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CHAPTER 1

THE POINT

This large body of work is entirely centered around dual-tree algorithms, a class of algo-

rithm based on spatial indexing structures that often provide large amounts of acceleration

for various problems. This work focuses on understanding dual-tree algorithms using a

new, tree-independent abstraction, and using this abstraction to develop new algorithms.

Stated more clearly, the thesis of this entire work is that we may improve and expand

the class of dual-tree algorithms by focusing on and providing improvements for each of the

three independent components of a dual-tree algorithm: the type of space tree, the type of

pruning dual-tree traversal, and the problem-specific BaseCase() and Score() functions.

I demonstrate this by expressing many existing dual-tree algorithms in the tree-independent

framework, and focusing on improving each of these three pieces.

After historical trivia and an introduction to trees in Chapter 2, Chapter 3 introduces the

tree-independent dual-tree algorithm abstraction and notation which will be used through-

out the document. Chapter 4 describes mlpack, the C++ machine learning library in which

most of the advancements in this thesis are implemented. Then, the focus turns to each of

the three components of dual-tree algorithms; Chapter 5 focuses on trees, Chapter 6 focuses

on pruning dual-tree traversals, and Chapter 7 (a much longer chapter) focuses on new or

improved dual-tree algorithms to solve various tasks that are generally related to machine

learning. Finally, Chapter 8 concludes the work and sets the stage for all of the potential

interesting directions I was not able to consider during my work on this thesis.

An important note is that this document is probably not best read cover-to-cover. Only

an insane person would do that. Instead, the thesis is more effectively used as a piecemeal

reference. As a result, most sections are readable as standalone sections, and where neces-

sary they will reference previous chapters or sections. Therefore, reading about a particular

algorithm can generally be done in a depth-first manner, following link chains to learn all

1



necessary background. Nonetheless, the document is arranged such that it could be read

serially, in order to appease any readers who are insane.
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CHAPTER 2

INTRODUCTION

2.1 An abridged history of statistical computing

Statistical computing as a field first became relevant in the 1920s and 1930s with the

widespread adoption of early IBM punched card tabulators [1], after their initial intro-

duction in the late 1800s [2]. These machines made the computation of statistics on non-

trivial sets of data feasible (such as the early iris flower dataset by Fisher [3]). Then, the

1940s saw the invention of the transistor [4] and digital computing machines [5], allowing

general-purpose computational engines to be easily available from the 1950s onwards [6].

These advancements allowed entirely new types of questions to be answered: data-

driven questions. One of the earliest of these to gain popularity was the nearest-neighbor

distance [7, 8, 9], which led to the well-known nearest neighbor rule for classification

[10]. Numerous other data-driven algorithms for various tasks appeared: neural networks

[11], minimum spanning trees [12], the fast Fourier transform [13], maximum-likelihood

estimation [14], density estimation [15], sorting [16], matrix decompositions [17], and an

enormous host of algorithms for countless tasks.

However, the size of the problems continued to grow. The advent of the microprocessor

in 1971 [18], the introduction of the “1977 Trinity” [19]—the Apple II, the Commodore

PET, and the TRS-80—and the fulfillment of Moore’s law [20] meant that an entirely new

generation of programmers and scientists could apply the algorithms of the 1960s and

1970s to continually larger and more difficult problems as computational barriers were

demolished.

The trends of increasing computational power leading to increasing dataset size in an

interesting positive feedback loop are still in effect today. Virtually every presentation

and publication in the field of machine learning, data mining, and statiatical analysis has

the same introduction depicting the “data deluge” as a giant computational problem that is

3



increasingly insurmountable—except with the methods described in that particular publica-

tion, of course. Even the popular media has latched onto this phenomenon, with numerous

articles devoted to “big data” [21, 22, 23].

Still, one thing that redundant presentation introductions and media outlets alike all

have correct is that computational advances are continually pushing the bounds of dataset

sizes upwards. This highlights the ever-increasing importance of algorithms that scale well

with dataset size, which justifies the study and development of scalable algorithms—and

that is the focus of this thesis.

2.2 A less abridged history of the development of trees

When considering large datasets, there are two commonly-employed general approaches:

sampling and trees1. The sampling school of thought states that not all of the data is neces-

sary: only some small amount of the data is necessary to obtain an approximate solution.

This approach is heavily used in the kernel methods subgenre of the machine learning com-

munity [24, 25]. The tree-based school of thought states that a dataset may be represented

hierarchically: we may select a few points that represent the data at a very high level, then

some points that represent the data at a medium level, then many points that reflect the data

at a low level, then finally the data itself at the lowest level. This thesis is concerned solely

with understanding and improving the second strategy; therefore, an in-depth discussion

of sampling approaches is not found here. That may be found elsewhere [26, 27]. In this

section, we discuss the history of tree-based algorithms with an eye towards the generalized

tree-based algorithm framework that this thesis is largely based on [28].

In the previous section, the nearest-neighbor rule for classification was briefly men-

tioned [10]. This task is our jumping-off point for trees, so let us consider it formally2. We

are given some reference dataset S r full of reference points pr ∈ S r; each reference point

1Surely I have not considered every possible approach, but these two are quite standard. It is also worth
noting that these approaches are not exclusive: for instance, one may build a tree on sampled data.

2This statement of the problem is not true to the original notation. But it is consistent with the rest of the
document.
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pr is associated with some class cr, We are also given some query point pq. Our task is to

predict cq.

The nearest neighbor rule for classification states that cq = cnn, where cnn corresponds

to pnn, which is the nearest neighbor of pq in S r:

pnn = argmin
pr∈S r

d(pq, pr) (1)

for some distance metric d(·, ·). At first glance—and in the first implementation—pnn is

simply calculated by iterating over all points in S r and saving the best result. If the size

of S r is N, this takes O(N) time per query point pq. While modern computing equipment

runs this algorithm in reasonable time for N in the hundreds of thousands, larger datasets

present severe computational challenges, and if there exists a sizeable query set S q instead

of just a single query point pq, the scaling issues are even more severe.

In 1974, Finkel and Bentley [29] proposed a multidimensional binary space tree called

a ‘quadtree’, in the context of information retrieval systems and databases. The quadtree is

a hierarchical indexing structure that requires the data S r to lie in two dimensions. The top

level (the root) of a quadtree corresponds to a square which encompasses the entire dataset

S r. The root has up to four children, each corresponding to the four half-size squares that

fit in the square represented by the root. Each of these children is split in the same way

recursively until the node contains at most some specified number of points (call this the

leaf size), and these leaf nodes contain each of the points in S r which lie in the square

represented by the leaf node.

A quadtree may be best explained visually; to that end, Figure 1 displays the abstract

N8 N9N4 N5 N6 N7N0 N1 N2 N3

N14

N15

N12 N13

N10

N11

Figure 1: Abstract representation of an example quadtree.
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(a) Points in dataset.

N15

(b) Root level.

N13

N11 N12

N14

(c) Second level.

N0 N1

N2 N3

N4 N5

N6 N7

N8 N9

N10

(d) Third level.

Figure 2: Geometric representation of the same example quadtree.

representation of an example quadtree, and Figure 2 display the representation of three

levels in R2 of the same example quadtree. The points (Figure 2a) all lie in the square

represented by the root node N15 (Figure 2b). Then, N15 is split into four children: N11,

N12, N13, and N14; each of these correspond to a square with half the side length as N15.

Then, if the node contains more than three points3, it is split again; yielding the lowest

level of nodes, shown in Figure 2d (note that in this last figure, the points held in N14 are

3Three, the leaf size here, is selected arbitrarily. Different choices are of course possible.
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not shown). The node which would be the fourth child of N13 does not hold any points—

therefore, it does not need to be a part of the tree. Quadtrees built on larger or different

datasets have the same type of structure.

Finding the nearest neighbor of S r using a quadtree amounts to a depth-first search with

backtracking where at any time the nearest neighbor candidate p̂nn is cached4. Then, if the

minimum distance between pq and the square represented by any node Ni is greater than

d(pq, p̂nn), then no descendant point of Ni can possibly hold the nearest neighbor of pq, and

the search does not need to recurse into any children of Ni. In this way, the search for pnn

is greatly accelerated and takes far less than O(N) time for a single query point.

The quadtree was later generalized, in 1980, to the octree [30], which works in three

dimensions instead of two. Each node in an octree has eight children, instead of four.

Further generalization to arbitrary dimensions is possible, but has a clear problem: in d

dimensions, each node will have up to 2d children.

As an effort to work around this unfavorable exponential dependence on dimension,

in 1975, Bentley [31] proposed the kd-tree: this structure is far more effective in high-

dimensional settings. The idea is simple and related to the quadtree: given a dataset S r ∈

Rd, we build a hierarchical structure where each node in the hierarchy corresponds to some

region of Rd. In a kd-tree, each node Ni may have a left child and a right child. Splitting

the region represented by a node Ni into the region represented by its left child Nl and

right child Nr may be done many ways, but it always involves an axis-aligned split. This

means choosing a dimension to split on (often dimensions are chosen sequentially or as

the dimension with maximum data variance) and choosing a value to split on (often the

median or mean of the data in the chosen split dimension). The left child will correspond

to the region required to encompass the data with value less than the split value in the split

dimension, and the right child will correspond to the region required to encompass the data

with value greater than or equal to the split value in the split dimension.

4I am hand-waving here, but a detailed algorithm will be given shortly.
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N8 N9

N4 N5 N6 N7N0 N1 N2 N3

N14

N12 N13

N10 N11

Figure 3: Abstract representation of an example kd-tree.

The kd-tree is visually described in Figure 3, as an abstract tree, and in Figures 4 and 5,

in R2. Similar to the quadtree, the root node encompasses all of the points. The first split

dimension is along the horizontal axis; points with horizontal axis value less than the split

value are grouped into the left node (N12) and points with horizontal axis value greater than

the split value are grouped into the right node (N13). Note that the bounding rectangles for

the child nodes are the smallest bounding rectangles that contain all of the points, so they

N14

(a) Top level.

N12

N13

(b) Second level.

Figure 4: Geometric representation of the same example kd-tree (top two levels).
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N8

N9

N10

N11

(a) Third level.

N0

N1

N2

N3

N4

N5

N6 N7

(b) Lowest level (leaves).

Figure 5: Geometric representation of the same example kd-tree (bottom two levels).

may be smaller than the split rectangles of the root. For instance, node N1 (Figure 5b)

contains only one point and is thus a rectangle with zero area (i.e. just a point).

The use of a kd-tree to perform nearest neighbor search is similar to the use of a

quadtree. An algorithm is given in Algorithm 1. This algorithm is a depth-first traversal

that begins at the root of the kd-tree node, and caches a current nearest neighbor candidate

Algorithm 1 kd nn(): nearest neighbor search using a kd-tree.
1: Input: query point pq, reference kd-tree node Nr

{Prune if possible.}
2: if dmin(pq,Nr) > d(pq, p∗r) then
3: return

{Perform base cases.}
4: if Nr is a leaf then
5: for all points pr held in Nr do
6: if d(pq, pr) < d(pq, p∗r) then
7: p∗r ← pr

{Recurse.}
8: if Nr is a leaf then
9: return

10: else
11: kd nn(pq, left child of Nr)

12: kd nn(pq, right child of Nr)

9



p∗r . The recursion traverses the tree, attempting to prune based on geometric reasoning: if

the minimum distance between a node Nr and pq, denoted dmin(Nq,Nr), is greater than the

distance between pq and its current nearest neighbor candidate, then we can reason that no

point held in any descendant node of Nr can possibly be closer to pq than p∗r , and thus we

can prune that node. This check is performed in line 2.

If a node is not pruned, and it is a leaf node (that is, if it has no children), then each point

in the node is compared with pq in an attempt to improve the nearest neighbor candidate p∗r

(lines 5–7).

At the end of the traversal, p∗r will contain the nearest neighbor of pq that is in S r. This

is easy to prove: one may first show that if no pruning occurs, p∗r will be correct because

every point in S r will be searched. Then, one must simply show that the pruning rule never

prunes away any point which could be the nearest neighbor of pq, and correctness is thus

proven. Despite the fact that the search performs backtracking, an expected runtime of

O(log N) can be shown [31, 32].

Extension of Algorithm 1 to the quadtree case simply involves modifying the recursion

to visit each of the quadtree’s four children (as opposed to the kd-tree’s two). Further exten-

sions and improvements of the algorithm as given do exist; Algorithm 1 differs wildly from

Friedman’s implementation [32], but the goal here is to present the algorithm as simply as

possible for discussion purposes.

2.3 The explosion of single-tree algorithms

The nearest neighbor search algorithm for kd-trees given in the previous section (and its

quadtree extension) may be referred to as single-tree algorithms5, as they construct a single

tree on the reference dataset and traverse the tree in order to solve the problem. But nearly

simultaneous to Bentley’s developments was Fukunaga’s exploration of a more generalized

5The term single-tree algorithm is probably specific to myself and other members of Alex Gray’s lab; these
algorithms may also be known in other circles as tree-based algorithms, tree algorithms, and/or branch-and-
bound algorithms. I will, however, use my term, in order to differentiate between single-tree and dual-tree
algorithms.
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branch-and-bound algorithm for finding k-nearest neighbors [33], except for that the tree

structure proposed differed significantly: the children are created by running the k-means

clustering algorithm. This structure may be referred to as the k-means tree, and was also

applied to clustering [34] and feature selection [35].

These handful of algorithms spurred the development of numerous algorithms; a partial

list (with quick descriptions of the problem being solved) is given below.

• minimum spanning tree calculation [36]: given a dataset S r, calculate the spanning

tree with minimum total edge distance.

• range search [37]: given a query point pq, a range [l, u], and a reference dataset S r,

find every point in S r with distance to pq in the range [l, u].

• approximate nearest neighbor search [38]: given a query point pq and a reference

set S r, find the approximate nearest neighbor of pq; there are a multitude of approx-

imation schemes, but the most common is probably relative-value approximation,

where the nearest neighbor returned must have distance no more than (1 + ε) times

the true nearest neighbor distance.

• k-means clustering [39]: given a dataset S r and a number k, find k clusters by mini-

mizing the within-cluster sum of squared distances.

• training Gaussian mixture models [40]: given a dataset S r and a number k, fit k

Gaussians to S r.

• ray tracing [41]: given a collection of objects, light sources, and a camera loca-

tion, trace the path of light through the space and account for its interaction with the

objects; a common application is the generation of realistic images.

• solving the gravitational n-body problem [42]: given a set of particles S r, calculate

the gravitational force on a query particle pq exerted by every particle in S r (often,

instead of a single query particle pq, results are required for every particle in S r).
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• Gaussian process regression [43]: a flexible regression technique that interpolates

the observations and allows confidence intervals for predictions.

• kernel regression [44]: a regression technique where given a kernel function and a

dataset S r, the prediction at a particular query point pq is a weighted combination of

the predictions for points in S r.

• maximum inner product search [45]: given a dataset S r and a query point pq, find

the point in S r with maximum inner product with pq.

• max-kernel search [46]: a generalization of maximum inner product search; given

a kernel function K(·, ·), a dataset S r, and a query point pq, find the point in S r with

maximum kernel function evaluation with pq.

These are only a few of the countless existing single-tree algorithms. These algorithms,

as proposed, often used various different types of tree structures; sometimes, tree structures

were proposed independently. In general, each single-tree algorithm above is adaptable to

different types of trees, but at that time there was no formalized notion of tree or single-tree

algorithm and thus each adaptation required special handling and care.

2.4 A smorgasboard of trees

We have only discussed the kd-tree and quadtree in any detail, but it should be clear that

the design space for trees is enormous. Roughly speaking, a tree is any sort of hierarchical

indexing structure, and there is huge flexibilty in how the children of a node are selected

and created. Some trees are known to work better for some problems than others, and some

trees work better for certain types of data than others. This no-clear-winner conundrum

led to incomprehensible numbers of different techniques for tree-building and a mystifying

assortment of different trees suited to different tasks. A partial list of many tree types is

given below; note that it is (very) incomplete! An important observation is how different

the structures of these trees are.
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• quadtree [29] (1974): splits 2-d space into four nodes.

• kd-tree [31] (1975): splits data according to axis-aligned splits; has two children.

• k-means tree [33] (1975): data is split using k-means clustering, recursively.

• octrees [30] (1980): a generalization of quadtrees to 3 dimensions, with 8 children

for each node.

• R trees [47] (1984): a height-balanced tree similar to the B tree, optimized for dy-

namic insertions and removals.

• ball trees [48] (1989 or earlier): each node represents a ball in the input space; nodes

may end up overlapping depending on the construction technique used.

• R* trees [49] (1990): a modified R tree which has better optimization of node area

during point insertion.

• vantage-point trees [50] (1993) / metric trees [51] (1991): each (ball-shaped) node

has two children: one child corresponds to those points near the center of the ball,

and the other corresponds to the points far away from the center.

• Hilbert R trees [52] (1994): an improvement on older R tree variants, which forces

a linear ordering on the nodes to improve search time.

• TV trees [53] (1994): indexes high-dimensional data by ignoring all but a few fea-

tures.

• X trees [54] (1996): an optimization of R trees to high-dimensional settings that uses

‘supernodes’.

• principal axis trees [55] (2001): each node splits its children along the principal

axis of its subset of the data.
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• spill trees [56] (2004): a modified kd-tree which allows nodes to overlap and points

to be held in multiple leaves; developed for approximate nearest neighbor search.

• cover trees [57] (2006): a fascinatingly complex tree structure specialized for prov-

ing worst-case runtime bounds with respect to properties of the dataset.

• cosine trees [58] (2008): the cosine similarity is used to split points into “similar”

and “dissimilar” points.

• max-margin trees [59] (2012): a binary tree where each node split enforces a robust

separation of the data, in order to minimize the number of nodes searched to find the

true nearest neighbor.

• cone trees [45] (2012): each node corresponds to those points which lie in a cone

around a vector; this is specialized for maximum inner-product search.

In general, every tree type listed above can be used to solve each of the problems listed

in the previous section, but often some amount of adaptation is necessary. For instance,

the nearest neighbor search algorithm for the cover tree [57] differs significantly from the

nearest neighbor search algorithm as given in Algorithm 1.

2.5 The fast multipole method and query amortization

The intuition that eventually led to this thesis was developed at approximately the same

time as the author in 1987; it is a well-known algorithm called the ‘fast multipole method’

(or more colloquially, ‘FMM’) for the calculation of pairwise interactions of particles in

particle simulations, due to Greengard and Rokhlin [60]6. To demonstrate the advancement

of Greengard and Rokhlin’s algorithm, let us first consider an incrementally older single-

tree algorithm by Barnes and Hut [42] that solves the same problem.

6Was the fast multipole method the first algorithm to amortize work over query points? Maybe not—but
it is certainly the earliest well-known work that could be considered a dual-tree algorithm, and the eventual
development of dual-tree algorithms traces its origins directly to Greengard and Rokhlin’s algorithm [61].
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Algorithm 2 Barnes-Hut force calculation for quadtrees: bh quadtree().
1: Input: quadtree node Ni, particle pq, approximation parameter θ, force estimate F̂q.

{Attempt to approximate and prune, if possible.}
2: if

(
sidelength(Ni) / d(pq, com(Ni))

)
< θ then

3: F̂q ← F̂q +

(
G mq tw(Ni)(pq−com(Ni))

‖pq−com(Ni)‖3

)
4: return

{If we are a leaf, add the exact contributions of the points we hold.}
5: if Ni is a leaf then
6: for all points pi held in Ni do
7: F̂q ← F̂q +

(
G mqmi(pq−pi)

|pq−pi |3

)
{Recurse into children.}

8: for all children Nc of Ni do
9: Call bh quadtree() with Nc and pq.

Our problem is to solve the gravitational N-body problem: we are given some set S r

of points which generally lie in either R2 or R3 at time t. Our task is to compute (approx-

imately) the position of each of the particles in S r at time t + ε for some given time step

ε. Given that each point pi ∈ S r has mass mi, the core of this task may be expressed as

computing the force Fi on each point pi ∈ S r:

Fi = −
∑

p j,pi,p j∈S r

G
mim j(pi − p j)
‖pi − p j‖

3 . (2)

Notice that as ‖pi− p j‖ becomes large, the force interaction between pi and p j becomes

very small. Therefore, if we allow some amount of approximation, we may ignore or

approximate those calculations where pi and p j are very far apart. This reasoning is similar

enough to the type of reasoning used to prune away nearest neighbor search that it is not

too hard to see the outlines of a single-tree algorithm. In Algorithm 2, we show psuedocode

for Barnes and Hut’s O(N log N) algorithm for solving this problem, specialized to R2 and

assuming a quadtree T has been built on S r. When the quadtree is built, the center-of-mass

of each node, denoted com(·), is calculated and cached, as well as the total weight, denoted

tw(·).
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The exposition here differs significantly from—and is far more readable than—the ar-

cane SCHEME code given in the original paper [42]. Given some query point pq ∈ S r,

some approximation parameter θ ∼ 1, and starting at the root of T , the algorithm calcu-

lates F̂q, an approximation to Fq. As θ is increased, the approximation at line 3 happens at

higher and higher levels of the recursion.

A rough expected-time analysis by Barnes and Hut shows that the force calculation for

a single point takes O(log N) time assuming a homogenous mass distribution over S r. This

means the time to calculate the force for every particle—and thus to perform the N-body

simulation for a single time-step—takes O(N log N) time.

An important note about Barnes and Hut’s algorithm is that we must iterate over every

point in S r for a single time step. However, this is not strictly necessary, and Greengard and

Rokhlin’s FMM (which can be seen, with some mental gymnastics, as the ‘first dual-tree

algorithm’) shares work across points in S r.

The details of the FMM are quite complex and for the sake of this discussion unnec-

essary, but the entire algorithm depends on the multipole expansion, which is, roughly, an

approximation of Equation 2 as an order-p polynomial (the choice of p controls the ap-

proximation level, unlike θ in Barnes and Hut’s algorithm). The key observation is that

given some multipole expansion about some point pi, we may translate the expansion to

be about some other point p j. Thus, we can form multipole expansions about the centers

of the various nodes in our tree, and translate them to the centroids of other nodes.

The algorithm itself, then, consists of two passes over a tree: an upward pass, where

multipole expansions are computed about nodes in the tree, and a downward pass, where

these pre-computed multipole expansions are translated to other nodes in the tree and ex-

panded to provide a force estimate for each point in S r. This only requires two passes over

the tree, and Greengard and Rokhlin claimed worst-case O(N) running time (for |S r| = N).

This claim was later contested by Aluru [62]; however, the FMM is known to scale linearly
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in practice, instead of as O(N log N), as in Barnes and Hut’s single-tree algorithm. Empiri-

cal results provided by both papers established each algorithm as an effective and efficient

alternative to brute-force calculation7.

The importance of the fast multipole method to the computational physics community

and related communities cannot be understated; it has spawned more descendant literature

than is worth citing here and the careers of numerous researchers have focused entirely on

applications of and improvements to the fast multipole method.

What we can take out of the FMM from this quick discussion, instead of the details of

the algorithm, is the intuition that is used. Through the use of the multipole expansion, we

exploit the fact that two nearby points have very similar interactions with faraway points.

That is, the work to compute force interactions for nearby points is amortized across those

points and is not unnecessarily duplicated, as in Barnes and Hut’s algorithm.

2.6 Redirection to statistics and dual-tree algorithms

Finally, we can return to the problem of nearest neighbor search. Suppose now that instead

of a single query point pq, we have an entire query set S q, and we must find the nearest

neighbor of every pq ∈ S q in the reference set S r. This is sometimes called the batch

nearest neighbor search problem. The work of Gray and Moore in 2001 adapted the fast

multipole method to the problem of nearest neighbor search (and a few other problems) in

order to obtain dual-tree algorithms [61].

In short, the idea is this: instead of traversing the tree built on S r for each query point

pq ∈ S q, we will also build a query tree on S q, and traverse both trees (the query tree and

reference tree) simultaneously, in order to obtain results for all points in S q during a single

7Both of these results were obtained on VAX machines; it seems as though Greengard and Rokhlin had
access to nicer equipment, having run their simulations on the then-recent VAX 8600, whereas Barnes and
Hut’s results were on the older VAX 11/780. Sadly, the VAX architecture is all but dead now except in the
hands of collectors8, after the implosion of DEC in the late 1980s, precipitated in part by the company’s
failure to recognize the importance of the PC market [63], which led to the acquisition of DEC by Compaq,
which later become a part of HP, which has had more than its fair share of issues over the years.

8The author is an unsuccessful DEC collector.
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Algorithm 3 dual kd nn(): Nearest-neighbor search using two kd-trees.
1: Input: query tree node Nq, reference tree node Nr

{Calculate bound, and prune if possible.}
{D p(Nq) represents the set of descendant points of the query node Nq.}

2: b← maxp∈D p(Nq) Dpq

3: if dmin(Nq,Nr) > b then
4: return

{Perform base cases.}
5: for all pq ∈Pq do
6: for all pr ∈Pr do
7: if d(pq, pr) < Dpq then
8: Npq ← pr

9: Dpq ← d(pq, pr)

{Dual-tree recursion.}
10: if Nq is a leaf and Nr is a leaf then
11: return
12: else if Nq is a leaf then
13: dual kd nn(Nq, left child of Nr)

14: dual kd nn(Nq, right child of Nr)

15: else if Nr is a leaf then
16: dual kd nn(left child of Nq, Nr)

17: dual kd nn(right child of Nq, Nr)

18: else
19: dual kd nn(left child of Nq, left child of Nr)

20: dual kd nn(left child of Nq, right child of Nr)

21: dual kd nn(right child of Nq, left child of Nr)

22: dual kd nn(right child of Nq, right child of Nr)

traversal.

To demonstrate this, let us adapt Algorithm 1 to a dual-tree algorithm. This new dual-

tree algorithm, Algorithm 3, uses kd-trees and is similar to the dual-tree algorithm given by

Gray and Moore [61] to calculate the two-point correlation. Before running the algorithm,

we build a query tree Tq on the query set S q, a reference tree Tr on the reference set S r,

and initialize two auxiliary arrays: N, where Npq contains the current nearest neighbor

candidate of a query point pq, and D, where Dpq , which contains the distance between pq

and its current nearest neighbor candidate Npq . Each element of D should be initialized to

∞. When this initialization step is complete, we call Algorithm 3 with the root of the query
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tree and the root of the reference tree as arguments.

This algorithm bears many similarities to the single-tree algorithm. In the single-tree

algorithm, the pruning rule only needs to compare against the current nearest neighbor

candidate distance for the single query point pq; but in the dual-tree algorithm, we must

consider the nearest neighbor candidate distances for every descendant point of the query

node. It is possible to cache the calculation on line 2 during the traversal; for simplicity of

exposition, those details are omitted9. The base case for loop is also similar—but in the

dual-tree algorithm, we now have multiple query points to consider, so we have a double

for loop. As in the single-tree algorithm, no base cases are performed unless Nq and Nr

are both leaf nodes. Lastly, the recursion is slightly more complex: it must recurse into

both the query and the reference node simultaneously, if they are not leaves.

Similar to the single-tree algorithm, a correctness proof of Algorithm 3 is not very dif-

ficult. The first step is to show that if nothing is pruned, the correct results are obtained for

each pq ∈ S q. Then, the second step is to show that no combinations of query and refer-

ence nodes are pruned when they should not be. Some of my previous work [28] contains

a correctness proof, which will be restated later in this document in a more comprehensive

and generalized form.

Like the fast multipole method, the key here is that work is amortized across queries;

we do not need to perform separate searches for each query point. In practice, for |S q| ∼

|S r| ∼ O(N), this dual-tree nearest neighbor search algorithm scales linearly and provides

massive speedup over other approaches (in low-to-medium dimensions).

It turns out that there are many problems that dual-tree algorithms may solve; often, to

develop these algorithms, the single-tree approaches referenced in previous sections may

be adapted (with some effort). Below is a nearly-comprehensive list of problems that have

been solved with dual-tree algorithms, including my own contributions.

9One may refer to the works of Gray [64, 65] for examples of how bounding information can be efficiently
cached during the dual depth-first traversal of kd-trees.
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• Nearest neighbor search [61, 57, 28, 66]: given a query set S q and reference set S r,

find the nearest neighbor of each point in S q in S r.

• Approximate nearest neighbor search [67, 59]: the same as the above problem, but

allowing approximate neighbors to be returned, according to various approximation

schemes.

• Minimum spanning tree calculation [68]: given a dataset S r, calculate the spanning

tree with minimum edge weight.

