (CSC arrays)

4 declare red-black tree T

5 forall j ∈ [0,n cols):

6 start← col offsets[j]

7 end← col offsets[j+1]

8 forall k ∈ [start, end):

9 index← row indices[k] + j ∗ n rows

10 l← (index, values[k])

11 insert node l into T

12 output: T (red-black tree)

1 proc RBT to CSC

2 input: N , n rows, n cols (integer scalars)

3 input: T (red-black tree)

4 allocate array values with length N

5 allocate array row indices with length N

6 allocate array col offsets with length n cols + 1

7 forall j ∈ [0,n cols]: col offsets[j] ← 0

8 k ← 0

9 foreach node l ∈ T, where l = (index,value):

10 values[k] ← value

11 row indices[k] ← index mod n rows

12 j ← bindex/n rowsc
13 col offsets[j+1] ← col offsets[j+1] + 1

14 k ← k + 1

15 forall j ∈ [1,n cols]:

16 col offsets[j]← col offsets[j] + col offsets[j-1]

17 output: values, rows, col offsets (CSC arrays)

(a) (b)

Figure 5: Algorithms for: (a) conversion from CSC to RBT, and (b) conversion from RBT to CSC. All arrays

and matrix locations use zero-based indexing. N indicates the number of non-zero elements, while n rows and

n cols indicate the number of row and columns, respectively. Details for the CSC arrays are given in Section 4.

location of each matrix element to a linear index, followed by inserting a node with that index and

the corresponding element value into the RBT. The worst-case complexity for inserting all elements

into an RBT is O(N · logN). However, as the elements in the CSC format are guaranteed to be

stored according to column-major ordering (as per Section 4.1), and the location encoding assumes

column-major ordering (as per Section 4.2), the insertion of a node into an RBT can be accomplished

without searching for the node location. While the worst-case cost of O(N · logN) is maintained due

to tree maintenance (ie., controlling the height of the tree) [6], in practice the amortised insertion cost

is typically lower due to avoidance of the search.

Converting an RBT to CSC involves traversing through the nodes of the tree from the lowest to

highest index, which is equivalent to reading the elements in column-major format. The value stored

in each node is hence simply copied into the corresponding location in the CSC values array. The

index stored in each node is decoded into row and column indices, as per Section 4.2, with the CSC

row indices and col offsets arrays adjusted accordingly. The worst-case cost for finding each element

in the RBT is O(logN), which results in the asymptotic worst-case cost of O(N · logN) for the whole

conversion. However, in practice most consecutive elements are in nearby nodes, which on average

reduces the number of traversals across nodes, resulting in considerably lower amortised conversion

cost.

5.3 Practical Considerations

Since the conversion algorithms given in Figures 4 and 5 are quite straightforward, the O notation

does not hide any large constant factors. For COO/CSC conversions the cost is O(N), while for

CSC/RBT conversions the worst-case cost in O(N ·logN). In contrast, many mathematical operations

on sparse matrices have much higher computational cost than the conversion algorithms. Even simply

adding two sparse matrices can be much more expensive than a conversion. Although the addition

operation still takes O(N) time (assuming N is identical for both matrices), there is a lot of hidden

constant overhead, since the sparsity pattern of the resulting matrix must be computed first [24].

A similar situation applies for multiplication of two sparse matrices, which for square matrices takes

O(N + n cols) time [8], but in practice tends to be much slower due to the many passes and extra

overhead of computing the output sparsity structure [3].

Sparse matrix factorisations are much more expensive, meaning that any conversion overhead is

essentially negligible. A sparse LU factorisation is superlinear [15] as well as other factorisations like

the Cholesky factorisation, which costs O(n cols3/2) time [14]. Other factorisations and higher-level

operations exhibit similar complexity characteristics. Given this, the cost of format conversions is

heavily outweighed by the user convenience that they allow.