• Kernel density estimation [65, 64, 69]: given a kernel function, a reference set S r,

and a query set S q, compute the approximate kernel density estimate at each point in

the query set.

• Conditional kernel density estimation [70]: an extension of the kernel density esti-

mation problem where conditional density estimates are required (i.e. f (x|y) instead

of f (x, y)).

• Approximate matrix multiplication [71]: given two matrices S q and S r, approxi-

mately compute S q · S r.

• Mean shift clustering [72]: using a kernel function, locate the density maxima of a

dataset S r, and use these maxima to define a clustering of the dataset.

• Gaussian summations [73, 74]: given a query set S q and a reference set S r, compute

the sum of Gaussian kernel interactions with every reference point, for every query

point.

• Generalized kernel summations [75, 76]: similar to the above problem, but gener-

alized to any type of shift-invariant kernel.

• n-point correlation function estimation [77, 78]: a common technique used in as-

tronomy to obtain a statistic useful for describing structure formation models.
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• Maximum inner product search [45]: given a query set S q and a reference set S r,

compute the reference point with maximum inner product to each query point.

• Max-kernel search [46, 79]: a generalization of maximum inner product search;

given a query set S q, a reference set S r, and a kernel K(·, ·), compute the reference

point with maximum kernel evaluation to each query point.

• k-means clustering [80]: given a dataset S r and a number k, find k clusters by mini-

mizing the within-cluster sum of squared distances.

• Particle smoothing [81]: given a sequence of observations S r, compute a smoothed

estimate of those observations.

• T-SNE (embedding) [82]: given a potentially high-dimensional dataset S r, embed

S r into a few dimensions in a way that effectively captures the distribution of the data

at both large and small scales.

• Approximate matrix-vector multiplication [83]: given a vector, quickly multiply

it against a data matrix.

• Mode seeking [84]: a generalization of the mean-shift algorithm; given a dataset S r,

find the modes of the distribution of points, usually for the task of clustering.

• Transition matrix approximation [85]: given a data graph, approximate the transi-

tion matrix for random walks on that graph.

At this point, we have seen three lists, containing numerous types of trees, a veritable

plethora of single-tree algorithms, and a great deal of dual-tree algorithms. Clearly tree-

based approaches are useful, given that there is no dearth of literature concerning them.

But there is one very important fact that this quick overview has downplayed: each of

these types of trees and each of these algorithms are significantly different; there is no

coherence or unification. It is like the worst of urban sprawl in large American cities:
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each algorithm or tree type is its own closed-off neighborhood, lacking connections to

other algorithms or tree types. There is no master plan or big picture; these algorithms are

developed haphazardly for individual tasks. Although usually the papers in which these

algorithms are developed do cite other relevant works, the terminology and notation is not

standardized and thus translating the core ideas of one algorithm to another can often be

complex, unwieldy, and time-consuming.

To me, this is a significant problem, and the next chapter attempts a solution: a unified

abstraction to tie together all types of trees, all types of single-tree algorithms, and all types

of dual-tree algorithms, in order to organize the landscape of tree-based algorithms, allow

easy knowledge transfer between algorithms, and simplify the development of new tree

types, single-tree algorithms, and dual-tree algorithms.
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CHAPTER 3

TREE-INDEPENDENT DUAL-TREE ALGORITHMS

3.1 A bibliographical note

The work in this chapter is an extended and somewhat rewritten version of the paper “Tree-

independent dual-tree algorithms”, by myself and numerous helpful coauthors, which was

presented at ICML 2013 [28]. This work formalizes a lot of intuitive but informal notions

that had been floating around the community and generalizes the entire classes of single-

tree and dual-tree algorithms. The abstractions, definitions, and notation introduced in this

chapter are used throughout the rest of the document.

3.2 The goal: unification of dual-tree algorithms

The previous chapter outlined the history of dual-tree algorithms, concluding by observing

that the landscape of dual-tree algorithms (at least as of 2013) was not unified, was confus-

ing, and it took a great deal of effort to develop new algorithms. In practice, a researcher

may have had to implement entirely separate algorithms to solve the same problems with

different trees, which is time-consuming and clearly suboptimal. Worse yet, parallel dual-

tree algorithms are difficult to develop (for an example see Lee’s work [76], for which the

associated code took many months to develop) and appear far more complex than serial

implementations; yet, both are solving the same problem.

This chapter introduces a formalizing abstraction for dual-tree algorithms, allowing us

to address the issues above with the following tools:

• Formalized definitions of space trees and traversals.

• A representation of dual-tree algorithms as three separate components: a space

tree, a traversal, and problem-specific rules: a point-to-point base case and a pruning

rule.
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• A meta-algorithm that produces dual-tree algorithms, given those four separate

components.

This representation of dual-tree algorithms also has favorable implications for theoret-

ical work as well as implementation.

3.3 Space trees

The first thing to do is formalize the notion of a tree. Below, we present a definition of

space tree that encapsulates all of the tree types mentioned in the previous chapter [28].

Definition 1. A space tree on a dataset S ∈ RN×d is an undirected, connected, acyclic,

rooted simple graph with the following properties:

• Each node (or vertex) holds a number of points (possibly zero) and is connected to

one parent node and a number of child nodes (possibly zero).

• There is one node in every space tree with no parent; this is the root node of the tree.

• Each point in S is contained in at least one node.

• Each node corresponds to some subset of Rd that contains each point in that node

and also the subsets that correspond to each child of the node.

There is nothing counterintuitive about this definition: a tree is a hierarchical graph

structure on data, and each node corresponds to some region of the input space. As the tree

is descended, the space corresponded to by each node will shrink. Each node in the tree,

then, may be fully parameterized by the points it holds, the children it holds, the region of

input space it corresponds to, and its parent. Despite this fairly straightforward definition,

though, there are a couple important notes.

First, we are unable to use the term space partitioning tree, because in our definition we

do not require that nodes are non-overlapping. For instance, the spill tree [56], ball trees
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[48], and the cover tree [57] can each have overlapping nodes. This forces us to use the

more general term space tree, which is also something of a nice consolation prize for the

author’s failed dream of becoming an astronaut.

Second, it is imperative to note that the points held by a node are not necessarily the

same as the points held by the node’s children. The only restriction on the sets of points

held by a node’s children (and by the children’s children, and so forth) is that they all

fall into the region of input space represented by that node. This distinction is incredibly

important when talking about space trees: the term descendant points of a node refers to

the points held by the node plus all the points held by the descendant nodes, whereas the

term points of a node refers only to the points held in a node. This distinction will become

clearer in the tree survey of Section 3.6.

Third, consider the last part of the definition: each node corresponds to some subset of

Rd. In general, trees are designed so that these subsets are geometrically easy structures to

work with, such as balls, rectangles, cones, slices, and so forth. Any of these structures can

usually be parameterized by only a few values; for instance, a ball only needs a center and

a radius, and a rectangle only needs an origin and side lengths. This means implementation

of a tree node is generally simple; it has only a list of children, a list of points, optionally a

N8 N9

N4 N5 N6 N7N0 N1 N2 N3

N14

N12 N13

N10 N11

Figure 6: Abstract representation of an example kd-tree.
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(a) Top level.
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(c) Third level.
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(d) Lowest level (leaves).

Figure 7: Geometric representation of the same example kd-tree.

parent, and whatever is necessary to parameterize its bounding shape.

We may now revisit the kd-tree we presented in the previous chapter, in Figures 3, 4,

and 5, and discuss this tree in the context of our definition. Figures 6 and 7 re-present the

same kd-tree, and Figure 8 shows the parameterized representation of the children and the

points held in each node. Note that kd-trees only hold points in the leaves, and the bounding

shapes are the smallest rectangles which enclose all of the descendant points.

To further explore the possibility space for space trees, Figures 9a and 9b show another

possible space tree (not a kd-tree). In the abstract representation of the tree given in Figure
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• N0: children {}, points {p0, p1, p2}

• N1: children {}, points {p3}

• N2: children {}, points {p4, p5}

• N3: children {}, points {p6, p7}

• N4: children {}, points {p8, p9}

• N5: children {}, points {p10, p11}

• N6: children {}, points {p12, p13}

• N7: children {}, points {p14, p15}

• N8: children {N0,N1}, points {}
• N9: children {N2,N3}, points {}
• N10: children {N4,N5}, points {}
• N11: children {N6,N7}, points {}
• N12: children {N8,N9}, points {}
• N13: children {N10,N11}, points {}
• N14: children {N12,N13}, points {}

Figure 8: Parameterized representation of the same example kd-tree.

9a, Nr is the root node of the tree; it has no parent and it contains the points x3 and x1.

The node Np contains points x1 and x5 and has children Nc and Nd (which each have no

children and contain points x2 and x4, respectively). Figure 9b draws the tree in the input

space of the points, R2. The points in the tree and the subsets of input space represented

by Nr (darker rectangle) and Np (lighter rectangle) are plotted. The subsets of input space

corresponding to Nc and Nd are not labeled, because those subsets are simply {x2} and {x4},

respectively.

Nd : {x4}Nc : {x2}

Nr : {x1, x3}

Np : {x1, x5}

(a) Abstract representation.

Sr

Sp

x1

x2

x3

x4

x5

(b) R2 representation.

Figure 9: Another example space tree.
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3.4 Space tree notation

Now that we have defined a space tree and mildly explored the possibility space, we must

establish standardized notation which will be used throughout the rest of the document. A

quick reference table is given in Table 1, and detailed definitions are given below.

• The set of child nodes of a node Ni is denoted C (Ni) or Ci.

• The set of points held in a node Ni is denoted P(Ni) or Pi.

• The subset of input space represented by a node Ni is denoted S (Ni) or Si.

• The set of descendant nodes of a node Ni, denoted Dn(Ni) or Dn
i , is the set of nodes

C (Ni) ∪ C (C (Ni)) ∪ . . .. By C (C (Ni)), we mean all the children of the children of

node Ni: C (C (Ni)) = {C (Nc) : Nc ∈ C (Ni)}.

• The set of descendant points of a node Ni, denoted D p(Ni) or D p
i , is the set of

points {p : p ∈P(Dn(Ni)) ∪P(Ni)}. The meaning of P(Dn(Ni)) is similar to the

meaning of C (C (Ni)): P(Dn(Ni)) = {P(Nd) : Nd ∈ Dn(Ni)}.

• The parent of a node Ni is denoted parent(Ni).

• The centroid of a node Ni is denoted centroid(Ni); this is the centroid of all descen-

dant points of the node. Usually, this quantity is easily calculated at tree-building

time and may be cached then.

• The center of a node Ni is denoted µi; this is the center of the region Si. This is,

in general, different than the centroid; for some tree types, it is easy to calculate; for

others, it is not easy.

• The furthest descendant distance for a node Ni and a metric d(·, ·), denoted λ(Ni) or

λi, is defined as
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Table 1: Notation for trees. See text for details.

Symbol Description
N A tree node
Ci Set of child nodes of Ni

Pi Set of points held in Ni

Dn
i Set of descendant nodes of Ni

D p
i Set of points contained in Ni and Dn

i
parent(Ni) The parent of Ni

centroid(Ni) The centroid of all descendant points of Ni

µi Center of Ni

λi Furthest descendant distance

λ(Ni) = max
p∈D p(Ni)

d(µi, p). (3)

It is often possible to calculate λ(Ni) exactly, depending on the type of tree, or at

least calculating a bound on λ(Ni) is often possible.

In general, the short notation (i.e. Ci instead of C (Ni)) will be used where possible,

and the long notation will only be used when further clarity is required.

3.5 Bounding quantities with space trees

The real utility of a simple bounding shape comes from the ability to quickly calculate

bounds on geometric quantities. In the introduction, during the discussion on single-tree

nearest neighbor search, pruning was possible when the minimum distance between the

node and the query point was sufficiently large. Let us now formalize this notion of mini-

mum distance.

Definition 2. The exact minimum distance between a node Ni and a point pq is defined as

d∗min(pq,Ni) := min
{

d(pq, p j) ∀ p j ∈ D p
i

}
. (4)

In general, computing the exact minimum distance between a point pq and a node Ni is

computationally infeasible and defeats the entire purpose of trees in the first place, which
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pq

Ni

dmin(pq,Ni)

Figure 10: A bound on the minimum distance between a point pq and a node Ni.

is to represent the data compactly at various scales. If we have to scan every descendant

point of a node to calculate the minimum distance, the entire exercise of building a tree

is pointless. Fortunately, the fact that each space tree node corresponds to a subset of the

input space and is often a convenient geometric shape allows us to easily place a lower

bound on d∗min(·, ·); see Figure 10. Note that the distance dmin(pq,Ni) is a lower bound on

the exhaustively calculated d∗min(pq,Ni) (which is not drawn in the figure).

Given the parameters of the region represented by Ni (which is general we do have),

calculating dmin(·, ·) is a relatively trivial O(d) operation. Suppose that Si (unlike in the

figure) is a ball of radius λi with center µi; then, we may easily calculate dmin(pq,Ni):

dmin(pq,Ni) = d(pq, µi) − λi. (5)

This calculation is easy and fast, and is often a reasonable bound for d∗min(pq,Ni). For

trees with different bounding shapes, the calculation can be quite different. Quadtrees,

for instance, require a slightly more complex calculation, because the bounding box is a

square. Similarly, kd-trees have hyperrectanglur bounds, which means the calculation is

not as simple as taking the distance between the point pq and the center of the node and

subtracting the radius. Still, the majority of useful space trees are able to produce a bound,

dmin(pq,Ni) in O(d) time or better.

We can now generalize this point-to-node distance bound to a node-to-node distance

bound.
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dmin(Ni,N j)
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λ j

Figure 11: A bound on the minimum distance between a node Ni and a node N j.

Definition 3. The exact minimum distance between two nodes Ni and N j is defined as

d∗min(Ni,N j) := min
{

d(pi, p j) ∀ pi ∈ D p
i , p j ∈ D p

j

}
. (6)

Again, we may easily bound this quantity using trees. Figure 11 demonstrates this

bound dmin(Ni,N j) geometrically, in the same way as Figure 10. In the figure given, Si

and S j are both balls with centers µi and µ j and radii λi and λ j, respectively. This means

we can easily calculate dmin(Ni,N j):

dmin(Ni,N j) = d(µi, µ j) − λi − λ j. (7)

As with the point-to-node bound, the exact way to quickly calculate a lower bound

dmin(·, ·) varies across tree types.

It is easy to extend the intuition used to define dmin(·, ·) to other quantities, like dmax(·, ·).

These bounds provide useful summarization of the data points contained in a node, and fast

evaluation of these bounds is paramount to any of the tree-based strategies discussed here

or in related works.

3.6 A quick survey of some space trees

In order to demonstrate the utility of the space tree abstraction, let us now consider popular

types of trees and show how they are described generally as space trees. The descriptions
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(a) Points in dataset.

N15

(b) Root level.
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(c) Second level.
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(d) Third level.

Figure 12: Three levels of an example quadtree with a leaf size of 3.

here do not consider how the tree is built in-depth, since the tree-building procedure is

somewhat unimportant with respect to how the tree fits into the space tree abstraction.

There are many more types of trees, as I alluded to in the introduction; understanding these

as space trees is often straightforward and can be done using the same type of reasoning as

in the following subsections.

3.6.1 The quad-tree, octree, and hyperoctree

The quad-tree [29], octree [30], and hyperoctree [86] are all the same tree, just specialized

for different dimensionalities. A quad-tree lives in two dimensions and each node has up to
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Table 2: Properties of hyperoctrees.

Quantity Description Value for hyperoctrees
Ci children of Ni ∅ for leaves, |Ci| ≤ 2d otherwise
Pi points of Ni ∅ for non-leaves, all points in Si otherwise
Si region of Ni hypercube with side-length l
µi center of Ni center of hypercube Si

λi furthest desc. distance
√

d(l/2)2

Property Value for hyperoctrees
Can nodes overlap? No.

Points in multiple nodes? No.
Points only in leaves? Yes.
Leaves hold all points? Yes.

four children; an octree lives in three dimensions and each node has up to eight children; a

hyperoctree living in d dimensions has up to 2d children.

Building a hyperoctree (which is the term I will use from here) in dimension d involves

finding a hypercube that contains all the data. This is the root of the tree. This hypercube is

then split into 2d hypercubes with side lengths equal to half of the root. Any hypercubes that

contain no points in the dataset are not created. Thus, the root may contain up to 2d children.

This splitting procedure continues recursively until a node contains some specified number

of points (the leaf size). Figure 12 shows a quadtree (that is, a hyperoctree with dimension

2) with a leaf size of 3; this is the same quadtree shown in the previous chapter.

In general, most implementations of hyperoctrees store points only in the leaves; that

is, for some node Ni, Pi = {} unless Ni is a leaf. With our description complete, we may

now summarize characteristics of the hyperoctree in Table 2.

Because of the huge number of children a hyperoctree has at high dimensions, hype-

roctrees are often a bad choice past d > 3 or so. Often, normalizing a dataset so each

dimension has unit variance is a good choice, because of the restriction that hyperoctrees

correspond to hypercubes.
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Table 3: Properties of kd-trees.

Quantity Description Value for kd-trees
Ci children of Ni ∅ for leaves, |Ci| = 2 (left and right) otherwise
Pi points of Ni ∅ for non-leaves, all points in Si otherwise
Si region of Ni hyperrectangle enclosing all descendant points
µi center of Ni center of hyperrectangle Si

λi furthest desc. distance distance between µi and any corner of Si

Property Value for kd-trees
Can nodes overlap? No.

Points in multiple nodes? No.
Points only in leaves? Yes.
Leaves hold all points? Yes.

3.6.2 The kd-tree

The kd-tree [31] presents a better solution for higher-dimensional data by only allowing

two children per node and allowing hyperrectangle bounds, instead of hypercube bounds.

A kd-tree is built by first finding an enclosing hyperrectangle for all of the data points;

this is the root. Then, a dimension is chosen to split on (often, this is the dimension with

maximum variance). A split value is then chosen; this may be the median, mean, or mid-

point of the data in the chosen dimension. Points with value in the chosen dimension less

than or equal to the split value will be descendants of the left node; points with value

greater than the split value will be descendants of the right node. This procedure is con-

tinued recursively, until a node contains some specified number of points (again, the leaf

size). Figure 7, in Section 3.3, shows an example kd-tree.

As with hyperoctrees, most implementations of kd-trees store points only in the leaves.

A summary of the characteristics of kd-trees is given in Table 3.

3.6.3 The ball tree

The ball tree is not a specific type of tree, but encompasses many different types of trees

with similar characteristics1; for example, Omohundro describes five different construction

1Our discussion here assumes ball trees to be quite similar to kd-trees. Other authors may take ‘ball tree’
to mean something else entirely, but we stick to the general definition settled on by Gray and coauthors [61]
and implemented in the mlpack machine learning library [87].
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Table 4: Properties of ball trees.

Quantity Description Value for ball trees
Ci children of Ni ∅ for leaves, |Ci| = 2 (left and right) otherwise
Pi points of Ni ∅ for non-leaves, all points in Si otherwise
Si region of Ni a ball enclosing all descendant points
µi center of Ni center of ball Si

λi furthest desc. distance radius of ball Si

Property Value for ball trees
Can nodes overlap? Yes.

Points in multiple nodes? No.
Points only in leaves? Yes.
Leaves hold all points? Yes.

algorithms for balltrees [48]. Roughly, the ball tree may be understood as an analog of the

kd-tree, where each node has a left and right child. However, instead of each node being

represented by a hyperrectangle, it is instead represented by a ball.

Each ball corresponding to a node should ideally be the smallest ball that encloses

all of the node’s descendant points, but the minimum enclosing ball problem is known

to be difficult, with a simple implementation finding the minimum enclosing ball over n

points taking O(n4) time. Fortunately, faster algorithms do exist, such as the O(n log n)

algorithm of Shamos and Hoey [88] and the later O(n) linear programming algorithm of

Megiddo, Zemel, and Hakimi [89]. Unfortunately, Megiddo’s algorithm is impractical for

large d, with a running time of O((d + 1)(d + 1)!n); thus, there exist numerous alternate

strategies to provide approximate bounding spheres [90, 91, 92, 93]. Nonetheless, even

with these accelerated algorithms, quickly computing a ‘good’ minimum enclosing ball

approximation is a difficult challenge for ball trees.

With a good minimum enclosing ball, though, the computation of minimum distances

between nodes is simple, as in Equation 7 from the last section. The general structure of

ball trees is the same as kd-trees, with two children per non-leaf node, and points only held

in the leaves. Properties of ball trees are given in Table 4. Note that although the two

children of a ball tree node may overlap, no points are held in both the left and right child.
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3.6.4 The metric tree / vantage-point tree

The metric tree, developed by Uhlmann in 1991 [51], or the vantage point tree, developed

by Yianilos in 1993 [50], turn out to be the same tree structure. I will use the “vantage-point

tree” name here because I find it to be more descriptive of the tree type.

Instead of each node representing a different configuration of the same general shape,

each vantage point tree node Ni has a near child (also called left or inside child) and a

far child2 (also called right or outside child), and is centered at a point pi. The near child

corresponds to the ball centered at pi with some radius r, and the far child corresponds to

the ball slice centered at pi with minimum radius r and maximum radius λi.

One way of constructing a vantage point tree (the “simplest” vp-tree, according to Yian-

ilos [50]) is as follows. A ball that encloses the entire dataset and is centered at some point

pi is chosen, usually by some type of random sampling procedure; this corresponds to the

root node. Then, the median distance of other points from pi is chosen as the radius r;

points with distance less than r from pi go into the close child, and points with distance

greater than or equal to r from pi go into the far child. This process is repeated recursively,

but the “vantage point” pi is not passed into its children. Thus, this tree is different in that

not all points are held at the leaves, and the leaves do not hold every point in the dataset.

Construction of the tree may continue recursively until a node contains only one point.

It is possible to modify the construction algorithm to stop splitting when a node contains

some specified number of points (as with earlier trees, the leaf size).

The unusual shape of the near and far child means that the space decomposition of

a vantage-point tree looks significantly different than the axis-aligned hyperrectangles of

the kd-tree. Figure 13a and Figure 13b illustrate this difference; they are reprinted from

Yianolis’ original work [50]. Table 5 lists characteristics of the vantage-point tree, in the

same format as previous tables.

2This is not related to Starchild, the divine being who comes to earth to bring Funk to humanity, according
to George Clinton and his associates in the bands Parliament and Funkadelic. Despite this, Starchild continues
to be a strong influence on the work of the author.
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(a) vp-tree decomposition of a dataset (from
[50]).

(b) kd-tree decomposition of the same dataset
(from [50]).

Figure 13: kd-tree and vp-tree space decompositions.

Table 5: Properties of vp-trees.

Quantity Description Value for vp-trees
Ci children of Ni ∅ for leaves, |Ci| = 2 (near and far) otherwise
Pi points of Ni vantage point pi

Si region of Ni a ball centered at pi

µi center of Ni center of ball Si, which is pi

λi furthest desc. distance radius of ball Si

Property Value for ball trees
Can nodes overlap? Yes.

Points in multiple nodes? No.
Points only in leaves? No.
Leaves hold all points? No.

3.6.5 The cover tree

The cover tree, more recently proposed in 2006 [57], is the most complex tree type we will

consider here. Its complexity stems from its theoretical utility, which we will discuss much

further in detail later in the paper. This subsection only serves as a basic introduction to the

basic properties of the tree and how it fits into the space tree abstraction.

When building a cover tree, we assume only that we have some dataset S and some
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metric d(·, ·); so, like the vantage point tree, the space need not be Euclidean or even repre-

sentable. Like the vantage point tree, each node in a cover tree is parameterized by a center

point pi and a radius λi ≤ 2si , where si is the integer scale of the node. The root of the tree

has the largest scale, and the leaves (with scale −∞) have the smallest scale. However, the

cover tree also satisfies some other invariants. I have yet to find a better summary than the

original provided by the authors [57], so I will simply quote their words:

A cover tree T on a dataset S is a leveled tree where each level is a “cover”

for the level beneath it. Each level is indexed by an integer scale si which

decreases as the tree is descended. Every node in the tree is associated with a

point in S . Each point in S may be associated with multiple nodes in the tree;

however, we require that any point appears at most once in every level. Let Csi

denote the set of points in S associated with the nodes at level si. The cover

tree obeys the following invariants for all si:

• (Nesting). Csi ⊂ Csi−1. This implies that once a point p ∈ S appears in

Csi then every lower level in the tree has a node associated with p.

• (Covering tree). For every pi ∈ Csi−1, there exists a p j ∈ Csi such that

d(pi, p j) < 2si and the node in level si associated with p j is a parent of the

node in level si − 1 associated with pi.

• (Separation). For all distinct pi, p j ∈ Csi , d(pi, p j) > 2si .

As a consequence of this definition, if there exists a node Ni, containing the point pi

at some scale si, then there will also exist a self-child node Nic containing the point pi at

scale si − 1 which is a child of Ni. In addition, every descendant point of the node Ni

is contained within a ball of radius 2si+1 centered at the point pi; therefore, the furthest

descendant distance λi is bounded by 2si+1 and the center of the node µi is the point pi.

Note that the cover tree may be interpreted as an infinite-leveled tree, with C∞ contain-

ing only the root point, C−∞ = S , and all levels between defined as above. Beygelzimer

38



Table 6: Properties of cover trees.

Quantity Description Value for cover trees
Ci children of Ni ∅ for leaves, |Ci| potentially large otherwise
Pi points of Ni one point, pi

Si region of Ni a ball centered at pi with radius 2si+1

µi center of Ni center of ball Si, which is pi

λi furthest desc. distance 2si+1

Property Value for ball trees
Can nodes overlap? Yes.

Points in multiple nodes? Yes.
Points only in leaves? No.
Leaves hold all points? Yes.

et al. [57] find this representation (which they call the implicit representation) easier for

description of their algorithms and some of their proofs. But clearly, this is not suitable for

implementation; hence, there is an explicit representation in which all nodes that have only

a self-child are coalesced upwards (that is, the node’s self-child is removed, and the chil-

dren of that self-child are taken to be the children of the node). In this work, we consider

only the explicit representation of a cover tree.

Thus, the major structural differences from any tree we have considered in-depth so

far is that points may exist at multiple levels of the tree. We can encapsulate the primary

properties of the cover tree in Table 6.

3.7 Traversals and problem-specific rules

Now that we have defined a tree in an abstract sense, we no longer need to think about

the individual properties of trees and can consider them by using our abstract space tree

definition. The definitions we present here formalize and abstract the traversal strategies

used by the numerous single-tree and dual-tree algorithms.

It is easier to start with the single-tree traversal definitions.

Definition 4. A single-tree traversal is a process that, given a space tree, will visit each

node in that tree once and perform a computation on any points contained within the node
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that is being visited; call this computation BaseCase().

As an example, the standard depth-first traversal or breadth-first traversal are single-tree

traversals. From a programming perspective, the computation in the single-tree traversal

can be implemented with a simple callback BaseCase(point) function. This allows the

computation to be entirely independent of the single-tree traversal itself. As an example, a

simple single-tree algorithm to count the number of points in a given tree would increment

a counter variable each time BaseCase(pi) was called, where pi is some point in the node

currently being visited. Note that at each node, BaseCase() is only called on those points

in Pi, not all descendant points of the node. So, as long as the tree type being used satisfied

the condition that each point is contained in only one node, this example algorithm to count

the number of points would return the correct result.

However, this concept of a single-tree traversal by itself is not very useful; without prun-

ing branches, no computations can be avoided. Thus, we must now introduce a mechanism

for pruning.

Definition 5. A pruning single-tree traversal is a process that, given a space tree, will

visit nodes in the tree and perform a computation to assign a score to that node; call this

computation Score(). If the score is∞, the node is “pruned” and none of its descendants

will be visited; otherwise, a computation is performed on any points contained within that

node; call that computation BaseCase(). If no nodes are pruned, then the traversal will

visit each node in the tree once.

Clearly, a pruning single-tree traversal that does not prune any nodes is just a single-

tree traversal. A pruning single-tree traversal can be implemented with two callbacks:

BaseCase() and Score(). This allows both the point-to-point computation and the scor-

ing to be entirely independent of the traversal. Thus, single-tree branch-and-bound algo-

rithms can be expressed in a tree-independent manner.

Below is a simple BaseCase() function (Algorithm 4) and Score() function (Algo-

rithm 5) that will print “Hello!” once for each point in a reference tree Tr that has distance
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less than or equal to 1 from a given query point pq.