6 Empirical Evaluation

To empirically demonstrate the usefulness of the hybrid storage framework and the template-based

expression optimisation mechanism, we have performed a set of experiments, measuring the wall-clock

time (elapsed real time) required for:

(i) unordered element insertion into a sparse matrix, where the elements are inserted at random

locations in random order;

(ii) quasi-ordered element insertion into a sparse matrix, where each new inserted element is at a

random location that is past the previously inserted element, under the constraint of column-

major ordering;

(iii) calculation of trace(ATB), where A and B are randomly generated sparse matrices;

(iv) obtaining a diagonal matrix from the (A+B) expression, where A and B are randomly generated

sparse matrices.

In all cases the sparse matrices have a size of 10,000×10,000, with four settings for the density

of non-zero elements: 0.01%, 0.1%, 1%, 10%. The experiments were done on a machine with an

Intel Xeon E5-2630L CPU running at 2 GHz, using the GCC v5.4 compiler. Each experiment was

repeated 10 times, and the average wall-clock time is reported. The wall-clock time measures the total

time taken from the start to the end of each run, and includes necessary overheads such as memory

allocation.

Figure 6 shows the average wall-clock time taken for element insertion done directly using the

underlying storage formats (ie., CSC, COO, RBT, as per Section 4), as well as the hybrid approach

which uses RBT followed by conversion to CSC. The CSC and COO formats use oversized storage

as a form of optimisation (as mentioned in Section 4.1), where the underlying arrays are grown in

chunks of 1024 elements in order to reduce both the number of memory reallocations and array copy

operations due to element insertions.

In all cases bar one, the RBT format is the quickest for insertion, generally by one or two orders

of magnitude. The conversion from RBT to CSC adds negligible overhead. For the single case of

quasi-ordered insertion to reach the density of 0.01%, the COO format is slightly quicker than RBT.

This is due to the relatively simple nature of the COO format, as well as the ordered nature of the

element insertion where the elements are directly placed into the oversized COO arrays (ie., no sorting

required). Furthermore, due to the very low density of non-zero elements and the chunked nature

of COO array growth, the number of reallocations of the COO arrays is relatively low. In contrast,

inserting a new element into RBT requires the allocation of memory for a new node, and modifying

the tree to append the node. For larger densities (≥ 0.1%), the COO element insertion process quickly

becomes more time consuming than RBT element insertion, due to to an increased amount of array

reallocations and the increased size of the copied arrays. Compared to COO, the CSC format is more

complex and has the additional burden of recalculating the column offsets (col offsets) array for each

inserted element.

0.01% 0.1% 1% 10%

density

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

ti
m

e
 (

s
e

c
o

n
d

s
)

CSC
COO

RBT
Hybrid: RBT + CSC

(a)

0.01% 0.1% 1% 10%

density

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

ti
m

e
 (

s
e

c
o

n
d

s
)

CSC
COO

RBT
Hybrid: RBT + CSC

(b)

Figure 6: Wall-clock time taken to insert elements into a 10,000×10,000 sparse matrix to achieve various

densities of non-zero elements. In (a), the elements are inserted at random locations in random order. In (b),

the elements are inserted in a quasi-ordered fashion, where each new inserted element is at a random location

that is past the previously inserted element, using column-major ordering.

0.01% 0.1% 1% 10%

density

10 -3

10 -2

10 -1

10 0

10 1

10 2

ti
m

e
 (

s
e

c
o

n
d

s
)

 no expression optimisation
 with expression optimisation

(a)

0.01% 0.1% 1% 10%

density

10 -4

10 -3

10 -2

10 -1

10 0

ti
m

e
 (

s
e

c
o

n
d

s
)

 no expression optimisation
 with expression optimisation

(b)

Figure 7: Wall-clock time taken to calculate the expressions (a) trace(A.t()*B) and (b) diagmat(A + B), where

A and B are randomly generated sparse matrices with a size of 10,000×10,000 and various densities of non-zero

elements. The expressions were calculated with and without the aid of the template-based optimisation of

compound expression described in Section 3. As per Table 1, X.t() returns the transpose of matrix X, while

diagmat(X) returns a diagonal matrix constructed from the main diagonal of X.