Algorithm 4 BaseCase() for hello-printing nonsense example algorithm.
1: Input: query point pq, reference point pr

2: if pr not already visited with query point pq then
3: if d(pq, pr) ≤ 1 then
4: print ”Hello!”

Algorithm 5 Single-tree Score() for hello-printing nonsense example algorithm.
1: Input: query point pq, node Ni from tree T

2: if dmin(pq,Ni) > 1 then
3: {Prune the node; it is too far away.}
4: return ∞
5: else
6: {Recursion order does not matter here; we just return an arbitrary finite value.}
7: return 867.5309

The Score() function prunes away a branch of the tree if the given node is sufficiently

far away from the point pq (that is, if the minimum distance between pq and any descendant

point of Ni is greater than 1). There are two details in the algorithm that deserve further

discussion.

The first is the conditional “if pi not already visited with query point pq then”. For

some trees, we know that points cannot be duplicated across nodes (the cover tree is the

only exception we have considered here in any detail, but the spill tree also can duplicate

points). So in those cases where we know that points cannot be duplicated, the check is

simply unnecessary. In the case of the more complex cover tree, the check can be restated

in an easy-to-compute manner: “if the parent of Ni does not hold pi”.

The second detail is the value that Score() returns. The definition of a pruning single-

tree traversal only requires that ∞ signifies that the node should be pruned, but when the

node is not pruned, there is no restriction on what Score() should return. In practice,

though, many single-tree algorithms (and dual-tree algorithms—more on this shortly) ben-

efit from a prioritized recursion. One example is nearest neighbor search: searches are

faster when you recurse first into nodes Ni with smaller dmin(pq,Ni), because this is more
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likely to decrease the distance between pq and its candidate nearest neighbor, which will in

turn allow more pruning during the search [66].

In the case of our simple algorithm above, the recursion order makes no difference as

far as pruning is concerned, and we are unconcerned with the order in which we receive our

(potentially many) greetings; thus, I have chosen an arbitrary value to return in accordance

with the ideas of Tommy Tutone. Any other finite value could work just fine too.

Now, let us extend our general definition to the dual-tree case.

Definition 6. A dual-tree traversal is a process that, given two space trees Tq (query

tree) and Tr (reference tree), will visit every combination of nodes (Nq,Nr) once, where

Nq ∈ Tq and Nr ∈ Tr. At each visit (Nq,Nr), a computation is performed between each

point in Nq and each point in Nr; call this computation BaseCase().

The primary difference between the single-tree definition and the dual-tree definition is

that instead of visiting a single node Ni at a time, we are visiting a combination of nodes

(Nq,Nr) where Nq is the query node and Nr is the reference node. As with the single-tree

traversal, if the tree type is such that each point is held in only one node, then any dual-

tree traversal will call BaseCase() once on each combination of query point and reference

point.

Again, we can introduce the notion of a Score() function for pruning.

Definition 7. A pruning dual-tree traversal is a process that, given two space trees Tq (the

query tree, built on the query set S q) and Tr (the reference tree, built on the reference set

S r), will visit combinations of nodes (Nq,Nr) such that Nq ∈ Tq and Nr ∈ Tr no more

than once, and call a function Score(Nq, Nr) to assign a score to that node. If the score

is ∞, the combination is pruned and no combinations (Nqc, Nrc) such that Nqc ∈ Dn
q and

Nrc ∈ Dn
r are visited. Otherwise, for every combination of points (pq, pr) such that pq ∈Pq

and pr ∈Pr, a function BaseCase(pq, pr) is called. If no node combinations are pruned

during the traversal, BaseCase(pq, pr) is called at least once on each combination of

pq ∈ S q and pr ∈ S r.
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Algorithm 6 Dual-tree Score() for hello-printing nonsense example algorithm.
1: Input: query node Nq from tree Tq, node Nr from tree Tr

2: if dmin(Nq,Nr) > 1 then
3: {Prune the node combination; they are sufficiently far apart.}
4: return ∞
5: else
6: {Recursion order does not matter here; we just return an arbitrary finite value.}
7: return 1968

Though this definition is quite complex, it is a generalization of the single-tree traversal

to the dual-tree situation. The BaseCase() function is identical; it compares two points.

But the Score() function is different: in the dual-tree setting, it compares a query node

and a reference node, whereas in the single-tree setting, it compares a query point and a

reference node.

We may revisit the Score() function for our greeting algorithm from earlier, and ex-

tend it to the dual-tree scenario. Now we assume that (for some unclear reason) we have

an entire query set S q and a reference set S r—as opposed to a single query point pq and

reference set S r—and we wish to print “Hello!” once for each pair (pqi, pri) where pqi ∈ S q

and pri ∈ S r such that d(pqi, pri) ≤ 1. We may use a BaseCase() and Score() func-

tion to describe a dual-tree algorithm to perform this task. The BaseCase() has already

been given in Algorithm 4—it generalizes from the single-tree case without modification.

Score() is given in Algorithm 6.

In the dual-tree Score() function, we are able to prune for many query points at once:

if Nq and Nr are sufficiently far apart (specifically, if the minimum distance between the

two nodes is greater than 1), then no combination of descendant points between D p
q and

D p
r can have distance less than 1, and thus they do not need to be visited. Again, in this

problem, recursion order does not matter, so I have selected another arbitrary value, this

time influenced by the year Miles Davis first released two landmark albums incorporating

electric instruments, thus (in part) paving the direction towards jazz-rock fusion and later

exciting experimentation.

43



Algorithm 7 DepthFirstTraversal(Nq, Nr).
1: Input: query node Nq, reference node Nr

2: Output: none

{Check to see if combination can be pruned.}
3: if Score(Nq, Nr) = ∞ then
4: return

{Perform base cases for combinations of points held in the nodes.}
5: for all pq ∈Pq do
6: for all pr ∈Pr do
7: BaseCase(pq, pr)

{Recurse into combinations of children.}
8: for all Nqc ∈ Cq do
9: for all Nrc ∈ Cr do

10: DepthFirstTraversal(Nqc, Nrc)

An example pruning dual-tree traversal is given in Algorithm 7. This traversal is a dual

depth-first traversal, and is generalized directly to the arbitrary space tree case from Gray’s

earlier work [61, 64].

The traversal is straightforward: when visiting a node combination (Nq,Nr), we first

check to see if it can be pruned, using the Score() function. Then, we perform base cases

between the points held in Nq and Nr using the BaseCase() function. Lastly, we recurse

into all child combinations of Nq and Nr. It is not difficult to refactor this traversal into

a dual breadth-first traversal or a combined traversal which is depth-first in the query tree

and breadth-first in the reference tree (or vice versa).

Importantly, note that our definition of traversals here are problem-independent: al-

though certain traversals will be better choices for certain problems, our definition is suffi-

ciently general that no piece of the problem is wrapped into the traversal itself.

3.8 A meta-algorithm to produce a dual-tree algorithm

With each piece of dual-tree algorithms defined, we may propose a meta-algorithm to create

a dual-tree algorithm from the pieces:
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Given a type of space tree, a pruning dual-tree traversal, a BaseCase() func-

tion, and a Score() function, use the pruning dual-tree traversal with the

given BaseCase() and Score() functions on two space trees Tq (built on S q)

and Tr (built on S r).

This modular way of viewing tree-based algorithms has several useful immediate appli-

cations. The first is implementation. Given a tree implementation and a dual-tree traversal

implementation, all that is required is BaseCase() and Score() functions. Thus, code

reuse can be maximized, and new algorithms can be implemented simply by writing two

new functions. More importantly, the code is now modular. mlpack [87], the subject of the

next chapter, which is written in C++, uses templates to accomplish this.

The next advantage of the abstraction is clear when we consider all of the papers which

do not use this abstraction. One example, March’s dual-tree Borůvka algorithm for cal-

culating minimum spanning trees [68], provides a great example. The paper contains two

dual-tree algorithms: one for kd-trees and one for cover trees. Each algorithm given is quite

different and it is not easy to see their similarities. Using our meta-algorithm, any of these

tree-based algorithms can be expressed with less effort—especially for more complex trees

like the cover tree—and in a more general sense.

In addition, correctness proofs for our algorithms tend to be quite simple. These proofs

for each algorithm here can be given in two simple sub-proofs: (1) prove the correctness

of BaseCase() when no prunes are made, and (2) prove that Score() does not prune any

subtrees on which the algorithm’s correctness depends.

The logical split of base case, pruning rule, tree type, and traversal can also be advanta-

geous. As one example, the split distills the pruning rule in Score() to its essence, easing

the cognitive load of understanding the algorithm and allowing more general pruning ob-

servations to be made. In the case of nearest neighbor search, this has led to a new tighter

pruning bound, which is discussed far later in the document, in Section 7.1.

45



More importantly, this logical split allows us to consider each part of dual-tree algo-

rithms individually, and make improvements to each component individually. These im-

provements are then general enough to apply to many dual-tree algorithms, not just one: if

we develop a new type of tree, we do not need to re-tune every existing dual-tree algorithm

to work with the new type of tree. Instead, we can simply plug in existing BaseCase() and

Score() functions for a given problem into some type of pruning dual-tree traversal, and

use our new type of tree, and the algorithm will work as intended. This point in particular

is the entire crux of this thesis: we will show the utility of this logical split and see how

the entire class of dual-tree algorithms can be improved by improving each of the modular

pieces.
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CHAPTER 4

MLPACK: A FLEXIBLE C++ FRAMEWORK

Over the past six years, I have been fortunate to lead the mlpack machine learning library

development and maintenance effort. The project has changed much since its original in-

ception in 2007 (as FASTLIB/MLPACK) when it was a storehouse for implementations

of new algorithms, and continues to change as the project gains momentum. At the time

of this writing, in 2015, mlpack nears 30k downloads, has almost 40 contributors, and

contains nearly 100k lines of code.

This chapter provides an introduction to the reasons motivating mlpack, the Armadillo

linear algebra library which makes up the core of mlpack, the template metaprogramming

techniques used to obtain fast, generic machine learning implementations, and how tree-

independent dual-tree algorithms are currently implemented in mlpack1.

4.1 A survey of the landscape of machine learning libraries

As with virtually any niche, the landscape of machine learning libraries (both before and

after mlpack’s introduction) is scattered, smothered, and diced: there are numerous li-

braries but few general-purpose libraries. Libraries generally are specific to one language

or environment (i.e. Java, R, MATLAB); in addition, there are very many one-off tools

for single purposes—for example, libsvm is specifically for SVMs [94]. There are very

many dead libraries which are no longer maintained, and there are a handful of libraries

that try to unify the scattered landscape by using many single-purpose libraries to build a

general-purpose library. There are also numerous attempts at large-scale distributed ma-

chine learning libraries such as those built on Spark [95] and Apache Mahout [96]2.

1Depending on how long it has been since the publication of this document, the information here may
be quite out of date; for exact and up-to-date API details, you should refer to the mlpack website at http:
//www.mlpack.org.

2The concern here is not distributed systems, so we will not focus on distributed machine learning li-
braries. It is an interesting direction for future mlpack development, though.
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It is becoming increasingly difficult, though, to see things this way because the ma-

chine learning and data science communities seem to have settled on scikit-learn, a

Python toolkit that implements a vast variety of standard machine learning techniques [97].

scikit-learn is not the only Python toolkit for machine learning; there is also MLPy

(now dead) [98], the similarly named PyML [99], Elefant (also dead) [100], PyBrain [101],

Theano [102], and numerous others. Nonetheless, scikit-learn is by far the most widely

used of these libraries, and is paralleled in popularity perhaps only by R.

But one large problem with the choice of Python or R as a language (or Java, like Weka

[103]) is that it is often more difficult to achieve runtime efficiency. In Python, one must

often write Cython, a language extension of Python that compiles directly to C [104]. In R,

the Rcpp package is often used to call out to fast C++ implementations [105]. MATLAB

provides the mex compiler so that fast C++ code can be called from inside MATLAB code.

On the other hand, it is colloquially believed that the fastest code tends to be lower-

level code—FORTRAN, C, or C++. This is because the low-level thinking necessary to

write effective code in these languages often forces consideration of processor architecture,

cache effects, linear memory accesses, and so forth; in high-level languages like Python or

MATLAB or R, these details are all hidden from the user and thus it is more difficult to

write fast code. Based on this reasoning, if we are aiming to produce fast code, eschewing

R and Python in favor of a lower-level language is a reasonable choice. Indeed, this choice

was made by the Vowpal Wabbit online learning library [106], the SHOGUN Machine

Learning Toolbox [107], and the Shark machine learning library [108]; all three of these

libraries are written in C++. Vowpal Wabbit in particular is known for its speed, and this

stems in part from the choice of C++ as language. Another particular advantage of C++

is the availability of template metaprogramming, a technique that can allow us to write

generic, reusable code, often without runtime performance penalties for that genericity

[109].

Unfortunately, at the time of the inception of mlpack, there was no general-purpose
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library for tree-based algorithms, and there were no open-source implementations of dual-

tree algorithms at all. Hence, mlpack development commenced, and now centers around

the following simple list of goals:

• to implement scalable, fast machine learning algorithms,

• to design an intuitive, consistent, and simple API for non-expert users,

• to implement a variety of machine learning methods, and

• to provide cutting-edge machine learning algorithms unavailable elsewhere.

Next comes a discussion of how we have achieved each of these goals during develop-

ment.

4.2 The Armadillo linear algebra library

For linear algebra, mlpack uses the Armadillo linear algebra library [110], which depends

on heavy use of template metaprogramming techniques to achieve speed and ease of use.

Armadillo expressions are painless and easy-to-understand; consider the example program

below that, after generating some randomly distributed matrix X, computes the inverse of

XT X + 3I:

#include <armadillo>

using namespace arma;

int main()

{

mat X;

X.randu(50, 50); // Size will be 50x50.

mat Y = inv(X.t() * X + 3 * eye<mat>(50, 50));

}

This syntax is based on the syntax of MATLAB or Octave, but in general, linear algebra

expressions in Armadillo execute far faster than their MATLAB or Octave counterparts.
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The speed of Armadillo comes from two places: its dependence on LAPACK and BLAS

(or suitable replacements such as MKL, ACML, or OpenBLAS), and its ability to remove

the need for temporary objects via template metaprogramming. Let us discuss this second

point in greater detail. Consider the following Armadillo expression:

mat Y = (A + B + C) * D;

where A, B, C, and D are each matrices. If one were to write this expression in MATLAB

or Octave, the program would first add A and B, storing the result in a temporary matrix.

Then, C would be added to this temporary matrix, resulting in another temporary. Finally,

this second temporary matrix would be multiplied with D and stored in the output matrix

Y3.

All of these temporaries are avoidable with C++ thanks to operator overloading and

templates. The technique is referred to as ‘lazy evaluation’ or ‘delayed evaluation’ and the

actual implementation details, which are fairly complex, may be found elsewhere [110].

Armadillo supports numerous standard linear algebra operations, as well as preliminary

sparse matrix operation support; this allows us to make mlpack robust and able to handle

both dense and sparse data with ease.

4.3 Template paradigms for fast, generic code

The primary template technique used in mlpack to provide robust, generic code is policy-

based design, popularized by Andrei Alexandrescu in his book “Modern C++ Design”

[109]. The central idea is that a class can be separated into orthogonal, modular compo-

nents. One easy example is kernel principal components analysis [111], which has a clear

parameter: the kernel. Given the ubiquity of object-oriented programming, most will see

this as a perfect problem for inheritance, and construct a base Kernel class and derive all

kinds of kernels from the base class, and then the KernelPCA class will take a downcasted
3Some obtuse implementations might store the result of the final multiplication in a temporary matrix

before storing it in Y. I’d like to hope such an implementation was never released as ‘production-quality
code’, but, having seen the code quality in the some of the internals of MATLAB, it is certainly possible...
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base Kernel object and use that; this is exactly what the SHOGUN toolbox does [107].

There is a big problem, here, though: inheritance is not free (or more specifically, virtual

inheritance and virtual methods in C++). Each call to a method of the base Kernelmethod

incurs a pointer lookup to the derived kernel class.

For a method like kernel PCA, where a dataset of size N means the kernel must be eval-

uated O(N2) time, the overhead of this lookup is non-negligible. Instead of inheritance, we

should use templates, which are actually more flexible. Consider the following KernelPCA

class, with a template parameter for the kernel:

template<typename KernelType> class KernelPCA;

In this case, the type of the kernel is known at compile-time, and thus there is no need

for a pointer lookup. If we assume (or say in the documentation) that each KernelType

parameter will provide some Evaluate() function, we may easily evaluate the kernel

inside the KernelPCA class by calling KernelType::Evaluate().

This design pattern makes the KernelPCA class robust, generic, and extensible. Sup-

pose a user wants to use some kernel which does not ship with the KernelPCA class. All

they have to do is implement a class with an Evaluate() method, and they can plug

their class in as the KernelType parameter; they do not need to know the internals of the

KernelPCA class and in fact they don’t even need to know how kernel PCA works, or

consider any of the internal details of the class.

The overarching principle of policy-based design is that each component that is a tem-

plate parameter has orthogonal functionality and no dependence on the other parameters.

Thus, we can further generalize our kernel PCA class: some other policies might be a

sampling strategy (i.e. NystroemMethod, NoSampling, RandomSampling, and so forth),

element precision (float, double, etc.), and data matrix type (sparse or dense data matri-

ces).

One major drawback of policy-based design is that there is not a clean way to en-

force the interface requirements of a template parameter. In the context of our kernel PCA
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example, there is no way in C++ to require that the KernelType type implements the

Evaluate() method with the proper signature. Unfortunately, C++ Concepts, a solution

to this, was not included in the C++11 standard; however, in some cases, SFINAE (“sub-

stitution failure is not an error”) can be used to mitigate this issue.

4.4 Design principles of mlpack

As mentioned earlier, there are four overarching guidelines of mlpack development:

• to implement scalable, fast machine learning algorithms,

• to design an intuitive, consistent, and simple API for non-expert users,

• to implement a variety of machine learning methods, and

• to provide cutting-edge machine learning algorithms unavailable elsewhere.

We can consider each of these individually in turn.

4.4.1 Scalable and fast machine learning algorithms

Implementing scalable and fast machine learning algorithms often means that the simplest

implementation of a technique will not suffice. Nearest neighbor search—a primary prob-

lem in this thesis and a primary component of mlpack’s applicability—thus is not imple-

mented as a linear scan over all points; as we have already discussed, this is slow and does

not scale. Instead, mlpack uses dual-tree algorithms to solve that problem, and numerous

other problems where dual-tree algorithms are applicable. In addition, other techniques

are also available, such as Nyström sampling for kernel PCA, and a low-rank semidefinite

program solver [112].

But scalability and speed doesn’t just correspond to implementing the asymptotically

fastest algorithms. Numerous implementational tricks are often required, and where pos-

sible mlpack uses template techniques for speed. These techniques are both effective, and

benchmarks from the mlpack paper show this [87].
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Table 7: mlpack benchmark dataset sizes.

Dataset wine cloud wine-q isolet mboone
UCI Name Wine Cloud Wine Quality ISOLET MiniBooNE
Size 178x13 2048x10 6497x11 7797x617 130064x50

Dataset yp-msd corel covtype mnist randu
UCI Name YearPredictionMSD Corel Covertype N/A N/A
Size 515345x90 37749x32 581082x54 70000x784 1000000x10

Table 8: All-k-nearest neighbor benchmarks (in seconds).

Dataset mlpack Weka Shogun MATLAB mlpy scikit

wine 0.0003 0.0621 0.0277 0.0021 0.0025 0.0008
cloud 0.0069 0.1174 0.5000 0.0210 0.3520 0.0192
wine-q 0.0290 0.8868 4.3617 0.6465 4.0431 0.1668
isolet 13.0197 213.4735 37.6190 46.9518 52.0437 46.8016
mboone 20.2045 216.1469 2351.4637 1088.1127 3219.2696 714.2385
yp-msd 5430.0478 >9000.0000 >9000.0000 >9000.0000 >9000.0000 >9000.0000
corel 4.9716 14.4264 555.9600 60.8496 209.5056 160.4597
covtype 14.3449 45.9912 >9000.0000 >9000.0000 >9000.0000 651.6259
mnist 2719.8087 >9000.0000 3536.4477 4838.6747 5192.3586 5363.9650
randu 1020.9142 2665.0921 >9000.0000 1679.2893 >9000.0000 8780.0176

First, considering the task of nearest neighbor search, we compare mlpack against

Weka [103], SHOGUN [107], MATLAB, mlpy [98], and scikit-learn [97]4. mlpack

contains a dual-tree algorithm for nearest neighbor search, and both scikit-learn and

Weka contain a single-tree algorithm. MATLAB and SHOGUN and mlpy, however, con-

tain the brute-force search. Using the datasets in Table 7, all-nearest-neighbor search is run

for each dataset, and the results are presented in Table 8.

The next benchmark focuses on implementation efficiency, not algorithmic efficiency.

We compare k-means for the same libraries, starting from the same centroids for each

library (except mlpy and Weka, which did not allow specification of the starting centroids).

Each library implements the standard k-means algorithm, which is a linear scan over every

4This comparison was performed in 2012, using mlpack 1.0.3 and period-appropriate versions of the
other libraries. Things have changed since then—but mlpack’s automatic benchmarking system [113] shows
that mlpack continues to hold a competitive edge for nearest neighbor search and other machine learning
algorithms; see http://www.mlpack.org/benchmarks.html.
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Table 9: k-means benchmarks (in seconds).

Dataset Clusters mlpack Shogun MATLAB scikit

wine 3 0.0006 0.0073 0.0055 0.0064
cloud 5 0.0036 0.1240 0.0194 0.1753
wine-q 7 0.0221 0.6030 0.0987 4.0407
isolet 26 4.9762 8.5093 54.7463 7.0902
mboone 2 0.1853 8.0206 0.7221 memory
yp-msd 10 34.8223 135.8853 269.7302 memory
corel 10 0.4672 2.4237 1.6318 memory
covtype 7 13.5997 71.1283 54.9034 memory
mnist 10 80.2092 163.7513 133.9970 memory
randu 75 727.1498 7443.2675 3117.5177 memory

point and every cluster to find the nearest cluster centroid of every point (later, we will

describe a fast dual-tree algorithm for this); thus, each library is doing the same amount

of work. Still, we see that mlpack’s implementation is superior in efficiency to the other

libraries, in Table 9.

4.4.2 Intuitive, consistent, and simple API

The second focus of mlpack development is consistent, easy-to-use code. To this end, ml-

pack is organized into two large directories of code: core/ and methods/. The code in

core/ includes things like probability distributions, metrics, kernels, and other utility func-

tionality that makes up the building blocks of the machine learning methods implemented

in methods/.

In general, classes in mlpack operate in the same way: the constructor performs pre-

processing and must return a valid object which is ready to be trained or used. Training (for

a machine learning method) then must take place in an Estimate() or Train() method.

Then, application of the machine learning model to data should be through a function such

as Cluster(), Predict(), Regress(), or a similarly descriptive-named function.

Further, classes in mlpack implement policy-based design in the manner discussed in

Section 4.3, and each template parameter (when possible) should have a default to improve

usability. This means that virtually every class in mlpack is extensible and modular, so that
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users who are not familiar with the internals of the codebase can still implement their own

modifications of the algorithms that mlpack provides. Below is an example interface, for

k-means clustering:

template<typename MetricType = metric::EuclideanDistance,

typename InitialPartitionPolicy = RandomPartition,

typename EmptyClusterPolicy = MaxVarianceNewCluster,

template<class, class> class LloydStepType = NaiveKMeans,

typename MatType = arma::mat>

class KMeans;

In this example, the k-means implementation provides five significant degrees of free-

dom to the user. First, the user may choose their own distance metric5; but, if they choose

not to, the standard L2 distance is the default. The second template parameter allows the

user to specify the way that initial clusters are assigned; the third allows the user to spec-

ify the action to be taken when an empty cluster (that is, a cluster that owns no points) is

detected at the end of an iteration. The LloydStepType, a template template parameter6,

allows the user to specify their own algorithm to perform a single k-means iteration. The

default is the brute-force implementation used for the benchmarks, but mlpack provides

four other techniques that a user can plug in, too. Lastly, the user may specify the type of

data: dense (arma::mat) or sparse (arma::sp mat).

Lastly, not every person who wishes to use machine learning software is familiar with

C++; therefore, each machine learning algorithm implemented by mlpack also includes a

well-documented command-line interface. This follows the UNIX tradition of providing

small tools which can be wrapped together into larger applications. To continue with the

k-means example from just above, below demonstrates how k-means can be run from the

command line once mlpack is built and installed:

$ kmeans -i dataset.csv -c 25 -a elkan -v -C centroids.csv

5In our implementation, this is limited to Euclidean metrics, but that is a minor detail that the documenta-
tion clarifies.

6C++ is horribly confusing, and with terms like ‘template template parameter’ and ‘rvalue reference’
and ‘functor’ and ‘partial template function specialization’, the entire language is quite possibly an advanced
form of satire. Still, the generic programming infrastructure is quite powerful, as the text shows; personally,
I consider C++ both the worst and the best language ever designed.
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The example above performs k-means clustering with 25 clusters on the dataset in

dataset.csv, using Elkan’s algorithm, and storing the converged centroids in a file named

centroids.csv. These are only a few of the options available, though; the rest can be ac-

cessed with either man kmeans or kmeans -h. This pattern is consistent across the rest of

the mlpack methods.

Although this discussion has been relatively short, it is still possible to see how a robust,

modular design can lead to flexibility for advanced users while maintaining simplicity for

novice users.

4.4.3 Current functionality of mlpack

The last two goals of mlpack, a variety of methods and cutting-edge algorithms unavailable

elsewhere, are represented easily by a list of the current functionality of mlpack. Given

below are each of the significant modules that mlpack provides, with relevant citations. A

(*) indicates that mlpack has the only implementation of the technique.

• Dual-tree k-nearest neighbor search (*) [66]

• Dual-tree k-furthest neighbor search (*)

• Dual-tree range search (*)

• Dual-tree Borůvka’s algorithm for minimum spanning tree computation (*) [68]

• Dual-tree fast max-kernel search (*) [46, 79]

• Rank-approximate nearest neighbor search (*) [67]

• Adaboost [114]

• Non-negative matrix factorization [115]

• SVD batch learning matrix factorization [116]

• SVD incremental learning matrix factorization [116]
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• Least-squares linear and ridge regression

• Naive Bayes classifier

• Least angle regression [117]

• Gaussian mixture model training and prediction

• Density estimation trees [118]

• Mean shift clustering [119]

• Locality-sensitive hashing based on p-stable distributions [120]

• Neighborhood components analysis [121]

• Local coordinate coding [122]

• Sparse coding via LARS [123]

• Dual-tree k-means clustering (*) plus four other k-means techniques [80]

• Kernel principal components analysis [111]

• QUIC-SVD (*) [58]

• Perceptrons [11]

• Low-rank semidefinite program solver [112]

• General artificial neural network framework

• Hidden Markov model training, prediction, and generation

• Principal components analysis

• Softmax regression

• Collaborative filtering via matrix decomposition [124]
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• Nyström method for sampling [24]

4.5 Tree-independent dual-tree algorithms in mlpack

The current chapter, up to this point, has been something of a deviation from the rest of this

thesis; it has been focused on a general-purpose machine learning toolkit. However, one

part of mlpack is of particular importance to this thesis, and builds upon the material just

introduced: the dual-tree algorithm framework in mlpack.

We already know from Chapter 3 that dual-tree algorithms may be represented by three

separate components: a type of tree, a type of traversal, and a Score() and BaseCase()

function. This allows us to construct a relatively straightforward API for dual-tree algo-

rithms. The API reference given here is as of mlpack 1.1.07.

In our API, we assume that a tree is built on a dataset of type MatType (usually

arma::mat), and each point in this dataset is indexable by a unique unsigned integer type,

size t. A point in the input space, when not represented by an index, is represented by

a VecType object (usually arma::vec). The type of the dataset will follow the same API

conventions as Armadillo matrices; however, in this discussion, we don’t need to dig that

deep.

4.5.1 The TreeType policy

The first API to establish is the TreeType class policy, which defines the methods that a

tree type must implement. In mlpack, there is no distinction between a tree and a node,

because each node corresponds to its own subtree. Therefore, only one class is necessary

to represent a tree and all nodes contained in that tree. The class must implement each of

the methods required by the TreeType class policy. Figure 14 and 15 show most of the

methods that a tree type must implement. There are a few others not documented here,

but the excerpt given here is sufficient to get a feel for the API. The comments above each

method describe the required functionality.