Figure 7 shows the wall-clock time taken to calculate the expressions trace(A.t()*B) and

diagmat(A+B), with and without the aid of the automatic template-based optimisation of compound

expression described in Section 3. For both expressions, employing expression optimisation leads to

considerable reduction in the wall-clock time. As the density increases (ie., more non-zero elements),

more time is saved via expression optimisation.

For the trace(A.t()*B) expression, the expression optimisation computes the trace by omitting

the explicit transpose operation and performing a partial matrix multiplication to obtain only the

diagonal elements. In a similar fashion, the expression optimisation for the diagmat(A+B) expression

directly generates the diagonal matrix by performing a partial matrix addition, where only the diagonal

elements of the two matrices are added. As well as avoiding full matrix addition, the generation of a

temporary intermediary matrix to hold the complete result of the matrix addition is also avoided.

7 Conclusion

Motivated by a lack of easy-to-use tools for sparse matrix development, we have proposed and imple-

mented a sparse matrix class in C++ that internally uses a hybrid storage framework. The framework

automatically and seamlessly switches between several underlying formats, depending on which format

is best suited and/or available for specific operations. This allows the user to write sparse linear algebra

without requiring to consider the intricacies and limitations of various storage formats. In addition, a

template meta-programming framework is used to automatically optimise several common expression

patterns, resulting in faster execution.

The source code for the sparse matrix class and its associated functions is included in recent

releases of the cross-platform and open-source Armadillo linear algebra library [25], available from

http://arma.sourceforge.net. The code is provided under the permissive Apache 2.0 license [28], al-

lowing unencumbered use in both open-source projects and commercial closed-source products.

The sparse matrix class has already been successfully used in open-source projects such as the

mlpack library for machine learning [7], and the ensmallen library for mathematical function optim-

isation [4]. In both cases the sparse matrix class is used to allow various algorithms to be run on

either sparse or dense datasets. Furthermore, bi-directional bindings for the class are provided to the

R environment via the Rcpp bridge [12].

Future avenues for exploration include integrating more specialised matrix formats in order to

automatically speed up specific operations. For example, the Skyline formats [10] are useful for

Cholesky factorisation and related operations, while the compressed diagonal storage format [24] can

be used for operations on the main diagonal.

Acknowledgements

We would like to thank our colleagues at the University of Queensland (Ian Hayes, George Havas,

Arnold Wiliem) and Data61/CSIRO (Dan Pagendam, Josh Bowden, Regis Riveret) for discussions

leading to the improvements of this article.

References

[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and Techniques from

Boost and Beyond. Addison-Wesley Professional, 2004.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM, 1999.

[3] R. E. Bank and C. C. Douglas. Sparse matrix multiplication package (SMMP). Advances in Computational

Mathematics, 1(1):127–137, 1993.

[4] S. Bhardwaj, R. Curtin, M. Edel, Y. Mentekidis, and C. Sanderson. ensmallen: a flexible C++ library for

efficient function optimization. arXiv:1810.09361, 2018.

[5] N. Boumal, V. Voroninski, and A. Bandeira. The non-convex Burer-Monteiro approach works on smooth

semidefinite programs. In Advances in Neural Information Processing Systems, pages 2757–2765, 2016.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 3rd

edition, 2009.

[7] R. Curtin, M. Edel, M. Lozhnikov, Y. Mentekidis, S. Ghaisas, and S. Zhang. mlpack 3: a fast, flexible

machine learning library. Journal of Open Source Software, 3:726, 2018.

[8] T. A. Davis. Direct methods for sparse linear systems. SIAM, 2006.

[9] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of direct methods for sparse linear

systems. Acta Numerica, 25:383–566, 2016.