7Yet to be released—but the API is finalized.
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// Return the dataset that the tree is built on.

const MatType& Dataset();

// Return the parent of the node, or NULL if this is the root.

TreeType* Parent();

// Return the number of children held by the node.

size t NumChildren();

// Return the ith child held by the node.

TreeType& Child(const size t i);

// Return the number of points held by the node.

size t NumPoints();

// Return the ith point held by the node.

VecType& Point(const size t i);

// Return the number of descendant points of the node.

size t NumDescendants();

// Return the ith descendant point of the node.

VecType& Descendant(const size t i);

// Return the number of descendant nodes.

size t NumDescendantNodes();

// Return the ith descendant node.

VecType& DescendantNode(const size t i);

// Store the centroid of the node in the given vector.

void Centroid(VecType& centroid);

Figure 14: Methods required by TreeType class (part one).

Most of the methods have an analog to quantities or bounds described in Chapter 3

(specifically, Section 3.3). Points, children, and descendant points are all accessible through

the API. It is important to note that points are referred to by their index in the dataset (of

unsigned integer type size t). Methods such as MinDistance() and MaxDistance()

correspond to the bounds dmin(·, ·) and dmax(·, ·), respectively. Each of the methods in this

API are directly usable and useful by the soon-to-be-formalized-in-code BaseCase() and

Score() functions.

However, it is often the case that the API provided by the TreeType policy is insuf-

ficient for certain dual-tree algorithms. For instance, suppose the existence of a dual-tree

algorithm which requires on the kurtosis of the descendant points of each node. For this
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// Get the distance between the centroid of this node and the centroid

// of its parent.

double ParentDistance();

// Return the furthest distance from the centroid of the node to any

// point held in the node.

double FurthestPointDistance();

// Return the furthest descendant point distance from the centroid

// of the node.

double FurthestDescendantDistance();

// Return the minimum distance between the given point and the node.

template<typename OtherVecType>

double MinDistance(OtherVecType& point);

// Return the minimum distance between the given node and this node.

double MinDistance(TreeType& otherNode);

// Return the maximum distance between the given point and the node.

template<typename OtherVecType>

double MaxDistance(OtherVecType& point);

// Return the maximum distance between the given node and this node.

double MaxDistance(TreeType& otherNode);

Figure 15: Methods required by TreeType class (part two).

niche situation, it is unreasonable to add a Kurtosis() function to the TreeType policy;

acquiescing to each of these requests quickly leads to a wildly complex set of requirements

for tree implementers. The solution for mlpack is simpler and more elegant: each class

implementing the TreeType policy must have as a template parameter a StatisticType

class, and must hold an instance of the StatisticType class in each node.

The StatisticType class (or just the statistic) is useful for holding problem-specific

quantities such as the kurtosis, as in the above example, or other cached statistics simi-

lar to those suggested by Moore in the Anchors hierarchy [125]. The restrictions on the

StatisticType API are very loose; a StatisticType must simply provide a default

constructor, and a constructor called with the node that the statistic corresponds to. An

example class definition is given for the kurtosis example in Figure 16.

In general, most dual-tree algorithms in mlpack implement their own statistic type to

cache bounding information, centroids, centers, or other quantities not provided for by the
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class KurtosisStatistic

{

public:

// Default constructor; sets kurtosis to 0.

KurtosisStatistic();

// Construct the KurtosisStatistic on the given node.

// This calculates the kurtosis on the descendant points of the node.

KurtosisStatistic(TreeType& node);

// More methods and members may (and should) be added, but the two

// above are all that is required.

};

Figure 16: Example StatisticType class.

general TreeType class policy.

There is one more important part of the mlpack TreeType class: the TreeTraits

class for template metaprogramming. We may use the TreeTraits class to determine

traits about the tree at compile-time (similar to the traits in Tables 2, 3, 4, 5, and 6), which

may allow us to make additional assumptions in the BaseCase() and Rules() function.

We must simply define an appropriate specialization of the TreeTraits template class.

An example, for the cover tree, is given in Figure 17; note that in this example, the spe-

cialization itself must be templatized because the CoverTree class is templatized too (in

accordance with the principles of policy-based design).

Using these traits in practice is fairly straightforward. Consider the simple but common

task of recursing into the children of a node8. This can be written generally using the API

we have introduced (in Figure 18):

But we can use TreeTraits<TreeType>::BinaryTree to avoid the loop entirely for

binary trees (Figure 19). The if statement is known at compile-time, and therefore the

compiler can optimize away the for loop entirely if the tree is a binary tree.

This strategy of using compile-time constants to allow the compiler to use specialized

8This example is somewhat contrived. Most modern optimizing compilers would be able to unroll the
loop completely for binary trees, without the hint provided by template metaprogramming. However, the
example is still useful in that it demonstrates how one might use the TreeTraits<> class in more complex
situations that the compiler will not optimize correctly.
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template<typename MetricType,

typename RootPointPolicy,

typename StatisticType,

typename MatType>

class TreeTraits<CoverTree<MetricType, RootPointPolicy,

StatisticType, MatType>>

{

public:

/**

* The cover tree (or, this implementation of it) does not require

* that children represent non-overlapping subsets of the parent

* node.

*/

static const bool HasOverlappingChildren = true;

/**

* Each cover tree node contains only one point, and that point is

* its centroid.

*/

static const bool FirstPointIsCentroid = true;

/**

* Cover trees do have self-children.

*/

static const bool HasSelfChildren = true;

/**

* Points are not rearranged when the tree is built.

*/

static const bool RearrangesDataset = false;

/**

* The cover tree is not necessarily a binary tree.

*/

static const bool BinaryTree = false;

};

Figure 17: Example specialization of TreeTraits.

sections of code is applicable to far more complex situations than the one described above,

and is used at length in mlpack to accelerate algorithms.
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for(size t i = 0; i < node.NumChildren(); ++i)

Recurse(node.Child(i));

Figure 18: Recursing into the children of a node.

if (TreeTraits<TreeType>::BinaryTree)

{

Recurse(node.Child(0));

Recurse(node.Child(1));

}

else

{

for(size t i = 0; i < node.NumChildren(); ++i)

Recurse(node.Child(i));

}

Figure 19: Compile-time specialization of recursion with TreeTraits.

// Compute the base case between a query and reference point.

double BaseCase(const size t queryIndex, size t referenceIndex);

// A single-tree Score() function; returns DBL MAX if the node should

// be pruned.

double Score(const size t queryIndex, TreeType& referenceNode);

// Re-score the node, considering the old score.

double Rescore(const size t queryIndex,

TreeType& referenceNode,

const double oldScore);

// A dual-tree Score() function; returns DBL MAX if the combination

// should be pruned.

double Score(TreeType& queryNode, TreeType& referenceNode);

// Re-score the node combination, using the old score.

double Rescore(TreeType& queryNode,

TreeType& referenceNode,

const double oldScore);

Figure 20: Required API for RuleType classes.

4.5.2 The RuleType policy

The next part of the dual-tree algorithm infrastructure in mlpack is the RuleType policy

class, which encapsulates the BaseCase() and Score() functions that describe the dual-

tree (or single-tree) algorithm. These classes end up being more complex than the paper-

presented abstraction would suggest, with the necessary methods being listed in Figure 20.

Short comments for each method are given in the figure; details are given below.
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The BaseCase() and Score() methods are nearly as one would expect. BaseCase()

takes a query point and reference point, but returns a double, somewhat contrary to the

abstraction. The reason for this is that sometimes, the result of the BaseCase() calcula-

tion is useful elsewhere. Consider nearest-neighbor search with ball trees. The base case

calculates the distance between a query point and a reference point, but this is also usable

during Score(), if the query and reference points pq and pr are the centers of tree nodes

Nq and Nr. Inside the Score() method, one can call BaseCase() directly, which will

return d(pq, pr). This may be easily adjusted into dmin(Nq,Nr), by subtracting the radii

of the two nodes (λq and λr). Some semi-clever software engineering is then necessary to

make sure the subsequent calls to BaseCase() with pq and pr (which are required by the

definition of pruning dual-tree traversal) don’t perform any work. For certain types of trees,

a significant amount of computation can be avoided in this manner. However, because this

is entirely implementation-specific, there is no need to discuss this detail in the abstract

terminology of the previous chapter.

Because ∞ is difficult to represent in C++9, the Score() functions return DBL MAX

when pruning is possible instead of ∞. Any value less than DBL MAX indicates a score

for prioritized recursion, with lower scores indicating that the node combination should be

recursed into sooner.

The last deviation from the abstraction is the two Rescore() functions. The pruning

rules for most dual-tree algorithms boil down to some comparison of the form “if a is

greater than b, then prune”, where a is some combination-specific quantity that usually

relates to the distance between the nodes, and b is some bound quantity. For instance, in

single-tree nearest neighbor search, a is dmin(pq,Nr) and b is d(pq, p̂nn), where p̂nn is the

current nearest neighbor candidate for the query point pq. In these situations, a (or some

algebraic manipulation thereof) is often a good score to return to the traversal for prioritized

recursion. The Rescore() function allows the traversal to make a final check for pruning

9More specifically, it takes longer and is uglier to type std::numeric limits<double>::infty()
than DBL MAX.
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template<typename RuleType>

class ExampleTraversal

{

public:

// Construct the traversal with the given instantiated RuleType.

ExampleTraversal(RuleType& rule);

// Perform a single-tree traversal on the given query point and

// reference tree.

template<typename TreeType>

void Traverse(const size t queryIndex, TreeType& referenceNode);

// Perform a dual-tree traversal on the given query and reference

// tree.

template<typename TreeType>

void Traverse(TreeType& queryNode, TreeType& referenceNode);

// More methods are allowable, but not required.

};

Figure 21: Example TraversalType class.

before recursion, in case the bounding quantity b has tightened between the call to Score()

and the recursion.

It is important to note that the Rescore() functions are not required, and in situations

where it is known that Rescore() cannot be effective, the body of the Rescore() function

can simply be ‘return oldScore;’.

4.5.3 The TraversalType policy

The last piece of mlpack’s dual-tree algorithm puzzle is the TraversalType policy, which

uses both the RuleType and TreeType policies. The requirements are quite simple and are

shown in Figure 21. The traversal must take a RuleType class as its only template param-

eter, have a constructor which takes an instantiated RuleType, and provide a Traverse()

function to perform either a single-tree or dual-tree traversal (or a Traverse() function for

each case may be provided, like in the example). The Traverse() overload for the single-

tree case takes a query point (size t) and a reference node (TreeType&); in the dual-tree

case, Traverse() takes a query node and reference node, both of type TreeType&. For

either overload, the node is not required to be the root of a tree, which means that a traversal
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// Assume we have datasets from somewhere.

extern arma::vec queryPoint;

extern arma::mat queryData, referenceData;

// Build the trees.

MyTree queryTree(queryData);

MyTree referenceTree(referenceData);

// Create the rule. We assume MyRule has a default constructor (this

// assumption is generally not true, though, so the code ends up being

// slightly more complex).

MyRule rule;

// Create the traversal.

MyTraversal traversal(rule);

// First run a single-tree traversal with the query point.

traversal.Traverse(queryPoint, referenceTree);

// Now run a dual-tree traversal with the query tree.

traversal.Traverse(queryTree, referenceTree);

Figure 22: Code to run a sample dual-tree algorithm in mlpack.

can be run only on subtrees, if so desired.

This API leaves a lot of flexibility to the implementer; additional functions may be

provided if desired. Further, Traverse() is not required to be recursive; it is only the

starting point for a traversal.

4.5.4 Assembling a dual-tree algorithm in mlpack

With the TreeType, RuleType, and TraversalType policy classes, which represent each

of the pieces of a dual-tree algorithm, it is easy to assemble a dual-tree (or single-tree)

algorithm. Figure 22 shows some example code that assembles a dual-tree algorithm using

MyTree as the tree type, MyRule as the rule type, and MyTraversal as the traversal type.

In reality, the dual-tree algorithms implemented in mlpack tend to be quite more com-

plex than the snippet given. In particular, RuleType classes often have constructors that

take a number of matrices to store the results of the dual-tree algorithm, and sometimes

other tuning parameters or options. Both traversals and trees may also have options that

can be (optionally) set in the constructor.
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Nonetheless, the dual-tree algorithm API as detailed in this section is sufficient to en-

capsulate the class of dual-tree algorithms.

Figure 23: Fritz and Drusilla.10

(a) Fritz. (b) Drusilla.

10I was originally challenged to include a picture of my cats somewhere in this document. In an unusual
moment of lucid reasoning, I decided that it would not be a good idea. However, during discussions with the
committee, the point came up (as a joke) and the committee seemed to be of the opinion that inclusion of the
cats would not detract from the thesis, especially given that McClellan [126] did so much more obviously on
the front cover of his book. Therefore, I have finally published an academic document with a picture of my
cats in it, fulfilling a long-standing bet. I believe that I am now owed lunch, or a beer, or something.
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CHAPTER 5

TREES

The first piece of a dual-tree algorithm is the type of space tree. As with each piece of the

tree-independent dual-tree algorithm abstraction detailed in Chapter 3, any improvements

to trees can propagate to the algorithms that use that particular type of tree. Therefore, I

have spent some time working with individual tree types, and the advancements and other

insights I have found are thus detailed in this chapter. The majority of my work—and all

of the work worth publishing in this chapter—concerns the cover tree, a complex tree type

that is most useful for its theoretical properties.

5.1 Free parameters in the cover tree

The cover tree is a widely-known tree structure that has gained popularity for nearest

neighbor search and other tasks such as local SVM training [127], max-kernel search

[46, 79], Euclidean minimum spanning tree calculation [68], and k-average-medoid cal-

culation [128] (as well as many others). A large part of the interest in the structure comes

from its convenient theoretical properties, which allow bounding the complexity of the

structure with respect to a dataset-dependent quantity called the expansion constant.

However, the cover tree is an extremely complex structure and has been found repeat-

edly to have a lot of tree-building overhead [129, 130]; the implementation in mlpack

shows this assessment to be accurate, with cover tree construction often taking significantly

longer than kd-tree construction (or other tree types).

The cover tree construction algorithm, as given, has several parameters for tuning, in-

cluding the selection of the root of the tree, which I therefore investigated. I also attempted

to find those characteristics of the cover tree which correlate to better performance. Unfor-

tunately, the only correlation I have found to date is a weak correlation, and my efforts to

select a root point better were a wash. Still, I find the negative results to be valuable, if only
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as a warning to others, and therefore we will discuss them (briefly).

5.1.1 The cover tree: a rehash

The cover tree is a leveled hierarchical data structure originally proposed for the task of

nearest neighbor search by Beygelzimer, Kakade, and Langford [57]. Each node Ni in the

cover tree is associated with a single point pi. An adequate description is given in their

work (we have adapted notation slightly):

A cover tree T on a dataset S is a leveled tree where each level is a “cover”

for the level beneath it. Each level is indexed by an integer scale si which

decreases as the tree is descended. Every node in the tree is associated with a

point in S . Each point in S may be associated with multiple nodes in the tree;

however, we require that any point appears at most once in every level. Let Csi

denote the set of points in S associated with the nodes at level si. The cover

tree obeys the following invariants for all si:

• (Nesting). Csi ⊂ Csi−1. This implies that once a point p ∈ S appears in

Csi then every lower level in the tree has a node associated with p.

• (Covering tree). For every pi ∈ Csi−1, there exists a p j ∈ Csi such that

d(pi, p j) < 2si and the node in level si associated with p j is a parent of the

node in level si − 1 associated with pi.

• (Separation). For all distinct pi, p j ∈ Csi , d(pi, p j) > 2si .

As a consequence of this definition, if there exists a node Ni, containing the point pi

at some scale si, then there will also exist a self-child node Nic containing the point pi at

scale si − 1 which is a child of Ni. In addition, every descendant point of the node Ni is

contained within a ball of radius 2si+1 centered at the point pi; therefore, λi = 2si+1 and

µi = pi (see Table 1).
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Note that the cover tree may be interpreted as an infinite-leveled tree, with the highest

level C∞ containing only the root point, the lowest level C−∞ containing every point (that is,

C−∞ = S ), and all levels between defined as above. Beygelzimer et al. find this representa-

tion (which they call the implicit representation) easier for description of their algorithms

and some of their proofs [57]. But clearly, this is not suitable for implementation; hence,

they also introduce an explicit representation in which all nodes that have only a self-child

are coalesced upwards (that is, the node’s self-child is removed, and the children of that

self-child are taken to be the children of the node).

The theoretical results for the cover tree apply to both the explicit and implicit repre-

sentations of the tree. Personally, I think that the explicit representation is much simpler to

work with; therefore, all of the following results work with the explicit representation of

the tree. Some key points of the explicit representation of a cover tree are listed below (see

also Table 6 and Section 5.1.1):

• Each node Ni contains a single point pi and has a scale si.

• All descendant points of Ni are within the radius 2si+1.

• The children of Ni are not necessarily at the scale si − 1, but their scale must be less

than si.

• The regions corresponded to by nodes Ni and N j where si = s j may overlap (Ni

corresponds to a ball of radius 2si+1 and center pi; N j corresponds to a ball of the

same radius and center p j), but the nodes are still beholden to the separation invariant.

We are not concerned with a batch construction algorithm for the cover tree here, but

the interested reader should refer to the original paper for details [57]. The tree can be

built in O(c6N log N) time, where c is the expansion constant (described in the following

subsection).

70



5.1.2 The expansion constant

The explicit representation of a cover tree has a number of useful theoretical properties

based on the expansion constant [131]; we restate its definition below.

Definition 8. Let BS (p,∆) be the set of points in S within a closed ball of radius ∆ around

some p ∈ S with respect to a metric d: BS (p,∆) = {r ∈ S : d(p, r) ≤ ∆}. Then, the

expansion constant of S with respect to the metric d is the smallest c ≥ 2 such that

|BS (p, 2∆)| ≤ c|BS (p,∆)| ∀ p ∈ S , ∀ ∆ > 0. (8)

The expansion constant is used heavily in the cover tree literature. It is, in some sense,

a notion of instrinic dimensionality, and previous work has shown that there are many

scenarios where c is independent of the number of points in the dataset [131, 57, 132, 133].

Note also that if points in S ⊂ H are being drawn according to a stationary distribution

f (x), then c will converge to some finite value c f as |S | → ∞. To see this, define c f as a

generalization of the expansion constant for distributions. c f ≥ 2 is the smallest value such

that

(∫
BH (p,2∆)

f (x)dx
)
≤ c f

(∫
BH (p,∆)

f (x)dx
)

(9)

for all p ∈ H and ∆ > 0 such that
∫
BH (p,∆)

f (x)dx > 0, and with BH (p,∆) defined as the

closed ball of radius ∆ in the spaceH .

As a simple example, take f (x) as a uniform spherical distribution in Rd: for any |x| ≤ 1,

f (x) is a constant; for |x| > 1, f (x) = 0. It is easy to see that c f in this situation is 2d, and

thus for some dataset S , c must converge to that value as more and more points are added

to S . Closed-form solutions for c f for more complex distributions are less easy to derive;

however, empirical speedup results from the original cover tree paper suggest the existence

of datasets where c is not strongly dependent on d [57]. For instance, the covertype

dataset has 54 dimensions but the expansion constant is much smaller than other, lower-

dimensional datasets.
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There are some other important observations about the behavior of c. Adding a single

point to S may increase c arbitrarily: consider a set S distributed entirely on the surface

of a unit hypersphere. If one adds a single point at the origin, producing the set S ′, then c

explodes to |S ′| whereas before it may have been much smaller than |S |. Adding a single

point may also decrease c significantly. Suppose one adds a point arbitrarily close to the

origin to S ′; now, the expansion constant will be |S ′|/2. Both of these situations are degen-

erate cases not commonly encountered in real-world behavior; we discuss them in order to

point out that although we can bound the behavior of c as |S | → ∞ for S from a stationary

distribution, we are not able to easily say much about its convergence behavior.

The expansion constant can be used to show a few useful bounds on various properties

of the cover tree; we restate these results below, given some cover tree built on a dataset S

with expansion constant c and |S | = N:

• Width bound: no cover tree node has more than c4 children (Lemma 4.1, [57]).

• Depth bound: the maximum depth of any node is O(c2 log N) (Lemma 4.3, [57]).

• Space bound: a cover tree has O(N) nodes (Theorem 1, [57]).

Lastly, we introduce a convenience lemma of our own which is a generalization of the

packing arguments used by [57]. This is a more flexible version of their argument.

Lemma 1. Consider a dataset S with expansion constant c and a subset C ⊆ S such that

every point in C is separated by δ. Then, for any point p (which may or may not be in S ),

and any radius ρδ > 0:

|BS (p, ρδ) ∩C| ≤ c2+dlog2 ρe. (10)

Proof. The proof is based on the packing argument from Lemma 4.1 in [57]. Consider two

cases: first, let d(p, pi) > ρδ for any pi ∈ S . In this case, BS (p, ρδ) = ∅ and the lemma
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holds trivially. Otherwise, let pi ∈ S be a point such that d(p, pi) ≤ ρδ. Observe that

BS (p, ρδ) ⊆ BS (pi, 2ρδ). Also, |BS (pi, 2ρδ)| = c2+dlog2 ρe|BS (pi, δ/2)| by the definition of the

expansion constant. Because each point in C is separated by δ, the number of points in

BS (p, ρδ) ∩ C is bounded by the number of disjoint balls of radius δ/2 that can be packed

into BS (p, ρδ). In the worst case, this packing is perfect, and

|BS (p, ρδ)| ≤
|BS (pi, 2ρδ)|
|BS (pi, δ/2)|

≤ c2+dlog2 ρe. (11)

�

5.1.3 Root point selection policy

Undeterred by the hearsay of others, who reported that they were unable to get any notice-

able improvement out of the cover tree by tweaking build-time heuristics, I observed that

one free parameter in the build process of the cover tree is the selection of the root point.

The reference implementation simply selects the first point in the dataset (and mlpack does

this too).

It is intuitive to reason that a good cover tree will have a root point near the centroid,

which will allow the scale of the root node to potentially be smaller and may result in a

more balanced tree. The centroid can be found quite quickly in a single pass, and then

the nearest point in the dataset can be found by simply using nearest neighbor search on

the dataset with the centroid as a query point. Although this is time-consuming, a simple

heuristic may exist to find a point near enough to the centroid to still obtain the runtime

benefits of selecting a root point near the centroid—if such runtime benefits existed.

Table 10 shows statistics for the search-time performance of trees built using standard

construction techniques and the nearest-point-to-centroid root selection construction tech-

nique at build-time, and Table 11 shows build-time performance statistics on a variety of

datasets.

More trials show no clear trends between the choice of root point and the performance
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Table 10: Runtime statistics for different root point policies.

Dataset Size (n × d) Root Policy Base cases Scores
cloud 10x2048 standard 100,294 200,777
cloud 10x2048 centroid 99,287 201,118
sat-train 37x4435 standard 796,257 1,453,644
sat-train 37x4435 centroid 774,093 1,417,471
isolet 617x7797 standard 36,151,613 50,368,497
isolet 617x7797 centroid 35,789,986 49,869,594
corel 32x37749 standard 96,773,720 206,686,912
corel 32x37749 centroid 100,138,961 210,169,714
miniboone 50x130064 standard 303,840,668 670,128,641
miniboone 50x130064 centroid 305,535,492 674,806,902
covertype 54x581012 standard 125,172,202 280,307,963
covertype 54x581012 centroid 125,052,402 279,764,213
mnist 784x70000 standard 2,545,638,649 3,750,433,910
mnist 784x70000 centroid 2,546,585,630 3,758,033,756

Table 11: Build-time statistics for different root point policies.

Dataset Root Policy Distance Evals Nodes max |Ci| smax smin

cloud standard 88,796 2,856 21 12 -1
cloud centroid 91,540 2,871 22 12 -1
sat-train standard 1,814,451 5,157 273 9 4
sat-train centroid 1,752,514 5,155 295 9 4
isolet standard 22,951,726 9,158 2112 5 2
isolet centroid 22,495,666 9,147 2504 5 2
corel standard 80,757,262 46,885 488 1 -7
corel centroid 85,601,844 47,020 407 1 -7
miniboone standard 239,336,248 160,348 626 24 4
miniboone centroid 241,277,485 160,419 550 24 4
covertype standard 160,801,654 801,884 71 14 2
covertype centroid 164,858,576 801,864 98 14 2
mnist standard 1,512,062,473 77,851 5410 12 8
mnist centroid 1,468,179,161 77,882 5113 13 8

of the tree at runtime. Sometimes, the standard policy performs better, and sometimes, the

centroid policy performs better. Swings of up to about 10% (in terms of number of base

case computations) are observed. In those files, there is also data for when the base is set

to 1.3, as in the original implementation [57]; it becomes clear that the speedup due to

the smaller base is not due to a better tree—the number of base case computations almost
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always goes up—but instead that the number of distance computations during tree-building

can be orders of magnitude fewer. Often, with cover trees, the longest part of the search is

the tree-building, due to the complexity of the cover tree building procedure.

5.1.4 Correlation of tree width to performance

To further investigate the effect of root point selection, on a few sample datasets (‘cloud’,

‘sat-train’, and ‘winequality’, all from the UCI repository [134]), cover trees were made

Figure 24: Tree performance related to the average number of children per node, for the
cloud dataset.
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Figure 25: Tree performance related to the average number of children per node, for the
sat-train dataset.

with every possible root point. Then, each tree was used to perform dual-tree all-nearest-

neighbor search. Overall, the difference between the number of distance calculations per-

formed during search for the best and worst trees was less than 20% for each dataset,

meaning that even if there was a good way to select the root point, it would not affect

performance significantly.

The only correlation found between these trees and their performance was the average

number of children per node, and even that was only a weak correlation. Figures 24, 25, and
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Figure 26: Tree performance related to the average number of children per node, for the
winequality dataset.

26 show this relation for the ‘cloud’, ‘sat-train’, and ‘winequality’ datasets, by sorting the

trees by their performance (with better-performing trees coming before worse-performing

trees), and then generating a scatter plot using the average number of children per node.

Intuitively, the reason that trees with lower average numbers of children perform worse

is probably because those trees are more likely to have very unbalanced pectinate branches;

that is, branches where each node only has two children, and one of those children is a leaf,

such as in Figure 27.
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Figure 27: A pectinate tree.

5.2 Cover tree runtime bounds

Of significant interest to the tree community is worst-case runtime bounds for tree-based

algorithms. Unfortunately, though, assumption-free worst-case runtime bounds that are

better than the brute-force approach continue to elude the community, and this hurdle is not

likely to be overcome because of worst-case datasets. However, adaptive runtime analysis

allows us to show tighter, more descriptive worst-case runtime bounds if we assume that

dataset-dependent characteristics do not scale with the data.

To date, the most well-known tree structure to which this technique has been applied

is the cover tree [57], which has been mentioned several times already during this thesis

and was the subject of the last section. Therefore, refer there for a more in-depth discus-

sion of the cover tree itself, and the expansion constant c, which is the dataset-dependent

characteristic that we assume does not scale with the dataset. Importantly, the cover tree

has been shown to scale linearly in the dataset size for dual-tree nearest neighbor search

and dual-tree kernel density estimation [133]; this is a significant improvement over the

quadratic scaling of the brute-force approach.

In this section, we introduce the notion of cover tree imbalance, motivated by the pre-

vious section’s observations on pectinate tree branches. This notion allows us to develop

a plug-and-play runtime bound. We will use this plug-and-play bound later, in order to

show worst-case linear runtime bounds on dual-tree nearest neighbor search (Section 7.1),

dual-tree kernel density estimation (Section 7.3), dual-tree max-kernel search (Section 7.7),
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Figure 28: Balanced and imbalanced cover trees.

dual-tree range search / range count (Section 7.2), and dual-tree kernel matrix approxima-

tion (Section 7.5). Each of these bounds is an improvement on the state-of-the-art, and in

the case of range search and kernel matrix approximation, are the first such bounds. The

work in this section is an adapted and extended version of a recent paper [135].

5.2.1 Tree imbalance

It is well-known that imbalance in trees leads to degradation in performance; for instance,

a kd-tree node with every descendant in its left child except one is effectively useless. A

kd-tree full of nodes like this will perform abysmally for nearest neighbor search, and it is

not hard to generate a pathological dataset that will cause a kd-tree of this sort.

This sort of imbalance applies to all types of trees, not just kd-trees. In our situa-

tion, we are interested in a better understanding of this imbalance for cover trees, and thus

endeavor to introduce a more formal measure of imbalance which is correlated with tree

performance. Numerous measures of tree imbalance have already been established; one

example is that proposed by Colless [136], and another is Sackin’s index [137], but we aim

to capture a different measure of imbalance that utilizes the leveled structure of the cover

tree.

We already know each node in a cover tree is indexed with an integer level (or scale).

In the explicit representation of the cover tree, each non-leaf node has children at a lower

level. But these children need not be strictly one level lower; see Figure 28. In Figure 28a,

each cover tree node has children that are strictly one level lower; we will refer to this as a
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outlier

Figure 29: Single-outlier cover tree.

Figure 30: A multiple-outlier cover tree.

perfectly balanced cover tree. Figure 28b, on the other hand, contains the node Nm which

has two children with scale two less than sm. We will refer to this as an imbalanced cover

tree. Note that in our definition, the balance of a cover tree has nothing to do with differing

number of descendants in each child branch but instead only missing levels.

An imbalanced cover tree can happen in practice, and in the worst cases, the imbalance

may be far worse than the simple graphs of Figure 28. Consider a dataset with a single

outlier which is very far away from all of the other points1. Figure 29 shows what happens

in this situation: the root node has two children; one of these children has only the outlier

as a descendant, and the other child has the rest of the points in the dataset as a descendant.

In fact, it is easy to find datasets with a handful of outliers that give rise to a chain-like

structure at the top of the tree: see Figure 30 for an illustration2.

A tree that has this chain-like structure all the way down, which is similar to the kd-tree

example at the beginning of this section, is going to perform horrendously; motivated by

1Note also that for an outlier sufficiently far away, the expansion constant is N − 1, so we should expect
poor performance with the cover tree anyway.

2As a side note, this behavior is not limited to cover trees, and can happen to mean-split kd-trees too,
especially in higher dimensions.
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this observation, we define a measure of tree imbalance.

Definition 9. The cover node imbalance in(Ni) for a cover tree node Ni with scale si in

the cover tree T is defined as the cumulative number of missing levels between the node

and its parent Np (which has scale sp). If the node is a leaf child (that is, si = −∞), then

number of missing levels is defined as the difference between sp and smin − 1 where smin is

the smallest scale of a non-leaf node in T . If Ni is the root of the tree, then the cover node

imbalance is 0. Explicitly written, this calculation is

in(Ni) =


sp − si − 1 if Ni is not a leaf and not the root node

max(sp − smin − 1, 0) if Ni is a leaf

0 if Ni is the root node.

(12)

This simple definition of cover node imbalance is easy to calculate, and using it, we can

generalize to a measure of imbalance for the full tree.

Definition 10. The cover tree imbalance it(T ) for a cover tree T is defined as the cumu-

lative number of missing levels in the tree. This can be expressed as a function of cover

node imbalances easily:

it(T ) =
∑

Ni∈T

in(Ni). (13)

A perfectly balanced cover tree Tb with no missing levels has imbalance it(Tb) = 0 (for

instance, Figure 28a). A worst-case cover tree Tw which is entirely a chain-like structure

with maximum scale smax and minimum scale smin will have imbalance it(Tw) ∼ N(smax −

smin). Because of this chain-like structure, each level has only one node and thus there

are at least N levels; or, smax − smin ≥ N, meaning that in the worst case the imbalance is

quadratic in N3.

3Note that in this situation, c ∼ N also.
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Table 12: Empirically calculated tree imbalances.

Imbalance
Dataset d N = 5k N = 50k N = 500k
lcdm 3 29402 313190 3400305
sdss 4 17691 191716 1483711

power 7 22152 202050 1345825
susy 18 3686 64231 930969
higgs 29 404 1272 73793

covertype 55 9680 100344 1319447
mnist 784 4004 79375 983554

However, for most real-world datasets with the cover tree implementation in mlpack

[87] and the reference implementation [57], the tree imbalance is near-linear with the num-

ber of points. Generally, most of the cover tree imbalance is contributed by leaf nodes

whose parent has scale greater than smin. At this time, no cover tree construction algorithm

specifically aims to minimize imbalance.

To demonstrate the near-linearity of the cover tree imbalance, Table 12 shows empiri-

cally calculated cover tree imbalance for cover trees on a number of datasets built with both

the cover tree implementation in mlpack [87] and the original reference implementation

[57]. The ‘power’, ‘susy’, ‘higgs’, and ‘covertype’ datasets are found in the UCI Machine

Learning Repository [134], the ‘mnist’ dataset is ubiquitous but absent from the UCI repos-

itory for some reason and is published by LeCun et al. [138], and the ‘sdss’ dataset is Sloan

Digital Sky Survey data [139]. Imbalance is shown for subsets of the datasets of size 5000,

50000, and 500000; the actual value of the imbalance is of less important than the scaling

properties with N—which tend to be near-linear.

5.2.2 General runtime bound

With the notion of cover tree imbalance developed, we may turn our attention towards a

general runtime bound for dual-tree algorithms that use the cover tree. This is the main

theoretical result of the entire thesis, and nearly every other theoretical result depends upon
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Algorithm 8 The standard pruning dual-tree traversal for cover trees.
1: Input: query node Nq, set of reference nodes R
2: Output: none

3: smax
r ← maxNr∈R sr

4: if (sq < smax
r ) then

5: {Perform a reference recursion.}
6: for all Nr ∈ R do
7: BaseCase(pq, pr)

8: Rr ← {Nr ∈ R : sr = smax
r }

9: Rr−1 ← {C (Nr) : Nr ∈ Rr} ∪ (R \ Rr)
10: R′r−1 ← {Nr ∈ Rr−1 : Score(Nq,Nr) , ∞}
11: recurse with Nq and R′r−1
12: else
13: {Perform a query recursion.}
14: for all Nqc ∈ C (Nq) do
15: R′ ← {Nr ∈ R : Score(Nq,Nr) , ∞}
16: recurse with Nqc and R′

it. Although cover trees were originally intended for nearest neighbor search (see Algo-

rithm Find-All-Nearest in [57]), they have been adapted to a wide variety of problems:

minimum spanning tree calculation [68], approximate nearest neighbor search [67], Gaus-

sian processes posterior calculation [140], and max-kernel search [79] are some examples.

We can express the original nearest neighbor search algorithm (and later extensions) inside

of the framework of tree-independent dual-tree algorithms, and this gives us the traversal

shown in Algorithm 8, originally presented in the context of max-kernel search [79]. This

traversal stems from Find-All-Nearest by Beygelzimer et al. [57], and is implemented

in both the cover tree reference implementation and in a more flexible manner in mlpack

[87].

Initially, the traversal is called with the root of the query tree and a reference set R

containing only the root of the reference tree4.

This dual-tree recursion is a depth-first recursion in the query tree and a breadth-first

4Though this is different than other traversals which take the root of two trees, this still fits in the
TraversalType abstraction laid out in Section 4.5.3 easily. Also, the implementation of this traversal is
far more complex than Algorithm 8 might suggest. mlpack’s code is highly commented, so the enthusiastic
reader is directed to go there to lose their enthusiasm.
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recursion in the reference tree; to this end, the recursion maintains one query node Nq and

a reference set R. The set R may contain reference nodes with many different scales; the

maximum scale in the reference set is smax
r (line 3). Each single recursion will descend

either the query tree or the reference tree, not both; the conditional in line 4, which deter-

mines whether the query or reference tree will be recursed, is aimed at keeping the relative

scales of query nodes and reference nodes close.

A query recursion (lines 12–16) is straightforward: for each child Nqc of Nq, the node

combinations (Nqc,Nr) are scored for each Nr in the reference set R. If possible, these

combinations are pruned to form the set R′ (line 16) by checking the output of the Score()

function, and then the algorithm recurses with Nqc and R′.

A reference recursion (lines 4–11) is similar to a query recursion, but the pruning strat-

egy is significantly more complicated. Given R, we calculate Rr, which is the set of nodes

in R that have scale smax
r . Then, for each node Nr in the set of children of nodes in Rr, the

node combinations (Nq,Nr) are scored and pruned if possible. Those reference nodes that

were not pruned form the set R′r−1. Then, this set is combined with R \ Rr—that is, each of

the nodes in R that was not recursed into—to produce R′, and the algorithm recurses with

Nq and the reference set R′.

The reference recursion only recurses into the top-level subset of the reference nodes in

order to preserve the separation invariant. It is easy to show that every pair of points held

in nodes in R is separated by at least 2smax
r :

Lemma 2. For all nodes Ni,N j ∈ R (in the context of Algorithm 8) which contain points

pi and p j, respectively, d(pi, p j) > 2smax
r , with smax

r defined as in line 3.

Proof. This proof is by induction. If |R| = 1, such as during the first reference recursion,

the result obviously holds. Now consider any reference set R and assume the statement

of the lemma holds for this set R, and define smax
r as the maximum scale of any node in

R. Construct the set Rr−1 as in line 9 of Algorithm 8; if |Rr−1| ≤ 1, then Rr−1 satisfies the

desired property.
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Otherwise, take any Ni,N j in Rr−1, with points pi and p j, respectively, and scales

si and s j, respectively. Clearly, if si = s j = smax
r − 1, then by the separation invariant

d(pi, p j) > 2smax
r −1.

Now suppose that si < smax
r − 1. This implies that there exists some implicit cover tree

node with point pi and scale smax
r − 1 (as well an implicit child of this node pi with scale

smax
r − 2 and so forth until one of these implicit nodes has child pi with scale si). Because

the separation invariant applies to both implicit and explicit representations of the tree, we

conclude that d(pi, pr) > 2smax
r − 1. The same argument may be made for the case where

s j < smax
r − 1, with the same conclusion.

We may therefore conclude that each point of each node in Rr−1 is separated by 2smax
r −1.

Note that R′r−1 ⊆ Rr−1 and that R \ Rr−1 ⊆ R in order to see that this condition holds for all

nodes in R′ = R′r−1 ∪ (R \ Rr−1).

Because we have shown that the condition holds for the initial reference set and for any

reference set produced by a reference recursion, we have shown that the statement of the

lemma is true. �

This observation means that the set of points P held by all nodes in R is always a subset

of Csmax
r . This fact will be useful in our later runtime proofs.

Next, we develop notions with which to understand the behavior of the cover tree dual-

tree traversal when the datasets are of significantly different scale distributions.

If the datasets are similar in scale distribution (that is, inter-point distances tend to

follow the same distribution), then the recursion will alternate between query recursions

and reference recursions. But if the query set contains points which are, in general, much

farther apart than the reference set, then the recursion will start with many query recursions

before reaching a reference recursion. The converse case also holds. We are interested

in formalizing this notion of scale distribution; therefore, define the following dataset-

dependent constants for the query set S q and the reference set S r:

• ηq: the largest pairwise distance in S q

85



• δq: the smallest nonzero pairwise distance in S q

• ηr: the largest pairwise distance in S r

• δr: the smallest nonzero pairwise distance in S r

These constants are directly related to the aspect ratio of the datasets; indeed, ηq/δq is

exactly the aspect ratio of S q. Further, let us define and bound the top and bottom levels of

each tree:

• The top scale sT
q of the query tree Tq is the scale of the root of Tq, and is bounded as

dlog2(ηq)e − 1 ≤ sT
q ≤ dlog2(ηq)e.

• The minimum scale of the query tree Tq is the scale of the lowest non-leaf node of

the tree, and may be explicitly defined equivalently as smin
q = dlog2(δq)e.

• The top scale sT
r of the reference tree Tr is the scale of the root of Tr, and is bounded

as dlog2(ηr)e − 1 ≤ sT
r ≤ dlog2(ηr)e.

• The minimum scale of the reference tree Tr is the scale of the lowest non-leaf node

of the tree, and may be explicitly defined equivalently as smin
r = dlog2(δr)e.

Note that the minimum scale is not the minimum scale of any cover tree node (that

would be −∞), but the minimum scale of any non-leaf node in the tree.

Suppose that our datasets are of a similar scale distribution: sT
q = sT

r , and smin
q = smin

r .

In this setting we will have alternating query and reference recursions. But if this is not the

case, then we have extra reference recursions before the first query recursion or after the

last query recursion (situations where both these cases happen are possible). Motivated by

this observation, let us quantify these extra reference recursions:

Lemma 3. For a dual-tree algorithm with S q ∼ S r ∼ O(N) using cover trees and the

traversal given in Algorithm 8, the number of extra reference recursions that happen before

the first query recursion is bounded by
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min
(
O(N), log2(ηr/ηq) − 1

)
. (14)

Proof. The first query recursion happens once sq ≥ smax
r . The number of reference re-

cursions before the first query recursion is then bounded as the number of levels in the

reference tree between sT
r and sT

q that have at least one explicit node. Because there are

O(N) nodes in the reference tree, the number of levels cannot be greater than O(N) and

thus the result holds.

The second bound holds by applying the definitions of sT
r and sT

q to the expression

sT
r − sT

q − 1:

sT
r − sT

q − 1 ≤ dlog2(ηr)e − (dlog2(ηq)e − 1) − 1 (15)

≤ log2(ηr) + 1 − log2(ηq) (16)

which gives the statement of the lemma after applying logarithmic identities. �

Note that the O(N) bound may be somewhat loose, but it suffices for our later purposes.

Now let us consider the other case:

Lemma 4. For a dual-tree algorithm with S q ∼ S r ∼ O(N) using cover trees and the

traversal given in Algorithm 8, the number of extra reference recursions that happen after

the last query recursion is bounded by

θ = max
{
min

[
O(N log2(δq/δr)),O(N2)

]
, 0

}
. (17)

Proof. Our goal here is to count the number of reference recursions after the final query

recursion at level smin
q ; the first of these reference recursions is at scale smax

r = smin
q . Because

query nodes are not pruned in this traversal, each reference recursion we are counting will

be duplicated over the whole set of O(N) query nodes. The first part of the bound follows

by observing that smin
q − smin

r ≤ dlog2(δq)e − dlog2(δr)e − 1 ≤ log2(δq/δr).
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The second part follows by simply observing that there are O(N) reference nodes. �

These two previous lemmas allow us a better understanding of what happens as the

reference set and query set become different. Lemma 3 shows that the number of extra

recursions caused by a reference set with larger pairwise distances than the query set (ηr

larger than ηq) is modest; on the other hand, Lemma 4 shows that for each extra level in the

reference tree below smin
q , O(N) extra recursions are required. Using these lemmas and this

intuition, we will prove general runtime bounds for the cover tree traversal.

Theorem 1. Given a reference set S r of size N with an expansion constant cr and a set

of queries S q of size O(N), a standard cover tree based dual-tree algorithm (Algorithm 8)

takes

O
(
c4

r |R
∗|χψ(N + it(Tq) + θ)

)
(18)

time, where |R∗| is the maximum size of the reference set R (line 1) during the dual-tree

recursion, χ is the maximum possible runtime of BaseCase(), ψ is the maximum possible

runtime of Score(), and θ is defined as in Lemma 4.

Proof. First, split the algorithm into two parts: reference recursions (lines 4–11) and query

recursions (lines 12–16). The runtime of the algorithm is bounded as the runtime of a

reference recursion times the total number of reference recursions plus the total runtime of

all query recursions.

Consider a reference recursion (lines 4–11). Define R∗ to be the largest set R for any

scale smax
r and any query node Nq during the course of the algorithm; then, it is true that

|R| ≤ |R∗|. The work done in the base case loop from lines 6–7 is thus O(χ|R|) ≤ O(χ|R∗|).

Then, lines 9 and 10 take O(c4
rψ|R|) ≤ O(c4

rψ|R
∗|) time, because each reference node has up

to c4
r children. So, one full reference recursion takes O(c4

rψχ|R
∗|) time.

Now, note that there are O(N) nodes in Tq. Thus, line 16 is visited O(N) times. The
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amount of work in line 15, like in the reference recursion, is bounded as O(c4
rψ|R

∗|). There-

fore, the total runtime of all query recursions is O(c4
rψ|R

∗|N).

Lastly, we must bound the total number of reference recursions. Reference recursions

happen in three cases: (1) smax
r is greater than the scale of the root of the query tree (no

query recursions have happened yet); (2) smax
r is less than or equal to the scale of the root

of the query tree, but is greater than the minimum scale of the query tree that is not −∞;

(3) smax
r is less than the minimum scale of the query tree that is not −∞.

First, consider case (1). Lemma 3 shows that the number of reference recursions of this

type is bounded by O(N). Although there is also a bound that depends on the sizes of the

datasets, we only aim to show a linear runtime bound, so the O(N) bound is sufficient here.

Next, consider case (2). In this situation, each query recursion implies at least one

reference recursion before another query recursion. For some query node Nq, the exact

number of reference recursions before the children of Nq are recursed into is bounded

above by in(Nq) + 1: if Nq has imbalance 0, then it is exactly one level below its parent,

and thus there is only one reference recursion. On the other hand, if Nq is many levels

below its parent, then it is possible that a reference recursion may occur for each level in

between; this is a maximum of in(Nq) + 1.

Because each query node in Tq is recursed into once, the total number of reference

recursions before each query recursion is

∑
Nq∈Tq

in(Nq) + 1 = it(Tq) + O(N) (19)

since there are O(N) nodes in the query tree.

Lastly, for case (3), we may refer to Lemma 4, giving a bound of θ reference recursions

in this case.

We may now combine these results for the runtime of a query recursions with the total

number of reference recursions in order to give the result of the theorem:
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O
(
c4

r |R
∗|ψχ

(
N + it(Tq) + θ

))
+ O

(
c4

r |R
∗|ψN

)
∼ O

(
c4

r |R
∗|ψχ

(
N + it(Tq) + θ

))
. (20)

�

When we consider the monochromatic case (where S q = S r), the results trivially sim-

plify.

Corollary 1. Given the situation of Theorem 1 but with S q = S r = S so that cq = cr = c and

Tq = Tr = T , a dual-tree algorithm using the standard cover tree traversal (Algorithm 8)

takes

O
(
c4|R∗|χψ (N + it(T ))

)
(21)

time, where |R∗| is the maximum size of the reference set R (line 1) during the dual-tree

recursion, χ is the maximum possible runtime of BaseCase(), and ψ is the maximum

possible runtime of Score().

An intuitive understanding of these bounds is best achieved by first considering the

monochromatic case (this case arises, for instance, in all-nearest-neighbor search). The

linear dependence on N arises from the fact that all query nodes must be visited. The

dependence on the reference tree, however, is encapsulated by the term c4|R∗|, with |R∗|

being the maximum size of the reference set R; this value must be derived for each specific

problem. The bad performance of poorly-behaved datasets with large c (or, in the worst

case, c ∼ N) is then captured in both of those terms. Poorly-behaved datasets may also

have a high cover tree imbalance it(T ); the linear dependence of runtime on imbalance is

thus sensible for well-behaved datasets.

The bichromatic case (S q , S r) is a slightly more complex result which deserves a bit

more attention. The intuition for all terms except θ remain virtually the same.
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The term θ captures the effect of query and reference datasets with different widths,

and has one unfortunate corner case: when δq > ηr, then the query tree must be entirely de-

scended before any reference recursion. This results in a bound of the form O(N log(ηr/δr)),

or O(N2) (see Lemma 4). This is because the reference tree must be descended individually

for each query point.

The quantity |R∗| bounds the amount of work that needs to be done for each recursion.

In the worst case, |R∗| can be N. However, dual-tree algorithms rely on branch-and-bound

techniques to prune away work (lines 10 and 15 in Algorithm 8). A small value of |R∗| will

imply that the algorithm is extremely successful in pruning away work. An (upper) bound

on |R∗| (and the algorithm’s success in pruning work) will depend on the problem and the

data. As we will show, bounding |R∗| is often possible. For many dual-tree algorithms, χ ∼

ψ ∼ O(1); often, cached sufficient statistics [125] can enable O(1) runtime implementations

of BaseCase() and Score().

These results hold for any dual-tree algorithm regardless of the problem. Hence, the

runtime of any dual-tree algorithm would be at least O(N) using our bound, which matches

the intuition that answering O(N) queries would take at least O(N) time. For a particular

problem and data, if cr, |R∗|, χ, ψ are bounded by constants independent of N and θ is no

more than linear in N (for large enough N), then the dual-tree algorithm for that problem

has a runtime linear in N. Our theoretical result separates out the problem-dependent and

the problem-independent elements of the runtime bound, which allows us to simply plug in

the problem-dependent bounds in order to get runtime bounds for any dual-tree algorithm

without requiring an analysis from scratch.

Our results are similar to that of Ram et al. [133], but those results depend on a quantity

called the constant of bichromaticity, denoted κ, which has unclear relation to cover tree

imbalance. The dependence on κ is given as c4κ
q , which is not a good bound, especially

because κ may be much greater than 1 in the bichromatic case (where S q , S r).

The more recent results for max-kernel search [79] are more related to these results,
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but they depend on the inverse constant of bichromaticity ν which suffers from the same

problem as κ. Although the dependence on ν is linear (that is, O(νN)), bounding ν is

difficult and it is not true that ν = 1 in the monochromatic case.

ν corresponds to the maximum number of reference recursions between a single query

recursion, and κ corresponds to the maximum number of query recursions between a single

reference recursion. The respective proofs that use these constants then apply them as a

worst-case measure for the whole algorithm: when using κ, Ram et al. [133] assume that

every reference recursion may be followed by κ query recursions; similarly, myself and

Ram [79] assume that every query recursion may be followed by ν reference recursions.

In this proof, though, we have simply used it(Tq) and θ as an exact summation of the total

extra reference recursions, which gives us a much tighter bound than ν or κ on the running

time of the whole algorithm.

Further, both ν and κ are difficult to empirically calculate and require an entire run of

the dual-tree algorithm. On the other hand, bounding it(Tq) (and θ) can be done in one

pass of the tree (assuming the tree is already built). Thus, not only is our bound tighter

when the cover tree imbalance is sublinear in N, it more closely reflects the actual behavior

of dual-tree algorithms, and the constants which it depends upon are straightforward to

calculate.

Later in the thesis, we will apply Theorem 1 to many different algorithms and see how

it simplifies proofs and provides an intuitive and useful bound.

5.3 An issue with the cover tree single-tree runtime bound proof

Beygelzimer, Kakade, and Langford show a proof that claims an O(c12 log N) worst-case

runtime per query for single-tree nearest neighbor search using cover trees [57]. This sub-

linear runtime bound has been adapted to other situations [46, 67] and referenced repeatedly

[127, 141, 142, 143, 144] despite the fact that there is a flaw in the proof. Let us review
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Algorithm 9 Single-tree nearest neighbor search for cover trees.
1: Input: query point pq, reference tree Ti

2: Output: nearest neighbor p̂nn

3: R← {root(Ti)}
4: while |R| > 0 do
5: {Form new reference set out of children of nodes with maximum scale.}
6: smax

r ← maximum scale of nodes in R
7: R′ ← {Nr ∈ R : sr = smax

r }

8: R′′ ←
⋃

Nr∈R′ Cr

9: {Determine the nearest neighbor in R′′ and attempt to prune.}
10: {(A tree-independent formulation would have Score() and BaseCase() here.)}
11: p̂nn ← argminNi∈R′′ d(pq, pi)
12: Rsmax

r −1 ← {Ni ∈ R′′ : d(pq, pi) ≤ d(pq, p̂nn) + 2smax
r

13: {Merge unpruned nodes into R and remove nodes we recursed into.}
14: R← (R \ R′) ∪ Rsmax

r −1

15: return p̂nn

the theorem and proof [57] in order to discuss the flaw. Algorithm 9 introduces a non-

tree-independent formulation of the single-tree nearest neighbor search algorithm for cover

trees. It is straightforward to generalize, but for the purposes of this short discussion there

is no need.

When Algorithm 9 is called with a query point pq and reference tree Tr, a breadth-first

traversal of Tr is performed, pruning branches when possible (in line 12).

Theorem 2 (Theorem 5 from Beygelzimer, Kakade, and Langford [57]). If the dataset

S r ∪ {pq} has expansion constant c and |S r| = N, the nearest neighbor of pq can be found

in time O(c12 log N).

In order to discuss the issue with the proof, we need to present the proof until the flaw

(no more is necessary).

Partial proof. (Notation adapted from Beygelzimer, Kakade, and Langford [57]) Let R∗ be

the last R considered by the algorithm (so, R∗ consists only of leaf nodes with scale −∞).

Lemma 4.3 (from [57]) bounds the explicit depth of any node in the tree (and in particular
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any node in R∗) by k = O(c2 log N). Consequently, the number of iterations is at most

k|R∗| ≤ k. �

This assertion attempts to bound the number of iterations in the while loop by mul-

tiplying the size of the final reference set R∗ by the depth bound O(c2 log N). This does

effectively bound all of the iterations required by the ancestors of every node in R∗, but

it potentially undercounts. Suppose that one branch of the tree Tr has nodes with scales

that are not present elsewhere in the tree (call this the special branch, just for clarity).

Suppose now that all descendant nodes of this special branch are pruned before the final it-

eration (so, R∗ contains no nodes from this particular branch). The bounding strategy using

|R∗|O(c2 log N) iterations does not count any iterations caused by the nodes in the special

branch!

This flaw in the proof means that the result may potentially be incorrect, and there is

no easy way to resolve the issue of uncounted iterations and retain the sublinear runtime

bound. Although it is surely true that scaling logarithmic in N will be observed in practice

for well-behaved datasets, the assumption that c does not change as the dataset grows does

not necessarily mean that sublinear search times are guaranteed.
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CHAPTER 6

TRAVERSALS

This chapter is focused on improvement of the second piece of dual-tree algorithms: the

traversals. As introduced in Chapter 3, the dual-tree traversal visits combinations of nodes

in the query and reference tree, and calls a Score() function to determine if this node

combination can be pruned. If not, a BaseCase() function is called on each pair of query

and reference points held in the nodes, and the node combination is recursed into. It is

worth re-printing the definition here:

Definition 11. A pruning dual-tree traversal is a process that, given two space trees Tq

(the query tree, built on the query set S q) and Tr (the reference tree, built on the reference

set S r), will visit combinations of nodes (Nq,Nr) such that Nq ∈ Tq and Nr ∈ Tr no more

than once, and call a function Score(Nq, Nr) to assign a score to that node. If the score

is ∞, the combination is pruned and no combinations (Nqc, Nrc) such that Nqc ∈ Dn
q and

Nrc ∈ Dn
r are visited. Otherwise, for every combination of points (pq, pr) such that pq ∈Pq

and pr ∈Pr, a function BaseCase(pq, pr) is called. If no node combinations are pruned

during the traversal, BaseCase(pq, pr) is called at least once on each combination of

pq ∈ S q and pr ∈ S r.

Common strategies for traversals are dual breadth-first traversals and dual depth-first

traversals. More complex strategies are possible: the standard cover tree traversal, intro-

duced in Algorithm 8, is a combination of breadth-first and depth-first.

This chapter discusses an improved dual depth-first traversal that is shown to provide

good speedup for the task of nearest neighbor search. This traversal is also applicable to

other tasks, though, because it is presented in a tree-independent manner. This presentation

of the improved dual depth-first traversal is based on recently submitted work [66].

6.1 Improved dual depth-first traversal
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Algorithm 10 DualDepthFirstTraversal(Nq, Nr).

1: Input: query node Nq, reference node Nr

2: Output: none

3: {Perform base cases for points in node combination.}
4: for all pq ∈Pq do
5: for all pr ∈Pr do
6: BaseCase(pq, pr)

7: {Assemble list of combinations to recurse into.}
8: q← empty priority queue
9: if Nq and Nr both have children then

10: for all Nqc ∈ Cq do
11: for all Nrc ∈ Cr do
12: si ← Score(Nqc,Nrc)
13: if si , ∞ then push (Nqc,Nrc) into q with priority 1/si

14: else if Nq has children but Nr does not then
15: for all Nqc ∈ Cq do
16: si ← Score(Nqc,Nr)
17: if si , ∞ then push (Nqc,Nr) into q with priority 1/si

18: else if Nq does not have children but Nr does then
19: for all Nrc ∈ Cr do
20: si ← Score(Nq,Nrc)
21: if si , ∞ then push (Nq,Nrc) into q with priority 1/si

22: {Recurse into combinations with highest priority first.}
23: for all (Nqi,Nri) ∈ q, highest priority first do
24: DualDepthFirstTraversal(Nqi, Nri)

Although the definition is quite complex, real-world dual-tree traversals tend to be

straightforward. The standard depth-first dual-tree traversal is shown in Algorithm 10; this

is the same traversal used in most dual-tree algorithms that use the kd-tree [61] [68] [74]1

and is often used in practice [87]. Generally, a depth-first traversal is preferred because

many space trees in practice only hold points in the leaves; breadth-first traversals may not

perform well in these situations. To illustrate this, consider the example of nearest neighbor

search where the pruning depends on the current candidate nearest neighbors; a breadth-

first search will not encounter any points until the leaves of the tree, and therefore nothing

1The algorithms in each of the referenced papers tend to look very different because they are not derived
in a tree-independent form, but using the kd-tree with the traversal in Algorithm 10 and simplifying will yield
the same algorithm.
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can be pruned because no candidate nearest neighbors will have been encountered2.