[10] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Oxford University Press,

2nd edition, 2017.

http://arma.sourceforge.net

[11] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Octave 4.2 Reference Manual. Samurai

Media Limited, 2017.

[12] D. Eddelbuettel and C. Sanderson. RcppArmadillo: Accelerating R with high-performance C++ linear

algebra. Computational Statistics & Data Analysis, 71:1054–1063, 2014.

[13] L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertain data. SIAM Journal

on Matrix Analysis and Applications, 18(4):1035–1064, 1997.

[14] A. George and E. Ng. On the complexity of sparse QR and LU factorization of finite-element matrices.

SIAM Journal on Scientific and Statistical Computing, 9(5):849–861, 1988.

[15] J. R. Gilbert, X. S. Li, E. G. Ng, and B. W. Peyton. Computing row and column counts for sparse QR

and LU factorization. BIT Numerical Mathematics, 41(4):693–710, 2001.

[16] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel matrix

with semidefinite programming. Journal of Machine Learning Research, 5:27–72, 2004.

[17] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue

Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

[18] X. S. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Transactions on

Mathematical Software (TOMS), 31(3):302–325, 2005.

[19] P. Liniker, O. Beckmann, and P. H. Kelly. Delayed evaluation, self-optimising software components as a

programming model. In European Conference on Parallel Processing - Euro-Par 2002. Lecture Notes in

Computer Science (LNCS), volume 2400, pages 666–673, 2002.

[20] MathWorks. MATLAB Documentation - Accessing Sparse Matrices. https://www.mathworks.com/help/

matlab/math/accessing-sparse-matrices.html, 2018.

[21] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific languages. ACM

Computing Surveys, 37(4):316–344, 2005.

[22] S. Mittal. A survey of recent prefetching techniques for processor caches. ACM Computing Surveys,

49(2):35:1–35:35, 2016.

[23] J. Nunez-Iglesias, S. van der Walt, and H. Dashnow. Elegant SciPy: The Art of Scientific Python. O’Reilly

Media, 2017.

[24] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report NASA-CR-185876,

NASA Ames Research Center, 1990.

[25] C. Sanderson and R. Curtin. Armadillo: a template-based C++ library for linear algebra. Journal of Open

Source Software, 1:26, 2016.

[26] C. Sanderson and R. Curtin. A user-friendly hybrid sparse matrix class in C++. In Mathematical Software

- ICMS 2018. Lecture Notes in Computer Science (LNCS), volume 10931, pages 422–430, 2018.

[27] M. Scherr and S. Chiba. Almost first-class language embedding: taming staged embedded DSLs. In ACM

SIGPLAN International Conference on Generative Programming: Concepts and Experiences, pages 21–30,

2015.

[28] A. St. Laurent. Understanding Open Source and Free Software Licensing. O’Reilly Media, 2008.

[29] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 4th edition, 2013.

[30] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, 1996.

[31] D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide. Addison-Wesley, 2nd edition,

2017.

[32] T. L. Veldhuizen. C++ templates as partial evaluation. In ACM SIGPLAN Workshop on Partial Evaluation

and Semantics-Based Program Manipulation, pages 13–18, 1999.

https://www.mathworks.com/help/matlab/math/accessing-sparse-matrices.html
https://www.mathworks.com/help/matlab/math/accessing-sparse-matrices.html

	1 Introduction
	2 Functionality
	3 Template-Based Optimisation of Compound Expressions
	4 Underlying Sparse Storage Formats
	4.1 Compressed Sparse Column (CSC)
	4.2 Red-Black Tree (RBT)
	4.3 Coordinate List Representation (COO)

	5 Automatically Switching Between Storage Formats
	5.1 Conversion Between COO and CSC
	5.2 Conversion Between CSC and RBT
	5.3 Practical Considerations

	6 Empirical Evaluation
	7 Conclusion