The traversal is originally called with the root of the query tree Tq and the root of the

reference tree Tr. First, BaseCase() is called with every pair of query and reference points

(lines 4–6)—note that this is not every pair of descendant query and reference points. Then,

for recursion, we collect a list of combinations to recurse into, sorted by their score. Any

combinations with score ∞ are not recursed into. If both nodes have children, then we re-

curse into combinations of query children and reference children. If only the reference node

has children, we recurse into combinations of the query node and the reference children. If

only the query node has children, we recurse into combinations of the query children and

the reference node. If neither node has children, there is no need to recurse.

The algorithm first recurses into those node combinations with lowest score. Depend-

ing on the task being solved (that is, which Score() and BaseCase() functions are being

used), this prioritized approach to recursion can provide significant speedup over unpri-

oritized recursion. For nearest neighbor search, a prioritized recursion gives significantly

faster results. Other dual-tree algorithms that would also see speedup include max-kernel

search, minimum spanning tree calculation, kernel density estimation, and k-means clus-

tering.

6.1.1 Prioritized recursions and nearest neighbor search

Algorithm 10 is the standard depth-first dual-tree traversal that is used in practice, and it

prioritizes recursions: node combinations with lower scores (from Score()) are recursed

into first. Therefore, let us consider a task that is benefitted by a prioritized recursion:

nearest neighbor search (described earlier in Section 2.2). The goal is, for each query point

pq in the query set S q, find the nearest point in the reference set S r.

Algorithms 11 and 12 present simplified versions of the BaseCase() and Score()

later presented in Section 7.1. This algorithm is just a tree-independent expression of the

2It should be noted that it is possible to generate pruning rules for nearest neighbor search that can work
for a breadth-first traversal also, and this is done later in Section 7.1. But rules that complex are not always
preferred in practice.
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Algorithm 11 Simple BaseCase() for nearest neighbor search.
1: Input: query point pq, reference point pr, candidate point N[pq], candidate distance

D[pq]
2: Output: distance d(pq, pr)

3: if d(pq, pr) < D[pq] then
4: N[pq]← pr

5: D[pq]← d(pq, pr)

Algorithm 12 Simple Score() for nearest neighbor search.
1: Input: query node Nq, reference node Nr

2: Output: a score for the node combination (Nq,Nr) or∞ if it should be pruned

3: if dmin(Nq,Nr) > Bd f (Nq) then
4: return ∞
5: return dmin(Nq,Nr)

nearest neighbor search algorithm given in Algorithm 3 from Section 2.6.

The algorithm maintains a list of candidate neighbors (N[·]) and a list of candidate

distances (D[·]). During the algorithm, for a given query point pq, N[pq] contains the

current nearest neighbor candidate of pq, and D[pq] contains the distance between pq and

its current nearest neighbor candidate. At the end of the algorithm, N[pq] contains the

nearest neighbor of pq. For initialization, D[pq] is set to∞ (or some other sufficiently large

value).

The bound function, Bd f (Nq), represents the worst candidate nearest neighbor distance

for any descendant point of the query node: maxpq∈D
p
q

D[pq]. However, this formulation

would require looping over every descendant point in Nq, so it is infeasible to calculate.

Fortunately, we can use caching along with a re-expression of the worst candidate nearest

neighbor distance to define Bd f (Nq) in a way we can easily calculate:

Bd f (Nq) = max
{

max
pq∈Pq

D[pq], max
Nqc∈Cq

Bd f (Nqc)
}
. (22)

We may cache the current value of Bd f (·) in any query node, and then subsequent calcu-

lations of Bd f (·) include only a scan over the points held in the node and over the children

held by the node. In general this is a very fast, O(1) calculation: kd-trees, for instance, have
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Figure 31: Different situations for recursion.

no more than two children, and only hold a specified number of points in the leaves.

Now, see that the result of Score() is dmin(Nq,Nr), if the node is not pruned. This

encourages the traversal to first recurse into node combinations where the query and ref-

erence node are closer; the intuition here is that for a given query node, recursing into a

closer reference node is more likely to produce closer nearest neighbor candidates for each

query descendant point, thus allowing Bd f (·) to tighten more and more work to be pruned

as a result. Especially for a depth-first recursion near the top of the tree, the stakes are high:

a bad recursion choice can potentially mean huge amounts of extra work.

6.1.2 Delaying reference recursion

In the situation depicted in Figure 31a, combination (Nq,Nr1) should be visited before

combination (Nq,Nr2). It is clear that this is the right choice, because a depth-first traversal

of (Nq,Nr1) is more likely to tighten the bound Bd f (Nq) such that (Nq,Nr2) can be pruned

when it is recursed into.

But, consider a more tricky case, depicted in Figure 31b. Here, dmin(Nq,Nr1) =

dmin(Nq,Nr2) = 0, so we are unable to tell whether it is better to recurse into (Nq,Nr1)

first or into (Nq,Nr2) first. Indeed, Algorithm 10 will select arbitrarily. This situation may

occur in Algorithm 10 from lines 11 to 13 if, for a given child query node Nqc, two or more

reference children Nrc have the same score si.

We can do better than arbitrary selection. Consider some child Nqc of Nq. Figure
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31c shows an example Nqc. In this example, the choice is now clear: the combination

(Nqc,Nr1) should be recursed into before (Nqc,Nr2). Thus, the correct answer to the ques-

tion “should we recurse into (Nq,Nr1) or (Nq,Nr2) first?” is to sidestep the question

entirely: we should not recurse in the reference node, but instead in the query node. Then,

at the level of the query child, the decision may be clearer.

A clever reader may ask, “Why not use the distance between the centers of the query

node and reference node as the score? This would alleviate many situations like that in

Figure 31b.” Although this is true, it is sidestepping the issue. Consider Figure 31b: if Nq

has two children, and one is closer to Nr1 (like Nqc in Figure 31c) and the other is closer

to Nr2, then regardless of which reference node is chosen for recursion, the choice will be

suboptimal for one of the two query children. Therefore, it is more prudent to wait, and

recurse in the query node one more level before making a decision.

In essence, the strategy is to delay recursion in the reference nodes until it is clear

which reference node should be recursed into first. This improvement, once generalized, is

encapsulated in Algorithm 13. Lines 15–20 check if reference recursion should be delayed

because the scores of all reference children are identical. If so, the recursion will proceed

by recursing only in the queries. If necessary, this reference recursion delay will continue

until no longer possible. This delay is not possible when the query node does not have

any children. This improved strategy can make a huge difference in the performance of the

algorithm; recursing into a suboptimal reference child first can cause the bound Bd f (·) to be

unnecessarily loose, whereas first recursing into the best reference child will tighten Bd f (·)

more quickly and possibly allow other reference children to be pruned entirely.

For trees such as the kd-tree where each node has two children only, the extra imple-

mentation overhead for this strategy is trivial and simplifies to the addition of a single if

statement. However, note that there are some situations where the modified traversal will

not outperform the original prioritized traversal. For instance, for nearest neighbor search,

if the query tree is identical to the reference tree and nodes in the tree cannot overlap, then
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Algorithm 13 ImprovedDualDepthFirstTraversal(Nq, Nr).

1: Input: query node Nq, reference node Nr

2: Output: none

3: {Perform base cases for points in node combination.}
4: for all pq ∈Pq do
5: for all pr ∈Pr do
6: BaseCase(pq, pr)

7: {Assemble list of combinations to recurse into.}
8: q← empty priority queue
9: if Nq and Nr both have children then

10: for all Nqc ∈ Cq do
11: qqc ← {}

12: for all Nrc ∈ Cr do
13: si ← Score(Nqc,Nrc)
14: if si , ∞ then push (Nqc,Nrc, si) into qqc

15: if all elements of qqc have identical score then
16: si ← Score(Nqc,Nr)
17: push (Nqc,Nr) into q with priority 1/si

18: else
19: for all (Nqi,Nri, si) ∈ qqc do
20: push (Nqi,Nri) into q with priority 1/si

21: else if Nq has children but Nr does not then
22: for all Nqc ∈ Cq do
23: si ← Score(Nqc,Nr)
24: if si , ∞ then push (Nqc,Nr) into q with priority 1/si

25: else if Nq does not have children but Nr does then
26: for all Nrc ∈ Cr do
27: si ← Score(Nq,Nrc)
28: if si , ∞ then push (Nq,Nrc) into q with priority 1/si

29: {Recurse into combinations with highest priority first.}
30: for all (Nqi,Nri) ∈ q, highest priority first do
31: ImprovedDualDepthFirstTraversal(Nqi, Nri)

it is very unlikely that the situation described in Figure 31a will be encountered: during

the recursion, the query node will only overlap itself and possibly be adjacent to a sibling

node.
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Table 13: Dataset information.

Dataset n d
cloud 2048 10
winequality 6497 11
birch3 100000 2
miniboone 130064 50
covertype 581012 55
power 2075259 7
lcdm 16777216 3
sdss-dr6 39761242 4

6.1.3 Experimental evalution

To test the efficiency of this strategy, we will observe the performance of our recursion

strategy on the tasks of exact and approximate nearest neighbor search, with multiple types

of trees, and with many different datasets. For approximate search, we compare with LSH

(locality-sensitive hashing). The datasets utilized in these experiments are described in

Table 13. Each dataset is from the UCI dataset repository [134], with the exception of the

birch3 dataset [145], LCDM dataset [146], and SDSS-DR6 dataset [147].

The first test will focus on the task of exact nearest neighbor search; Algorithms 11 and

12 paired with a type of tree and traversal. Using the flexible mlpack library [87], we test

with the kd-tree and the ball tree, using three dual-tree traversal strategies: a depth-first

unordered recursion (equivalent to Algorithm 10 where the recursion priority is ignored);

the standard depth-first prioritized recursion (Algorithm 10); and our improved recursion

(Algorithm 13). In addition, a single-tree algorithm is used; this is the canonical tree-based

nearest neighbor search algorithm [31] with a prioritized recursion, run once for each query

point. The dataset is randomly split into 60% reference set and 40% query set, and the

algorithm is run ten times. The number of distance evaluations and the total runtime are

collected. Table 14 shows the average number of distance calculations for each algorithm

and the average runtime for each algorithm.

We can see from the results that our improvement is, in many cases, significant. In
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Table 14: Runtime (distance evaluations) for exact nearest neighbor search.

algorithm cloud winequality birch3 miniboone
kd-tree, unordered 0.036s (270k) 0.288s (2.15M) 7.310s (62.2M) 62.481s (214M)
kd-tree, prioritized 0.005s (34.2k) 0.039s (222k) 0.419s (2.90M) 25.081s (78.8M)
kd-tree, improved 0.005s (27.7k) 0.021s (104k) 0.201s (1.10M) 12.643s (34.5M)

single kd-tree 0.005s (32.9k) 0.017s (112k) 0.262s (1.65M) 6.637s (19.2M)
ball tree, unordered 0.011s (356k) 0.104s (3.08M) 1.817s (71.6M) 32.947s (616M)
ball tree, prioritized 0.003s (104k) 0.023s (666k) 0.285s (10.9M) 27.934s (514M)
ball tree, improved 0.003s (86.8k) 0.017s (455k) 0.160s (5.65M) 2.332s (351M)

single ball tree 0.002s (69.6k) 0.012s (315k) 0.165s (5.38M) 26.357s (254M)

algorithm covertype power lcdm sdss-dr6
kd-tree, unordered 302.8s (1.09B) 1163.0s (18.7B) 5628.7s (41.5B) 24717s (156B)
kd-tree, prioritized 15.823s (52.5M) 30.072s (302M) 319.871s (1.87B) 9069s (50.3B)
kd-tree, improved 4.469s (12.8M) 12.714s (200M) 71.587s (350M) 428.9s (2.14B)

single kd-tree 6.207s (16.3M) 19.684s (232M) 120.6s (476M) 471.4s (2.24B)
ball tree, unordered 163.027s (2.90B) 771.975s (25.3B) 1861.9s (71.1B) 9444s (363B)
ball tree, prioritized 52.487s (902M) 113.437s (3.90B) 386.74s (14.4B) 5202s (192B)
ball tree, improved 27.251s (392M) 83.744s (2.58B) 195.175s (6.46B) 5150s (136B)

single ball tree 29.948s (228M) 138.422s (2.49B) 402.6s (5.93B) 7226s (101B)

the best case, it gives more than 2x speedup over the next fastest strategy. This effect

is especially pronounced on larger datasets, which will have deeper trees: a bad recursion

decision early on can significantly affect the ability to prune during the algorithm. Ball trees

exhibit less pronounced effects. This is because the bounding structure is a ball of fixed

radius, whereas the kd-tree is adaptive in all dimensions. Therefore, two child nodes of a

ball tree node may overlap, causing the improved strategy of delaying reference recursions

to not pay off at lower levels. Nonetheless, especially for large datasets, where the dual-tree

strategy is faster than the single-tree strategy, the improved traversal is a clear best choice.

The second task is approximate nearest neighbor search, and in this situation we will

also be able to compare with locality-sensitive hashing. Relative-value approximation

means that for an approximation parameter ε, we are guaranteed for a query point pq

with true nearest neighbor p∗r , the algorithm will return an approximate nearest neigh-

bor p̂r such that d(pq, p̂r) ≤ (1 + ε)d(pq, p∗r). It is easy to modify the given Score()

function to enforce this condition; replace the equation in line 3 of Algorithm 12 with
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Table 15: Runtime (distance calculations) [ε or M/W] for approximate NN search.

algorithm cloud winequality birch3 miniboone
kd-tree, unordered 0.005s (34.5k) [1.5] 0.025s (148k) [1.44] 0.267s (2.14M) [1.44] 6.831s (22.6M) [1.38]
kd-tree, prioritized 0.003s (17.4k) [1.5] 0.012s (74.5k) [1.5] 0.140s (1.16M) [1.5] 4.863s (15.5M) [1.38]
kd-tree, improved 0.002s (13.7k) [1.7] 0.010s (51.2k) [1.63] 0.107s (654k) [1.63] 3.360s (9.28M) [1.38]

single kd-tree 0.003s (23.2k) [2.45] 0.013s (78.0k) [2.33] 0.198s (1.47M) [2.33] 1.845s (5.75M) [1.5]
ball tree, unordered 0.002s (50.8k) [27.6] 0.007s (186k) [32.3] 0.079s (2.72M) [11.5] 2.942s (50.4M) [285]
ball tree, prioritized 0.002s (49.2k) [27.6] 0.006s (167k) [32.3] 0.072s (2.46M) [11.5] 3.266s (54.2M) [249]
ball tree, improved 0.002s (45.1k) [27.6] 0.006s (161k) [32.3] 0.072s (2.25M) [11.5] 3.494s (50.3M) [99]

single ball tree 0.002s (43.2k) [999] 0.006s (176k) [36.0] 0.111s (3.56M) [10.1] 3.812s (36.1M) [99]
multiprobe LSH 0.031s (19.3k) [20/122] 0.011s (472k) [37/33] 1.614s (8.85M) [8/16k] 175.995s (1.77B) [13/328]

algorithm covertype power lcdm sdss-dr6
kd-tree, unordered 7.796s (27.4M) [1.5] 419.725s (13.0B) [1.27] 75.432s (508M) [1.33] 512.829s (2.89B) [1.27]
kd-tree, prioritized 2.954s (10.6M) [1.5] 8.392s (189M) [1.44] 44.187s (306M) [1.38] 380.047s (2.17B) [1.27]
kd-tree, improved 2.045s (6.25M) [1.5] 11.044s (191M) [1.56] 29.069s (160M) [1.44] 242.624s (1.11B) [1.27]

single kd-tree 3.869s (11.2M) [1.86] 16.674s (226M) [2.33] 85.821s (397M) [1.78] 329.663s (1.58B) [1.27]
ball tree, unordered 2.187s (33.0M) [99] 415.964s (13.0B) [11.5] 19.776s (668M) [19] 73.638s (239M) [49]
ball tree, prioritized 2.183s (32.3M) [75.9] 6.753s (233M) [13.3] 20.158s (660M) [19] 75.687s (237M) [49]
ball tree, improved 2.539s (33.8M) [49] 8.269s (248M) [15.7] 25.749s (702M) [21.2] 299.8s (451M) [49]

single ball tree 5.496s (40.3M) [27.6] 19.097s (431M) [15.7] 113.299s (1.46B) [21.2] 2054.8s (3.06B) [19]
multiprobe LSH 130.699s (963M) [0.51] 1181.32s (14.0B) [63/9.6] timeout [14/0.968] timeout [7/0.29]

dmin(Nq,Nr) > (1/(1 + ε))B(Nq).

After applying this change, testing is performed in the same way as for exact nearest

neighbor search. ε for each tree-based approach is selected to give an average per-point

relative error of 0.1 (±0.01) for each dataset. Because our scheme does not allow the error

for an individual point to exceed ε, the actual relative error for an individual query point

is often much lower. Thus, it is often necessary to set ε far higher than the target average

error of 0.1. For LSH, the LSHKIT package is used, which implements multi-probe LSH

and autotunes the hashing parameters [148]. We use the suggested number of hash tables

(L = 10) and probes (T = 20), and then autotune to select the number of hash functions

(M) and bin width (W). Autotuning failed for the larger power, lcdm, and sdss-dr6 datasets;

in these cases suggestions of the LSHKIT authors are used [149].

The results are given in Table 15. With approximation, the improved dual-tree traver-

sal performs fewer distance calculations on smaller datasets, and is still dominant for the

larger datasets with kd-trees. LSH is not competitive on the larger datasets, and on the

largest datasets LSH did not complete within 3 days, but it should be noted that the low-

dimensional setting is where trees are most effective.
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Overall, for large datasets in low-to-medium dimensions, dual-tree search is faster, and

the improved traversal we have proposed is the fastest. These experiments seem to show for

smaller datasets, single-tree search may be fastest; for sufficiently high dimensions, LSH is

faster. This corroborates existing results [125]; as the dimension of data gets higher, prun-

ing rules become less effective. Regardless, in low-to-medium dimensions, the improved

dual-tree traversal is dominant.
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CHAPTER 7

ALGORITHMS

This chapter, certainly the longest in the thesis, shows how we can use the versatile tree-

independent dual-tree algorithm abstraction to describe numerous algorithms—and de-

velop entirely new ones—using only a BaseCase() and Score() function. Some of the

algorithms presented here were not originally designed by me but I have generalized them

from their tree-specific form to an actual tree-independent algorithm; others I have im-

proved somewhat; others still are completely original contributions. For some algorithms,

I have used the theoretical adaptive analysis techniques presented in Section 5.2 in order to

bound the running time of the algorithm.

7.1 Nearest neighbor search

Nearest neighbor search is arguably the most well-known problem to be solved by dual-tree

algorithms, with multiple dual-tree algorithms proposed for both exact and approximate

nearest-neighbor search [61, 67, 28] as well as a nearly infinite set of other techniques for

exact and approximate solutions [150, 31, 33, 50, 151, 152, 153, 57, 56, 154, 155, 120,

156, 157, 158, 32]—and the citations here represent only a miniscule fraction of the not-

completely-connected graph of nearest neighbor search literature.

Here, we will allow ourselves to consider the slightly more general problem of k-nearest

neighbor search, where instead of finding only one neighbor, we find k neighbors for each

query point. To formalize the problem, we can state it as follows:

Given a query dataset S q, a reference dataset S r, and an integer k : 0 < k < N, for

each point pq ∈ S q, find the k nearest neighbors in S r and their distances from pq. The list

of nearest neighbors for a point pq can be referred to as Npq and the distances to nearest

neighbors for pq can be referred to as Dpq . Thus, the k-th nearest neighbor to point pq is

Npq[k] and Dpq[k] = ‖pq − Npq[k]‖.
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Algorithm 14 k-nearest-neighbors BaseCase()
Input: query point pq, reference point pr, list of k nearest candidate points Npq and k
candidate distances Dpq (both ordered by ascending distance)
Output: distance d between pq and pr

d ← ‖pq − pr‖

if d < Dpq[k] and BaseCase(pq, pr) not yet called then
insert d into ordered list Dpq and truncate list to length k
insert pr into Npq such that Npq is ordered by distance and truncate list to length k

return d

Clearly, a brute-force approach can be used: compare every possible point combination

and store the k smallest distance results for each pq. Of course, this scales poorly—hence

the vast collection of literature referenced above. We will add to this vast collection by

describing our own tree-independent dual-tree algorithm to solve the k-nearest neighbor

search task. Notation used in this section is given in Chapter 3; specifically, in Table 1.

7.1.1 A tree-independent dual-tree algorithm

We unify all of these branch-and-bound strategies by defining methods BaseCase(pq,

pr) and Score(Nq, Nr) for use with a pruning dual-tree traversal.

At the initialization of the tree traversal, the lists Npq and Dpq are empty lists for each

query point pq. After the traversal is complete, the set {Npq[1], ...,Npq[k]} is the ordered set

of k nearest neighbors of the query point pq, and each Dpq[i] = ‖pq − Npq[i]‖. If we assume

that Dpq[i] = ∞ if i is greater than the length of Dpq , we can formulate BaseCase() as

given in Algorithm 141.

With the base case established, only the pruning rule remains. A valid pruning rule

will, for a given query node Nq and reference node Nr, prune the reference subtree rooted

at Nr if and only if it is known that there are no points in D p
r that are in the set of k

nearest neighbors of any points in D p
q . Thus, at any point in the traversal, we can prune the

combination (Nq,Nr) if and only if dmin(Nq,Nr) ≥ B1(Nq), where

1In practice, k-nearest-neighbors is often run with identical reference and query sets. In that situation
it may be useful to modify this implementation of BaseCase() so that a point does not return itself as the
nearest neighbor (with distance 0).
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B1(Nq) = max
p∈D p

q

Dp[k]. (23)

Now, we can describe this bound recursively. This is important for implementation; a

recursive function can cache previous calculations for large speedups.

B1(Nq) = max
{
max
p∈Pq

Dp[k], max
p∈D p

q ,p<Pq

Dp[k]
}

(24)

= max
{
max
p∈Pq

Dp[k], max
Nc∈Cq

{max
p∈D p

c

Dp[k]}
}

(25)

= max
{
max
p∈Pq

Dp[k], max
Nc∈Cq

B1(Nc)
}

(26)

Suppose we have, at some point in the traversal, two points p0, p1 ∈ D p
q for some node

Nq, with Dp0[k] = ∞ and Dp1[k] < ∞. This means there exist k points {p1
r , . . . , pk

r} in S r

such that d(p1, pi
r) ≤ Dp1[k] for i = {1, . . . , k}. Because p0 and p1 are both descendant

points of Nq, we can apply the triangle inequality to see that d(p0, p1) ≤ 2λq. Therefore,

d(p0, pi
r) ≤ Dp1[k] + 2λ(Nq) for i = {1, . . . , k}. Using this observation we can construct an

alternate bound function B2(Nq):

B2(Nq) = min
p∈D p

q

Dp[k] + 2λ(Nq) (27)

This bound can, like B1(Nq), be rearranged to provide a recursive definition. In addi-

tion, if p0 ∈ Pq and p1 ∈ D p
q , we can bound d(p0, p1) more tightly with ρ(Nq) + λ(Nq)

instead of 2λ(Nq). These observations yield

B2(Nq) = min
{

min
p∈Pq

(Dp[k] + ρ(Nq) + λ(Nq)),

min
Nc∈Cq

(B2(Nc) + 2(λ(Nq) − λ(Nc))
}
.

(28)

Both B1(Nq) and B2(Nr) provide valid pruning rules. We can combine both to get a

tighter pruning rule by taking the tighter of the two bounds. In addition, B1(Nq) ≥ B1(Nc)
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Algorithm 15 k-nearest-neighbors Score()
Input: query node Nq, reference node Nr

Output: a score for the node combination (Nq,Nr), or ∞ if the combination should be
pruned

if dmin(Nq,Nr) < B(Nq) then
return dmin(Nq,Nr)

return ∞

and B2(Nq) ≥ B2(Nc) for all Nc ∈ Cq. Therefore, we can prune (Nq,Nr) if dmin(Nq,Nr) ≥

min{B1(parent(Nq)), B2(parent(Nq))}.

These observations are combined for a better bound:

B(Nq) = min
{

max
{
max
p∈Pq

Dp[k], max
Nc∈Cq

B(Nc)
}
,

min
p∈Pq

(
Dp[k] + ρ(Nq) + λ(Nq)

)
,

min
Nc∈Cq

(
B(Nc) + 2

(
λ(Nq) − λ(Nc)

))
B(parent(Nq))

}
.

(29)

As a result of this bound function being expressed recursively, previous bounds can

be cached and used to calculate the bound B(Nq) quickly. We can use this to structure

Score() as given in Algorithm 15.

7.1.2 Correctness proof

A correctness proof is straightforward.

Theorem 3. Given two datasets S q ∈ <
N×D and S r ∈ <

M×D, a value k such that 0 <

k < M, two arbitrary space trees Tq and Tr built on S q and S r respectively, and an

initially empty lists D and N, then any arbitrary pruning dual-tree traversal which uses

Algorithm 14 for its BaseCase() and Algorithm 15 for its Score() will result in the list

Npq being populated with the k nearest neighbors in S r for each point pq ∈ S q, and Dpq[i] =

‖pq − Npq[i]‖ ∀ 0 < i ≤ k, pq ∈ S q.
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Proof. The proof can be split into two parts; first, we can prove that BaseCase() (Al-

gorithm 14) is correct for a dual-tree (non-pruning) traversal. Then, we can prove that

Score() (Algorithm 15) does not prune any node combinations which could contain any

improvements to the list D.

Denote the list of true k nearest neighbors in S r for pq ∈ S q as N∗pq
and the corre-

sponding distances as D∗pq
. The BaseCase() implementation given in Algorithm 14 stores

the k nearest neighbors and distances in S r for each point in S q. In a dual-tree traversal,

BaseCase() is not called with any reference points that are not in S r. Thus, it is clear that

for Npq to be correct for each pq ∈ S q, then BaseCase() must be called with at least each

combination of pq with each of the k elements in N∗pq
.

First, consider that in a dual-tree non-pruning traversal, each possible combination of

nodes in Tq and Tr are visited. This follows from the definition. Also by definition, at

each combination (Nq,Nr), BaseCase() is called on each possible combination of points

in Nq and Nr.

Now, suppose there exists, for some query point pq ∈ Sq, a point p∗r not in the final

list Dpq such that ‖pq − p∗r‖ < Dpq[k]. Algorithm 14 will never discard a candidate with

distance less than the current value of Dpq[k], but it is clear that at all times during the

traversal, ‖pq − p∗r‖ < Dpq[k]. Thus, p∗r not being in the final list Dpq implies that p∗r < Sr.

This, with the fact that Dpq is an ordered tuple list, shows that Algorithm 14 used in a dual-

tree non-pruning traversal produces the correct results for k-nearest-neighbors. Note that

each call BaseCase(pq, pr) with pr < Dpq was unnecessary.

Next, consider the pruning rule given in Algorithm 15. A node combination is only

pruned, according to the algorithm, if dmin(Nq,Nr) ≥ B(Nq) ∀ pi ∈ D p
q . B(Nq) is the

minimum of four other bound functions. Each of those four bound functions was devised

in such a way that at any point in the traversal, no node combination (Nq,Nr) which could

contain a point combination (pq, pr) where ‖pq − pr‖ < Dpq[k] is pruned. Because D∗pq
[k] ≤

Dpq[k] at all times during the traversal, then no point combination (pq, pr) where pr ∈ N∗pq
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Algorithm 16 AllNN(Nq, Nr) [64]
if dmin(Nq,Nr) ≥ δnn

q , then return
if Nq is leaf and Nr is leaf then

for all pq ∈Pq, pr ∈Pr do
dqr ← ‖pq − pr‖.
if dqr < Dpq then Dpq = dqr; Npq = pr

if dqr < δ
nn
q then δnn

q ← dqr

AllNN(Nq.left, closer-of(Nr.left, Nr.right))
AllNN(Nq.left, farther-of(Nr.left, Nr.right))
AllNN(Nq.right, closer-of(Nr.left, Nr.right))
AllNN(Nq.right, farther-of(Nr.left, Nr.right))
δnn

q = min(δnn
q ,max(δnn

q.left, δ
nn
q.right))

is ever pruned. Thus, BaseCase() is called with at least every point combination (pq, pr)

where pr ∈ N∗pq
for all pq ∈ S q. Therefore, at the end of the traversal, N = N∗ and D = D∗,

so the theorem holds. �

7.1.3 Specialization to existing k-NN algorithms

This algorithm is a generalization of the standard kd-tree k-NN search, which uses a prun-

ing dual-tree depth-first traversal. The archetypal algorithm for all-nearest neighbor search

(k-nearest neighbor search with k = 1) given for kd-trees in Alex Gray’s Ph.D. thesis [64]

is shown here in Algorithm 16 with converted notation. δnn
q is the bound for a node Nq

and is initialized to ∞; Dpq represents the nearest distance for a query point pq, and Npq

represents the nearest neighbor for a query point pq. Nq.left represents the left child of Nq

and is defined to be Nq if Nq has no children; Nq.right is similarly defined.

The structure of the algorithm matches Algorithm 7; it is a dual-tree depth-first recur-

sion. Because this is a depth-first recursion, δnn
q = ∞ for a node Nq if no descendants of

Nq have been recursed into. Otherwise, δnn
q is the maximum of Dpq for all pq ∈ D p

q . That

is, δnn
q = B1(Nq). Thus, the comparison in the first line of Algorithm 16 is equivalent to

Algorithm 15 with B1(Nq) instead of B(Nq).

This algorithm is also a generalization of the standard cover tree k-NN search [57]. The

cover tree search is a pruning dual-tree traversal where the query tree is traversed depth-first
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while the reference tree is simultaneously traversed breadth-first. The pruning rule (after

simple adaptation to the k-nearest-neighbor search problem instead of the nearest-neighbor

search problem) is equivalent to

dmin(Nq,Nr) ≥ Dpq[k] + λq (30)

where pq is the point contained in Nq (remember, each node of a cover tree contains one

point). This is equivalent to B2(Nq) because ρ(Nq) = 0 for cover trees. The transformation

from the algorithm given by Beygelzimer et al. [57] to our representation is clearer when

considering the tree-independent form of the cover tree traversal (Algorithm 8) and also

in the k-nearest neighbor search implementation of mlpack [159]; this implementation

follows the API laid out in Chapter 4.

Specific algorithms for ball trees, metric trees, VP trees, octrees, and other space trees

are trivial to create using the BaseCase() and Score() implementation given here (and

in mlpack). Note also that this implementation will work in any metric space.

An extension to k-furthest neighbor search is straightforward. The bound function must

be ‘inverted’ by changing ‘max’ to ‘min’ (and vice versa); in addition, the distances Dpq[i]

must be initialized to 0 instead of ∞, and the lists D and N must be sorted by descending

distance instead of ascending distance. Lastly, the comparison d < Dpq[k] must be changed

to d > Dpq[k]. With these simple changes, we have easily solved an entirely different

problem using our meta-algorithm. An implementation using our meta-algorithm for both

kd-trees and cover trees is also available in mlpack.

7.1.4 Runtime bounds

We now consider the running time of the algorithm, but with two important specializations

for simplicity:

1. k = 1; we only show bounds for nearest neighbor search, not generalized k-nearest

neighbor search. The bounds we present can be adapted but the exposition is more
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complex.

2. The tree type is the cover tree and the traversal is the standard cover tree pruning

traversal (see Section 5.2).

Because we are using the cover tree, we will simplify our bound function by bounding

the bound function:

B(Nq) ≤ D[pq] + λq (31)

and then we may also bound λq (because we have restricted the tree type to cover trees) to

see

B(Nq) ≤ D[pq] + 2sq+1 (32)

wherein sq is the scale of the query node Nq
2.

Now, using the expansion constant cr of the reference set S r and the expansion constant

cq of the query set S q, and defining

cqr = max
((

max
pq∈S q

c′r

)
, cr

)
, (33)

where c′r is the expansion constant of the set S r ∪ {pq}.

Theorem 4. Using cover trees, the standard cover tree pruning dual-tree traversal, and

the nearest neighbor search BaseCase() and Score() as given in Algorithms 14 and 15

with k = 1, respectively, and also given a reference set S r with expansion constant cr, and

a query set S q, the running time of the algorithm is bounded by O(c4
r c5

qr(N + it(Tq) + θ))

with it(Tq and θ defined as in Definition 10 and Lemma 4, respectively.

Proof. The running time of BaseCase() and Score() are clearly O(1). Due to Theorem 1,

we therefore know that the runtime of the algorithm is bounded by O(c4
r |R
∗|(N + it(Tq)+θ)).

Thus, the only thing that remains is to bound the maximum size of the reference set, |R∗|.

2If the term ‘scale’ is unfamiliar, refer to the extensive discussion of cover trees in Sections 5.1.1 and 5.2.
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Assume that when R∗ is encountered, the maximum reference scale is smax
r and the

query node is Nq. Every node Nr ∈ R∗ satisfies the property enforced in line 10 that

dmin(Nq,Nr) ≤ B(Nq). Using the definition of dmin(·, ·) and B(·), we expand the equation.

Note that pq is the point held in Nq and pr is the point held in Nr. Also, take p̂r to be the

current nearest neighbor candidate for pq; that is, D[pq] = d(pq, p̂r) and N[pq] = p̂r. Then,

dmin(Nq,Nr) ≤ B(Nq) (34)

d(pq, pr) ≤ d(pq, p̂r) + 2sq+1 + 2sr+1 + 2sq+1 (35)

≤ d(pq, p̂r) + 2(2smax
r +1) (36)

where the last step follows because sq + 1 ≤ smax
r and sr ≤ smax

r . Define the set of points P

as the points held in each node in R∗ (that is, P = {pr ∈P(Nr) : Nr ∈ R∗}). Then, we can

write

P ⊆ BS r (pq, d(pq, p̂r) + 2(2smax
r +1)). (37)

Suppose that the true nearest neighbor is p∗r and d(pq, p∗r) > 2smax
r +1. Then, p∗r must

be held as a descendant point of some node in R∗ which holds some point p̃r. Using the

triangle inequality,

d(pq, p̂r) ≤ d(pq, p̃r) ≤ d(pq, p∗r) + d( p̃r, p∗r) ≤ d(pq, p∗r) + 2smax
r +1. (38)

This gives that P ⊆ BS r∪{pq}(pq, d(pq, p∗r) + 3(2smax
r +1)). The previous step is necessary:

to apply the definition of the expansion constant, the ball must be centered at a point in the

set; now, the center (pq) is part of the set.

|BS r∪{pq}(pq, d(pq, p∗r) + 3(2smax
r +1))| ≤ |BS r∪{pq}(pq, 4d(pq, p∗r))| (39)

≤ c3
qr|BS r∪{pq}(pq, d(pq, p∗r)/2)| (40)
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which follows because the expansion constant of the set S r ∪ {pq} is bounded above by cqr.

Next, we know that p∗r is the closest point to pq in S r ∪ {pq}; thus, there cannot exist a point

p′r , pq ∈ S r ∪ {pq} such that p′r ∈ BS qr (pq, d(pq, p∗r)/2) because that would imply that

d(pq, p′r) < d(pq, p∗r), which is a contradiction. Thus, the only point in the ball is pq, and

we have that |BS r∪{pq}(pq, d(pq, p∗r)/2)| = 1, giving the result that |R| ≤ c3
qr in this case.

The other case is when d(pq, p∗r) ≤ 2smax
r +1, which means that d(pq, p̂r) ≤ 2smax

r +2. Note

that P ∈ Csmax
r , and therefore

P ⊆ BS r (pq, d(pq, p∗r) + 3(2smax
r +1)) ∩Csmax

r (41)

⊆ BS r (pq, 4(2smax
r +1)) ∩Csmax

r . (42)

Every point in Csmax
r is separated by at least 2smax

r . Using Lemma 1 with δ = 2smax
r and

ρ = 8 yields that |P| ≤ c5
r . This gives the result, because c5

r ≤ c5
qr. �

In the monochromatic case where S q = S r, the bound is O(c9(N + it(T )) because

c = cr = cqr and θ = 0. For well-behaved trees where it(Tq) is linear or sublinear in N, this

represents the current tightest worst-case runtime bound for nearest neighbor search.

7.2 Range search

Range search is another popular neighbor searching problem related to k-nearest neighbor

search. In addition to being a fairly standard machine learning task, it has numerous uses in

applications such as databases and geographic information systems (GIS). A treatise on the

history of the problem and solutions is given by Agarwal & Erickson [160]. The problem

is:

Given query and reference datasets S q, S r and a range [l, u], for each point pq ∈ S q, find

all points in S r such that l ≤ ‖pq − pr‖ ≤ u. Refer to the list of neighbors for each query

point pq as S [pq]. This list is not sorted in any particular order, and at initialization time, it

is empty.
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Algorithm 17 Range search BaseCase()
1: Input: query point pq, reference point pr, range sets N[pq] and range [l, u]
2: Output: distance d between pq and pr

3: if d(pq, pr) ∈ [rmin, rmax] and BaseCase(pq, pr) not yet called then
4: S [pq]← S [pq] ∪ {pr}

5: return d
.

Algorithm 18 Range search Score()
1: Input: query node Nq, reference node Nr

2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should
be pruned

3: if dmin(Nq,Nr) ∈ [l, u] or dmax(Nq,Nr) ∈ [l, u] then
4: return dmin(Nq,Nr)

5: return ∞
.

In different settings, the problem of range search may not be stated identically; however,

our results are easily adaptable. A closely related problem is range count, where instead of

the set S [pq], only the size of the set |S [pq]| is desired for each query point pq.

While range search is sometimes mentioned in the context of dual-tree algorithms [61],

the focus is usually on k-nearest neighbor search. As a result, I cannot find any explicitly

published dual-tree algorithms to generalize; however, a single-tree algorithm was pro-

posed by Bentley and Friedman [37]. Therefore, we will develop a novel tree-independent

dual-tree algorithm for range search, which is easily adaptible to range count.

7.2.1 A tree-independent dual-tree algorithm

Range search turns out to be far simpler than k-nearest neighbor search, mainly because

there is no complex bounding function B(Nq) for pruning. Pruning is only necessary when

we can determine that for a node combination (Nq,Nr), no descendant points of Nr could

possibly be in the range [l, u] for any descendant point of Nq. This also means that recursion

order does not matter for range search.

BaseCase() and Score() functions are given in Algorithms 17 and 18. Algorithm 17,

the BaseCase() function, merely needs to add a reference point pr to the range set S [pq] if
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Algorithm 19 More complicated Score() for range search.
1: Input: query node Nq, reference node Nr

2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should
be pruned

3: if dmin(Nq,Nr) ∈ [l, u] or dmax(Nq,Nr) ∈ [l, u] then
4: return dmin(Nq,Nr)
5: else if dmin(Nq,Nr) ≥ l and dmax(Nq,Nr) ≤ u then
6: for all pq ∈ D p

q do
7: S [pq]← S [pq] ∪D p

r

8: return ∞

d(pq, pr) lies in the desired range. For pruning, observe that a node combination (Nq,Nr)

can be pruned if no descendant reference point of Nr can possibly fall within the desired

range of any descendant query point of Nq. This is straightforward to formalize; we may

prune if

[dmin(Nq,Nr), dmax(Nq,Nr)] ∪ [l, u] , ∅. (43)

The given Score() algorithm expresses this in a more simple manner.

However, there is another pruning possibility that Score() in Algorithm 18 does not

exploit: if [dmin(Nq,Nr), dmax(Nq,Nr)] falls completely within the desired range [l, u], then

every descendant reference point of Nr must fall into the result set for every descendant

query point of Nq. A more complex Score() algorithm is given in Algorithm 19. This

algorithm is implemented in mlpack.

7.2.2 Runtime bound

We turn our attention to bounding the running time of range search (and range count). Until

the recent work which is presented in this section [135], there was no existing bound for

range search which was better than the bound for brute-force range search (O(NM) for a

query set of size M and a reference set of size N). It turns out that the simpler Score()

(Algorithm 18) is sufficient for a runtime bound, so in this section we will consider that

implementation, as opposed to the more complex Score() of Algorithm 19. The bound
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will apply for both algorithms, though, since the more complex Score() is easily shown

to only ever do less work than the simpler Score().

In order to bound the running time of dual-tree range search, we require better notions

for understanding the difficulty of the problem. Observe that if the range is sufficiently

large, then for every query point pq, S [pq] = S r. Clearly, for S q ∼ S r ∼ O(N), this cannot

be solved in anything less than quadratic time simply due to the time required to fill each

output array S [pq]. Define the maximum result size for a given query set S q, reference set

S r, and range [l, u] as

|S max| = max
pq∈S q
|S [pq]|. (44)

Small |S max| implies an easy problem; large |S max| implies a difficult problem. For

bounding the running time of range search, we require one more notion of difficulty, related

to how |S max| changes due to changes in the range [l, u].

Definition 12. For a range search problem with query set S q, reference set S r, range [l, u],

and results S [pq] for each query point pq given as

S [pq] = {pr : pr ∈ S r, l ≤ d(pq, pr) ≤ u}, (45)

define the α-expansion of the range set S [pq] as the slightly larger set

S α[pq] = {pr : pr ∈ S r, (1 − α)l ≤ d(pq, pr) ≤ (1 + α)u}. (46)

When the α-expansion of the set S max is approximately the same size as S max, then the

problem would not be significantly more difficult if the range [l, u] was increased slightly.

Using these notions, then, we may now bound the running time of range search.

Theorem 5. Given a reference set S r of size N with expansion constant cr, and a query

set S q of size O(N), a search range of [l, u], and using the range search BaseCase()

118



and Score() as given in Algorithms 17 and 18, respectively, with the standard cover tree

pruning dual-tree traversal as given in Algorithm 8, and also assuming that for some α > 0,

|S α[pq] \ S [pq]| ≤ C ∀ pq ∈ S q, (47)

the running time of range search or range count is bounded by

O
(
c4

r max
(
c4+β

r , |S max| + C
)

(N + it(Nq) + θ)
)

(48)

with θ defined as in Lemma 4, β = dlog2(1 +α−1)e, and S max as defined in Equation 44.

Proof. Both BaseCase() (Algorithm 17) and Score() (Algorithm 18) take O(1) time.

Therefore, using Lemma 1, we know that the runtime of the algorithm is bounded by

O(c4
r |R
∗|(N + it(Nq) + θ)). As with the previous proofs, then, our only task is to bound

the maximum size of the reference set, |R∗|.

By the pruning rule, for a query node Nq, the reference set R∗ is made up of reference

nodes Nr that are within a margin of 2sq+1 + 2sr+1 ≤ 2smax
r +2 of the range [l, u]. Given that pr

is the point in Nr,

pr ∈
(
BS r (pq, u + 2smax

r +2) ∩Csmax
r

)
\
(
BS r (pq, l − 2smax

r +2) ∩Csmax
r

)
. (49)

A bound on the number of elements in this set is a bound on |R∗|. First, consider the

case where u ≤ α−12smax
r +2. Ignoring the smaller ball, take δ = 2smax

r and ρ = 4(1 + α−1) and

apply Lemma 1 to produce the bound

|R∗| ≤ c4+dlog2(1+α−1)e
r . (50)

Now, consider the other case: u > α−12smax
r +1. This means

BS r (pq, u + 2smax
r +1) \ BS r (pq, l − 2smax

r +1) ⊆ BS r (pq, (1 + α)u) \ BS r (pq, (1 − α)l). (51)
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This set is necessarily a subset of S α[pq]; by assumption, the number of points in this

set is bounded above by |S max| + C. We may then conclude that |R∗| ≤ |S max| + C. By

taking the maximum of the sizes of |R∗| in both cases above, we obtain the statement of the

theorem. �

This bound displays both the expected dependence on cr and |S max|. As the largest range

set S max increases in size (with the worst case being S max ∼ N), the runtime degenerates

to quadratic. But for adequately small S max the runtime is instead dependent on cr and the

parameter C of the α-expansion of S max. This situation leads to a simplification.

Corollary 2. For sufficiently small |S max| and sufficiently small C, the runtime of range

search under the conditions of Theorem 5 simplifies to

O(c8+β
r (N + it(Nq) + θ)). (52)

In this setting we can more easily consider the relation of the running time to α. Con-

sider α = (1/3); this yields a running time of O(c8(N + θ)). α = (1/7) yields O(c9(N +

it(Nq + θ)), α = (1/15) yields O(c10(N + it(Nq) + θ)), and so forth. As α gets smaller, the

exponent on c gets larger, and diverges as α→ 0.

For reasonable runtime it is necessary that the α-expansion of S max be bounded. This is

because the dual-tree recursion must retain reference nodes which may contain descendants

in the range set S [pq] for some query pq. The parameter C of the α-expansion allows us to

bound the number of reference nodes of this type, and if α increases but C remains small

enough that Corollary 2 applies, then we are able to obtain tighter running bounds.

It is worth reiterating that the bound here depends only on the pruning rule of Algorithm

18, not the more complex pruning rule of Algorithm 19; thus, our bound is potentially

somewhat looser than it could be. Unfortunately, the expansion constant does not make
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working with slices of balls easy, and therefore the exact route to a tighter bound with the

more complex pruning rule is unclear.

7.3 Kernel density estimation

Much work has been produced regarding the use of dual-tree algorithms for kernel density

estimation (KDE), including by Gray & Moore [61, 65] and later by Lee et al. [73, 75].

Kernel density estimation is an important machine learning task with a vast range of appli-

cations, from signal processing to econometrics.

Given a reference set S r, a query point pq, and a kernel K(·, ·), the true kernel density

estimate for a query point pq is given as

f ∗(pq) =
∑
pr∈S r

K(pq, pr). (53)

Often, the kernel K(·, ·) is shift-invariant; that is, it is just a function of the distance

between two points:

K(pq, pr) := K(‖pq − pr‖). (54)

Some common examples of kernels include the Gaussian, Epanechnikov, Laplacian,

exponential, and hyperbolic tangent kernels.

In the case of an infinite-tailed shift-invariant kernel K(·, ·), the exact computation can-

not be accelerated; thus, attention has turned towards tractable approximation schemes.

Two simple schemes for the approximation of f ∗(pq) are well-known: absolute value ap-

proximation and relative value approximation. Absolute value approximation requires that

each density estimate f (pq) is within ε of the true estimate f ∗(pq):

| f (pq) − f ∗(pq)| < ε ∀pq ∈ S q. (55)

Relative value approximation is a more flexible approximation scheme; given some

parameter ε, the requirement is that each density estimate is within a relative tolerance of
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f ∗(pq) :

| f (pq) − f ∗(pq)|
| f ∗(pq)|

< ε ∀pq ∈ S q. (56)

Kernel density estimation is related to the well-studied problem of kernel summation,

which can also be solved with dual-tree algorithms [74, 75]. In both of those problems,

regardless of the approximation scheme, simple geometric observations can be made to ac-

celerate computation: whenK(·, ·) is shift-invariant, faraway points have very small kernel

evaluations. Thus, trees can be built on S q and S r, and node combinations can be pruned

when the nodes are far apart while still obeying the error bounds.

In the following two subsections, we will show two simple dual-tree algorithms for both

absolute-value and relative-value approximate kernel density estimation. We additionally

restrict ourselves to the standard kernel density estimation assumptions of a shift-invariant

kernel K(pq, pr) = K(‖pq − pr‖) which is monotonically decreasing and non-negative.

These dual-tree algorithms are useful when density estimates are required for not just a

single query point pq but instead an entire query set S q. Then, we will analyze the running

time of each algorithm.

7.3.1 Dual-tree algorithm for absolute-value approximation

A tree-independent algorithm for solving approximate kernel density estimation with ab-

solute value approximation under the previous assumptions on the kernel is given as a

BaseCase() function in Algorithm 20 and a Score() function in Algorithm 21. The list

fp holds partial kernel density estimates for each query point, and the list fn holds partial

kernel density estimates for each query node. At the beginning of the dual-tree traversal,

the lists fp and fn, which are both of size O(N), are each initialized to 0. As the traver-

sal proceeds, node combinations are pruned if the difference between the maximum kernel

valueK(dmin(Nq,Nr)) and the minimum kernel valueK(dmax(Nq,Nr)) is sufficiently small

(line 3). If the node combination can be pruned, then the partial node estimate is updated
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Algorithm 20 Approximate kernel density estimation BaseCase()
1: Input: query point pq, reference point pr, list of kernel point estimates f̂p

2: Output: kernel value K(pq, pr)

3: fp(pq)← fp(pq) +K(pq, pr)
4: return K(pq, pr)

Algorithm 21 Absolute-value approximate kernel density estimation Score()
1: Input: query node Nq, reference node Nr, list of node kernel estimates f̂n

2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should
be pruned

3: if K(dmin(Nq,Nr)) − K(dmax(Nq,Nr)) < ε then
4: fn(Nq)← fn(Nq) + |D p(Nr)|

(
K(dmin(Nq,Nr)) +K(dmax(Nq,Nr))

)
/ 2

5: return ∞
6: return K(dmin(Nq,Nr)) − K(dmax(Nq,Nr))

(line 4). When node combinations cannot be pruned, BaseCase() may be called, which

simply updates the partial point estimate with the exact kernel evaluation (line 3).

After the dual-tree traversal, the actual kernel density estimates f must be extracted.

This can be done by traversing the query tree and calculating f (pq) = fp(pq)+
∑

Ni∈T fn(Ni),

where T is the set of nodes in Tq that have pq as a descendant. Each query node needs to

be visited only once to perform this calculation; it may therefore be accomplished in O(N)

time.

Note that this version is far simpler than other dual-tree algorithms that have been pro-

posed for approximate kernel density estimation (see, for instance, Gray’s algorithm [65]);

however, this version is sufficient for our runtime analysis. Real-world implementations

tend to be far more complex.

Proving correct functionality of kernel density estimation is simple. In Algorithm

21, each pruned subtree introduces a maximum of ε(|D p
r |/|S r|) error into the density es-

timate. Clearly, we cannot prune more than |S r| reference points, giving a maximum of

ε(|S r|/|S r|) = ε approximation error. In addition, for every reference point not pruned, we

correctly add its contribution to the density estimate in Algorithm 20. Thus, our algorithm
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produces approximate kernel density estimates within the bounds specified by the error pa-

rameter ε. Often, the actual empirical error for any query point will be significantly smaller

than ε.

7.3.2 Absolute-value approximate KDE runtime bounds

If we place additional restrictions on the dual-tree algorithm, we may use adaptive algo-

rithm analysis techniques to bound the running time. The restrictions are the usual restric-

tions: we will use the cover tree (Section 5.1.1) and standard cover tree traversal (Algorithm

8). In addition, we will require that the shift-invariant kernel K(·, ·) satisfies the following

properties: there exists some bandwidth h such that K(d) must be concave for d ∈ [0, h]

and convex for d ∈ [h,∞). This assumption implies that the magnitude of the derivative

|K ′(d)| is maximized at d = h. This assumption is not restrictive; most standard kernels fall

into this class, including the Gaussian, exponential, and Epanechnikov kernels.

Theorem 6. Assume thatK(·, ·) is a kernel satisfying the assumptions above. Then, given a

query set S q and a reference set S r with expansion constant cr, and using the approximate

kernel density estimation BaseCase() and Score() as given in Algorithms 20 and 21,

respectively, with the traversal given in Algorithm 8, the running time of approximate kernel

density estimation for some error parameter ε is bounded by O(c8+dlog2 ζe
r (N + it(Tq) + θ))

with ζ = −K ′(h)K−1(ε)ε−1, it(Tq) defined as in Definition 10, and θ defined as in Lemma

4.

Proof. It is clear that BaseCase() and Score() both take O(1) time, so Theorem 1 implies

the total runtime of the dual-tree algorithm is bounded by O(c4
r |R
∗|(N+it(Tq)+θ)). Thus, we

will bound |R∗| using techniques related to those used by Ram et al. [133]. The bounding

of |R∗| is split into two sections: first, we show that when the scale smax
r is small enough, R∗

is empty. Second, we bound R∗ when smax
r is larger.

The Score() function is such that any node in R∗ for a given query node Nq obeys
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K(dmin(Nq,Nr)) − K(dmax(Nq,Nr)) ≥ ε. (57)

Thus, we are interested in the maximum possible value K(a) − K(b) for a fixed value

of b − a > 0. Due to our assumptions, the maximum value of K ′(·) is K ′(h); therefore, the

maximum possible value of K(a) − K(b) is when the interval [a, b] is centered on h. This

allows us to say that K(a) − K(b) ≤ ε when (b − a) ≤ (−ε/K ′(h)). Note that

dmax(Nq,Nr) − dmin(Nq,Nr) ≤ d(pq, pr) + 2smax
r +1 − d(pq, pr) + 2smax

r +1 (58)

≤ 2smax
r +2. (59)

Therefore, R∗ = ∅ when 2smax
r +2 ≤ −ε/K ′(h), or when smax

r ≤ log2(−ε/K ′(h)) − 2.

Consider, then, the case when smax
r > log2(−ε/K ′(h)) − 2. Because of the pruning rule,

for any Nr ∈ R∗, K(dmin(Nq,Nr)) > ε; we may refactor this by applying definitions to

show d(pq, pr) < K−1(ε) + 2smax
r +1. Therefore, bounding the number of points in the set

BS r (pq,K
−1(ε) + 2smax

r +1) ∩ Csmax
r is sufficient to bound |R∗|. For notational convenience,

define ω = (K−1(ε)/2smax
r +1) + 1, and the statement may be more concisely written as

BS r (pq, ω2smax
r +1) ∩Csmax

r .

Using Lemma 1 with δ = 2smax
r and ρ = 2ω gives |R∗| = c3+dlog2 ωe

r .

The value ω is maximized when smax
r is minimized. Using the lower bound on smax

r , ω

is bounded as ω = −2K ′(h)K−1(ε)ε−1. Finally, with ζ = −K ′(h)K−1(ε)ε−1, we are able to

conclude that |R∗| ≤ c3+dlog2(2ζ)e
r = c4+dlog2 ζe

r . Therefore, the entire dual-tree traversal takes

O(c8+dlog2 ζe
r (N + θ)) time.

The postprocessing step to extract the estimates f (·) requires one traversal of the tree

Tr; the tree has O(N) nodes, so this takes only O(N) time. This is less than the runtime of

the dual-tree traversal, so the runtime of the dual-tree traversal dominates the algorithm’s

runtime, and the theorem holds. �

The dependence on ε (through ζ) is expected: as ε → 0 and the search becomes exact, ζ
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diverges both because ε−1 diverges and also becauseK−1(ε) diverges, and the runtime goes

to the worst-case O(N2); exact kernel density estimation means no nodes can be pruned at

all.

For the Gaussian kernel with bandwidth σ defined by Kg(d) = exp(−d2/(2σ2)), ζ does

not depend on the kernel bandwidth; only the approximation parameter ε. For this kernel,

h = σ and therefore −K ′g(h) = σ−1e−1/2. Additionally, K−1
g (ε) = σ

√
2 ln(1/ε). This means

that for the Gaussian kernel, ζ =
√

(−2 ln ε)/(eε2). Again, as ε → 0, the runtime diverges;

however, note that there is no dependence on the kernel bandwidth σ. To demonstrate

the relationship of runtime to ε, see that for a reasonably chosen ε = 0.05, the runtime is

approximately O(c8.89
r (N + θ)); for ε = 0.01, the runtime is approximately O(c11.52

r (N + θ)).

For very small ε = 0.00001, the runtime is approximately O(c22.15
r (N + θ)).

Next, consider the exponential kernel: Kl(d) = exp(−d/σ). For this kernel, h = 0 (that

is, the kernel is always convex), so then K ′l (h) = σ−1. Simple algebraic manipulation gives

K−1
l (ε) = −σ ln ε, resulting in ζ = −K ′l (h)K−1

l (ε)ε−1 = ε−1 ln ε. So both the exponential

and Gaussian kernels do not exhibit dependence on the bandwidth.

To understand the lack of dependence on kernel bandwidth more intuitively, consider

that as the kernel bandwidth increases, two things happen: (a) the reference set R becomes

empty at larger scales, and (b) K−1(ε) grows, allowing less pruning at higher levels. These

effects are opposite, and for the Gaussian and exponential kernels they cancel each other

out, giving the same bound regardless of bandwidth.

7.3.3 Relative Value Approximation

It is straightforward to adapt the Score() function in Algorithm 21 to relative value ap-

proximation; the pruning condition only needs a little tweaking. BaseCase() can remain

the same as in Algorithm 20.

First, we must establish a Score() function for relative value approximation. The

difference between Equations 55 and 56 is the division by the term | f ∗(pq)|. But we can

quickly bound | f ∗(pq)|:
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Algorithm 22 Relative-value approximate kernel density estimation Score()
1: Input: query node Nq, reference node Nr, list of node kernel estimates f̂n

2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should
be pruned

3: if K(dmin(Nq,Nr)) − K(dmax(Nq,Nr)) < εKmax then
4: fn(Nq)← fn(Nq) + |D p(Nr)|

(
K(dmin(Nq,Nr)) +K(dmax(Nq,Nr))

)
/ 2

5: return ∞
6: return K(dmin(Nq,Nr)) − K(dmax(Nq,Nr))

| f ∗(pq)| ≥ NK
(
max
pr∈S r

d(pq, pr)
)
. (60)

This is clearly true: each point in S r must contribute more than K(maxpr∈S r d(pq, pr))

to f ∗(pq). Now, we may revise the relative approximation condition in Equation 56:

| f (pq) − f ∗(pq)| ≤ εKmax (61)

where Kmax is lower bounded by K(maxpr∈S r d(pq, pr)). Assuming we have some estimate

Kmax, this allows us to create a Score() algorithm, given in Algorithm 22. An estimate

Kmax may easily be obtained: one pass over both S q and S r can determine a bounding box

(or ball) of the data, and then the diameter of the box (or sphere) can be used to produce

an estimate Kmax. This is only a strategy for a rough estimate; it is possible to produce

tighter bounds by exploiting the already-built query and reference trees, as we will see in

the upcoming proof.

7.3.4 Runtime bounds for relative value approximate KDE

Using the Score() function in Algorithm 22 and the runtime bound results for absolute

value approximate kernel density estimation, we may prove linear runtime bounds for rel-

ative value approximate kernel density estimation.

Theorem 7. Assume that K(·, ·) is a kernel satisfying the same assumptions as Theorem 6.

Then, given a query set S q and a reference set S r both of size O(N), it is possible to perform
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relative value approximate kernel density estimation (satisfying the condition of Equation

56) in O(N) time, assuming that the expansion constant cr of S r is not dependent on N.

Proof. It is easy to see that Theorem 6 may be adapted to the very slightly different

Score() rule of Algorithm 22 while still providing an O(N) bound. With that Score()

function, the dual-tree algorithm will return relative-value approximate kernel density esti-

mates satisfying Equation 56.

We now turn to the calculation of Kmax. Given the cover trees Tq and Tr with root

nodes N R
r and N R

r , respectively, we may calculate a suitableKmax value in constant time:

Kmax = dmax(N R
q ,N

R
r ) = d(pR

q , pR
r ) + 2sR

q +1 + 2sR
r +1. (62)

This proves the statement of the theorem. �

In this case, we have not shown tighter bounds because the algorithm we have proposed

is not useful in practice. For an example of a better relative-value approximate kernel

density estimation dual-tree algorithm, see the work of Gray [65].

With linear runtime bounds proved for both relative value approximate and absolute

value approximate kernel density estimation, we move on to the next algorithm.

7.4 Minimum spanning tree calculation

Finding a Euclidean minimum spanning tree has been a relevant problem since Borůvka’s

algorithm was proposed in 1926. Recently, a dual-tree version of Borůvka’s algorithm was

developed [68] for kd-trees and cover trees. We unify these two algorithms and generalize

to other types of space tree by formulating BaseCase() and Score() functions.

For a dataset S r ∈ <
N×D, Borůvka’s algorithm connects each point to its nearest neigh-

bor, giving many ‘components’. For each component c, the nearest point in S r to any point

of c that is not part of c is found. The points are connected, combining those components.

This process repeats until only one component—the minimum spanning tree—remains.

Figure 32 shows a sample evolution of components.
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(a) First stage.
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c6

(b) Second stage. (c) Final MST.

Figure 32: Progression of Borůvka’s algorithm.

During the algorithm, we maintain a list F made up of i components Fi : {Ei,Vi} where

Ei is the list of edges and Vi is the list of vertices in the component Fi (these are points in

S r). Each point in S r belongs to only one Fi. At initialization, |F| = |S r| and Fi = {∅, {pi}}

for i = {1, . . . , |S r|}, where pi is the i’th point in S r. For p ∈ S r we define F(p) = Fi if Fi

is the component containing p. During the algorithm, we maintain N(Fi) as the candidate

nearest neighbor of component Fi and pc(Fi) as the point in component Fi nearest to N(Fi).

Then, D(Fi) = ‖pc(Fi) − N(Fi)‖. Remember that F(N(Fi)) , Fi.

To run Borůvka’s algorithm with a space tree Tr built on the set of points S r, a pruning

dual-tree traversal is run with BaseCase() as Algorithm 23, Score() as Algorithm 24, Tr

as both of the trees, and F as initialized before. Note that Score() uses B(Nq) from Section

7.1 with k = 1. Upon traversal completion, we have a list N(Fi) of nearest neighbors of each

Algorithm 23 Borůvka’s algorithm BaseCase().
Input: query point pq, reference point pr, nearest candidate point N(F(pq)) and distance
D(F(pq))
Output: distance d between pq and pr

if pq = pr then
return 0

if F(pq) , F(pr) and ‖pq − pr‖ < D(F(pq)) then
D(F(pq))← ‖pq − pr‖

N(F(pq))← pr; pc(F(pq))← pq

return ‖pq − pr‖
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Algorithm 24 Borůvka’s algorithm Score().
Input: query node Nq, reference node Nr

Output: a score for the node combination (Nq,Nr), or ∞ if the combination should be
pruned

if dmin(Nq,Nr) < B(Nq) then
if F(pq) = F(pr) ∀pq ∈ D p

q , pr ∈ D p
r then

return ∞
return dmin(Nq,Nr)

return ∞

component Fi. The edge (N(Fi), pc(Fi)) is added to Fi for each Fi. Then, any components

in F with shared edges are merged into a new list F′ where |F′| < |F|. The pruning dual-

tree traversal is then run again with F = F′ and the traversal-merge process repeats until

|F| = 1. When |F| = 1, then F1 is the minimum spanning tree of S r.

To prove the correctness of the meta-algorithm, see Theorem 4.1 in March et al. [68].

That proof can be adapted from kd-trees to general space trees. This representation is a

generalization of their algorithms; our meta-algorithm to produces their kd-tree and cover

tree implementations with a tighter distance bound B(Nq). Further, the meta-algorithm

produces a provably correct dual-tree algorithm with any type of space tree.

7.5 Sparse kernel matrix approximation

The introduction of the kernel trick gave rise to an entire class of kernelized algorithms

including kernel principal components analysis (kernel PCA) [111], kernel support vector

machines [161], kernel regression [162, 163], spectral clustering [164, 165, 166], Gaussian

processes [167, 168], and a variety of other problems. Though each of these methods is

significantly different, the commonalities are that a kernel matrix K must often be calcu-

lated.

Given some positive definite Mercer kernel K(·, ·) and some dataset S r that contains N

points, the kernel matrix K ∈ RN×N is assembled with each element defined as

Ki j = K(pi, p j) (63)
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(a) Concentric rings. (b) After KPCA (σ = 10).

Figure 33: A standard kernel PCA example.

for pi and p j corresponding to points in K. In kernel PCA, for instance, K is then eigen-

decomposed and the input points are projected onto some (normally only a few) of the

eigenvectors of the kernel matrix.

For kernel PCA, this is superior to regular PCA because nonlinear projections are possi-

ble; see Figure 33. This has repeatedly been shown to be an effective technique for a variety

of tasks, with applications in handwritten digit recognition [169], image de-noising [170],

speech recognition [171, 172], face recognition [173], and a multitude of other machine

learning tasks [174, 175, 176].

However, it is important to note that K takes O(N2) memory and O(N2) kernel eval-

uations to compute. In my experience, on modern commodity computing hardware, this

means explicit calculation of K is simply impossible for N larger than about 15000.

In this chapter, we examine those situations in which the kernel matrix is sparse or

near-sparse, and exploit this fact to develop a dual-tree algorithm which assembles a sparse

kernel matrix, for small-bandwidth shift-invariant kernels. As an example, we then apply

this to kernel PCA, showing that for small bandwidths, our algorithm outperforms alterna-

tives such as the Nyström method and variants. Although the application of interest here is

131



kernel PCA3, the algorithm may be adapted and applied to other kernel methods.

7.5.1 Sparsity in kernel matrices

A sparse (or near-sparse) kernel matrix K can arise if a shift-invariant kernel is used (that

is, K(xi, x j) = K(‖xi − x j‖)). Genton [177] refers to these kernels as ‘stationary kernels’.

With a kernel of this type, when two points xi and x j are far apart, the kernel evaluation

K(xi, x j) approaches zero.

When kernel PCA is viewed as a manifold learning technique, a sparse kernel matrix

K is sensible. Similar techniques like IsoMap, LLE, and Laplacian Eigenmaps generate

the k-nearest-neighbor graph of the data—which can be transformed to a sparse similarity

matrix—in order to represent the manifold the data lie upon. This is intuitive: faraway

points are unlikely to lie on the same locally linear manifold region. Thus, interactions

between faraway points are not useful, and for kernel PCA a sparse K is reasonable. The

connections between kernel PCA and other manifold learning techniques are well-known

[178]. Note that Laplacian Eigenmaps corresponds directly to kernel PCA with a sparse

kernel matrix.

Of course, a sparse kernel matrix is not always useful. When considering the wider class

of all kernel methods (not just kernel PCA), it is known that very small kernel bandwidths

can lead to severe loss in performance for some methods [179]. For instance, Murray [180]

argues that the small-bandwidth case is mostly irrelevant for Gaussian process regression.

On the other hand, it has been shown that there is a definite tradeoff between the sparsity

(or near-sparsity) of the kernel matrix and the performance of the method [181]. This

relationship can be optimized to provide the best tradeoff between algorithm performance

and kernel matrix sparsity.

To show that this is possible for kernel PCA, consider the image de-noising task on the

USPS dataset, as in Schölkopf and Smola [111]. In this task we add Gaussian noise to each

3Some assumptions must be satisfied for this fast kernel matrix approximation technique to be useful for
kernel PCA. A better discussion can be found in Section 7.5.10.
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Table 16: Image denoising performance on the USPS dataset as a function of σ.

Elements of Elements of
σ pSNR K < 0.01 K < 0.001

1500 13.933 dB 0.00% 0.00%
1000 14.579 dB 0.01% 0.00%
900 14.547 dB 0.88% 0.00%
800 14.421 dB 13.16% 0.04%
700 14.132 dB 56.17% 3.30%
600 13.468 dB 90.75% 38.71%
550 12.712 dB 96.42% 68.55%
500 11.595 dB 98.60% 88.39%

noisy 10.797 dB – –

Figure 34: Typical reconstruction; top: clean data, middle: noisy, bottom: after KPCA with
σ = 600.

pixel of each image in the USPS dataset, with variance equal to half the dynamic range

of the pixels. Then, we perform kernel PCA, saving 64 of the kernel eigenvectors4, and

reconstruct the images according to Mika et al. [182]. This was done with the Statistical

Pattern Recognition Toolbox [183]. For the quality measure, we use the mean pSNR (peak

signal-to-noise ratio). Table 16 shows results for various σ values on the full USPS dataset

(11k points) using the Gaussian kernel with bandwidth σ. Reconstructions of typical digits

are shown in Figure 34.

The tradeoff between pSNR and sparsity of K is clear; but note that we can still obtain

reasonable performance with small σ. With σ = 600, the mean pSNR is only 1 dB lower

than peak performance, and K is mostly near-sparse. These results corroborate those shown

by Zhang and Genton [181], and also by Mika et al. [182] who showed that de-noising with

464 eigenvectors seemed to provide the best-looking reconstructions; results for other number of eigen-
vectors exhibited similar trends, though.
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kernel PCA is effective when small bandwidths are used.

In addition, if n is increased and points are coming from the same distribution while σ

is held constant, then on average, each point will have large kernel interactions with more

other points. Thus, it should be possible to reduce σ as n increases.

We can conclude that although performance degrades, a small σ can be chosen to in-

duce a near-sparse K, and at least for kernel PCA, we may still maintain satisfactory per-

formance.

By thresholding small values, though, we are not guaranteed that K̂ is positive definite

(see Genton [177])5. Fortunately, the positive definiteness of K̂ is not strictly necessary for

eigendecomposition. Further, only the eigenvectors corresponding to large eigenvalues of

K̂ are interesting for kernel PCA. The eigenvectors of K̂ are essentially perturbed eigenvec-

tors of K. So, if the error K − K̂ is reasonably small, any eigenvectors of K̂ with negative

eigenvalues will correspond to eigenvectors of K with small eigenvalues—which would

have been ignored anyway. Thus, despite the fact that thresholding can cause K̂ to be in-

definite, this presents no serious issue, at least for the task of kernel principal components

analysis.

7.5.2 Related work on kernel matrix approximation

The problem of large-scale kernel methods has been studied extensively. The most obvious

solution is to ignore some of the input points, by generating a smaller kernel matrix on

only a cleverly-chosen subset of the data. Smola and Schölkopf [184] suggest three differ-

ent schemes to select subsets of input data. More recently, Williams and Seeger [24] pro-

posed the Nyström method for subset selection. This approach assumes that K is low-rank,

and approximates K as a product of two smaller matrices, significantly reducing storage

and computation costs. Another similar approach is the column sampling method [185].

Unfortunately, theoretical work on these algorithms only gives a probabilistic error bound

5It would be possible to adapt this algorithm to guarantee that K̂ remains positive definite by adapting the
techniques of Zhang and Genton [181].
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[25, 186]; guaranteed approximation error bounds are not known. Additionally, sampling-

based approaches may have problems for datasets with small clusters, where clusters of

data with few points may be entirely ignored by the sampling algorithm.

For kernel PCA specifically, another approach is the Kernel Hebbian Algorithm [170],

an iterative approach to estimate kernel PCA with memory requirements that are linear in

the number of points. This type of approach allowed estimation of kernel PCA on the full

MNIST training set (60000 points) in 30 to 60 hours using 2007-era computing equipment.

The few approaches that exploit sparsity in the kernel matrix [177, 181] do so only

in order to avoid potentially expensive operations that must be performed with the kernel

matrix; for instance, in kernel PCA, this involves an O(N3) eigendecomposition of the

kernel matrix. These approaches do not present a solution to the O(N2) construction of the

sparse kernel matrix, and thus still scale poorly with the number of points in the dataset.

More related to this work is that of Gray [83], who applied space partitioning trees to

approximate kernels in the context of Gaussian process regression. This approach is related

to fast tree-based kernel density estimation [65] and kernel summations [74]. However,

Gray’s approach does not consider sparsely approximating the kernel matrix and it is not

readily adaptable to the kernel PCA problem. In addition, these types of approaches are

generally limited to one type of tree (usually kd-trees), even though the best tree type is

often problem-dependent and dataset-dependent.

7.5.3 A dual-tree algorithm

Like every other algorithm we have discussed in this chapter of the thesis, we will intro-

duce a dual-tree algorithm as a BaseCase() and Score() function, and it will be tree-

independent as a result. The notation, as with all other algorithms, is given in Table 1. The

key to the algorithm is determining when we can prune away subtrees of work.

We will use simple thresholding to construct a sparsified kernel matrix approximation

K̂; that is, given some approximation parameter ε, we take K̂i j = 0 when K(pi, p j) ≤ ε.

Then, a node combination (Nq,Nr) can be pruned when it can be shown that Ki j ≤ ε for
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Algorithm 25 Score(Nq, Nr) for sparse kernel matrix approximation.
1: Input: query node Nr, reference node Nr

2: Output: a score for the node, or∞ if the node can be pruned

3: if Kmax(Nq,Nr) ≤ ε then
4: return∞
5: else if Kmax(Nq,Nr) − Kmin(Nq,Nr) ≤ 2ε then
6: kmid ←

1
2

(
Kmax(Nq,Nr) − Kmin(Nq,Nr)

)
7: for all pq ∈ D p

q and pr ∈ D p
r do

8: Kqr ← kmid

9: return ∞
10: else
11: return Kmax(Nq,Nr)

all xi that are descendant points of Nq and all x j that are descendant points of Nr.

Given two nodes Nq and Nr with centers µq and µr and furthest descendant distances

λq and λr, respectively, we can define the minimum distance between any two descendant

points in the two nodes easily:

dmin(Nq,Nr) = ‖µq − µr‖ − λq − λr. (64)

When the kernel is shift-invariant, it is easy to define the maximum kernel value:

Kmax(Nq,Nr) = K
(
dmin(Nq,Nr)

)
. (65)

This allows us to construct a simple Score() function, given in Algorithm 25. If

the maximum kernel evaluation between any two descendant points is less than or equal

to ε, then there is no need to recurse into those nodes—all kernel evaluations between

descendant points will be approximated as 0.

If a node combination is not pruned, BaseCase() is called on combinations of points

in the two nodes. Thus, given two points pq and pr from an unpruned node combination

(Nq,Nr), we must set K̂qr to Kqr, if Kqr > ε. A BaseCase() function that performs this is

given in Algorithm 26.

To run the algorithm, a type of tree and pruning dual-tree traversal are first selected
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Algorithm 26 BaseCase(pq, pr) for sparse kernel matrix approximation.
1: Input: query point pq, reference point pr

2: Output: none

3: if K(pq, pr) > ε then
4: K̂qr ← K(pq, pr)

(standard choices might be a kd-tree and a dual depth-first traversal). The approximation

parameter ε is chosen. A tree T is built on the dataset S and the pruning dual-tree traversal

is started with the node combination (root(T ), root(T )). The sparse matrix K̂ is initialized

to all zeros before the traversal.

7.5.4 Correctness proof

Showing the correctness of the algorithm is straightforward and the proof technique resem-

bles correctness proofs for other algorithms.

Theorem 8. A pruning dual-tree traversal using Algorithm 26 as its BaseCase() and

Algorithm 25 as its Score() will produce a sparse approximation K̂ of the true kernel

matrix K such that |Ki j − K̂i j| ≤ ε for all i, j ∈ {1, . . . , n}.

Proof. First, assume Score() prunes no node combinations. This means BaseCase() is

called with every possible combination of points pq, pr ∈ S . Line 4 of Algorithm 26 means

that Kqr = K̂qr. Otherwise, |Kqr − K̂qr| = |Kqr| ≤ ε. So when Score() prunes nothing,

BaseCase() is called on every combination of points, and the result is correct.

Now we show that combinations of points pruned by Score() are never outside the ε

tolerance. By its design, Score() only prunes a node combination under two conditions:

first, if for every pq ∈ D p
q and pr ∈ D p

r , it is known that K(pq, pr) ≤ ε, then the node

combination is pruned. In that case, K̂qr = 0 and then |Kqr − K̂qr| = |Kqr| ≤ ε, which is

within tolerance.

Now, consider the second pruning condition: if Kmax(Nq,Nr) − Kmin(Nq,Nr) ≤ 2ε,

then the node combination is pruned, and for every descendant point combination (pq, pr),

Kqr is set to the midpoint of the range, k| (line 6). Clearly, Kmax(Nq,Nr) − k| ≤ ε, and
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k| − Kmin(Nq,Nr) ≤ ε. Therefore, the approximation for any point is within a tolerance of

ε, and the approximation satisfies the desired condition. �

Note that Theorem 8 holds for any type of space tree and pruning dual-tree traversal.

7.5.5 Application to kernel PCA

In the previous section, we introduced a dual-tree algorithm that can quickly construct a

sparse approximation K̂ of the kernel matrix K of some dataset S containing n points. A

procedure is given below to efficiently perform kernel PCA using this algorithm. ε is the

user-specified approximation parameter, and d̂ is the desired dimension of the nonlinear

projections.

1. Construct a tree T on the dataset S .

2. Initialize K̂ to an empty sparse matrix.

3. Run the pruning dual-tree traversal with Algorithm 26 as the BaseCase() function

and Algorithm 25 as the Score() function, and ε as the approximation parameter.

4. Use a sparse eigensolver to recover d̂ eigenvectors V = {v1, . . . , vd̂}.

5. Construct projected data Ŝ = VT K̂.

In traditional kernel PCA, the eigendecomposition step (Step 4) takes O(N3) time6.

However, because K̂ is sparse, a sparse eigensolver implementation such as ARPACK [187]

can scale linearly in N, under the assumption that a matrix-vector product can be calculated

in O(N) time. This is true when the matrix has O(N) elements. In Section 7.5.6, we show

that for certain dataset conditions this is true; then, the eigendecomposition will take O(N)

time. In addition, the final projection step (Step 5) takes O(N2d̂) time for traditional kernel

PCA, but with a sparse K̂, the computations required to compute VT K̂ are far fewer. If K̂

6A smart eigensolver can do better; in fact, ARPACK can be used with dense matrices, but it will still take
O(N2) time.
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has O(N) nonzero elements, then the entire kernel PCA algorithm will take O(N) time (plus

the tree construction time, which depends on the type of tree but is often O(N log N)).

7.5.5.1 Centering the kernel matrix

Although K can be approximated effectively and quickly by a sparse matrix K̂, often the

eigendecomposition is not performed on K but instead a centered version of K [111]:

Kc = K − 1nK − K1n + 1nK1n (66)

where 1n is the n×n matrix filled with (1/n). Fortunately, this poses no issue. The last term,

1nK1n, is an n × n matrix filled entirely with the mean value of K; thus, it can be stored

as a single floating-point number. Similarly, 1N K is a matrix where each row is identical

and thus can be stored as a row vector of size n, and K1n is a matrix where each column is

identical, and can be stored as a column vector of size n.

During eigendecomposition, each Arnoldi iteration requires calculation of y = K̂x for

some vector x. K̂ is sparse, so this calculation is very fast. If the matrix K̂ is centered to

produce K̂c, the terms (1nK̂)x, (K̂1n)x, and (1nK̂1n)x can all be calculated in O(n) time,

preserving the speedup seen when K̂ is not centered.

7.5.6 Theoretical results

Like most other dual-tree algorithms, we may use the cover tree and standard cover tree

dual-tree traversal to show that, under certain assumptions on the dataset, the entire algo-

rithm will take linear time. These results are in terms of the expansion constant; for more

information on the expansion constant and the theoretical properties of the cover tree, see

Sections 5.1.1 and 5.2.

We do not need to introduce any new theory to bound the runtime of the sparse kernel

matrix approximation method. Instead, runtime bound results for range search and kernel

density estimation may be used to produce two different bounds.

First, we must show that sparse kernel matrix approximation may be viewed as an
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instance of range search or kernel density estimation. The first pruning rule in Algorithm

25 prunes when

Kmin(Nq,Nr) ≤ ε. (67)

The second pruning rule (line 5) can only ever reduce the amount of work performed,

so we may ignore that for the purposes of this discussion. If we may assume that K(·, ·) is

monotonically decreasing, then we may define K−1(·) such that

K−1(α) = ‖pi − p j‖ (68)

if K(pi, p j) = α. Then, our solution (if we ignore the second pruning rule) is equivalent

to range search with the range [0, α]. As in Section 7.2, if we assume that no column of

K̂ has more than |S max| entries and |S max| is sufficiently small, and also that C (the ratio of

the number of points in the α-expansion of S max to the number of points in S max) is also

sufficiently small, then we obtain the following result.

Theorem 9. Given the above assumptions on the approximated kernel matrix K̂, the run-

ning time of the sparse kernel matrix approximation dual-tree algorithm using cover trees

and the standard cover tree dual-tree traversal is bounded by

O(c8+β
r (N + it(Nq) + θ)), (69)

with β defined as in Section 7.2.

Proof. After the assumptions above are applied, this follows directly from Corollary 2. �

Next, we can reduce the algorithm to kernel density estimation, this time ignoring the

first pruning rule (line 3). The pruning condition is now

Kmax(Nq,Nr) − Kmin(Nq,Nr) ≤ 2ε (70)
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and if we assume a shift-invariant, monotonically decreasing kernel this reduces to

K(dmin(Nq,Nr)) − K(dmax(Nq,Nr)) ≤ 2ε (71)

and this is nearly identical to the pruning rule for absolute-value approximate kernel density

estimation in Algorithm 21—except the pruning is twice as tight. Now, if we introduce

the same assumptions as we did for kernel density estimation, we may adapt the result.

In addition to being shift-invariant and monotonically decreasing, it is required that there

exists some bandwidth h such that K(d) must be concave for d ∈ [0, h] and convex for

d ∈ [h,∞).

Theorem 10. Assume that the kernel functionK(·, ·) satisfies the assumptions above. Then,

given a dataset S r with expansion constant cr and using the approximate sparse kernel

matrix calculation BaseCase() and Score() functions as given in Algorithms 26 and

25, respectively, with the traversal given in Algorithm 8, the running time to calculate the

approximate sparse kernel matrix is bounded by

O
(
c7+dlog2 ζ

′e
r (N + it(Tq) + θ)

)
(72)

with ζ′ = −K ′(h)K−1(2ε)ε−1, it(Tq) defined as in Definition 10, and θ defined as in Lemma

4.

Proof. The discussion before the theorem clarified that the pruning of the Score() func-

tion given in Algorithm 25 is at least as tight as approximate kernel density estimation with

an approximation parameter of 2ε. Therefore, under the assumptions of the kernel, we may

reuse the results of Theorem 6 and simplify the exponent on the expansion constant cr:

8 + dlog2

(
−K ′(h)K−1(2ε)(2ε)−1

)
e = 7 + dlog2

(
−K ′(h)K−1(2ε)ε−1

)
e (73)

and this gives the result. �
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Table 17: Datasets used for kernel PCA experiments.

Dataset Short name n d d̂
cloud cloud 2048 10 2
sat-image sat 4495 37 3
winequality wineq 6497 11 3
ISOLET isolet 7797 617 15
Corel corel 37749 32 3
MNIST mnist 70000 784 10
Physics phy 150000 78 5
Covertype cover 581012 54 5

The primary difference between this bound and the bound for approximate kernel den-

sity estimation is the smaller dependence on cr; note also that K−1(2ε) (found in the term

ζ′) may be much smaller than K−1(ε) (found in the original term ζ).

7.5.7 Empirical results for kernel PCA

To evaluate the efficiency of our proposed algorithm, we have tested it against other kernel

PCA algorithms using shift-invariant kernels. First, to show the algorithm’s efficiency with

compactly supported kernels, we use the Epanechnikov kernel7 and perform exact kernel

PCA. Then, we demonstrate approximate kernel PCA using the Gaussian kernel. Our

algorithms were implemented using mlpack [87] in C++ using kd-trees with a dual depth-

first traversal.

We compare with the MATLAB implementation of an improved Nyström approxima-

tion scheme by Zhang et al. [189] and the mlpack standard kernel PCA implementation.

As suggested by Zhang et al. [189], we use m = 0.05n; that is, we use 5% of the points as

‘landmark points’ for the Nyström method.

Table 17 lists the datasets used in our experiments. They are mostly standard datasets

available from the UCI repository [134]. Also listed is the target dimensionality d̂ after

kernel PCA.
7The Epanechnikov kernel is not positive definite, but many finitely supported kernels are conditionally

positive definite and thus useful for kernel PCA [188]. It is chosen here not for its performance with kernel
PCA but merely as an example of a compactly supported kernel.
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Table 18: Results for Epanechnikov kernel.

Data σ dt-kpca density nyström kpca
cloud 50 0.05s 3.6% 0.09s 29.4s
sat 30 0.48s 1.8% 0.59s 247s
wineq 15 1.29s 7.1% 1.51s 717s
isolet 10 49.87s 3.3% 5.03s 1524s
corel 0.3 91.0s 6.1% 267s fail
mnist 1000 2417s 0.9% fail fail
phy 5 238s 1.1% fail fail
cover 225 239s 0.1% fail fail

Table 18 shows results for the Epanechnikov kernel:

Ke(x, y) = max
(
0, 1 − ‖x − y‖2/σ2)

)
. (74)

σ was chosen to be small while still providing reasonable projections for kernel PCA.

The runtime of our method (‘dt-kpca’: dual-tree kernel PCA) is often highly dependent on

the sparsity of the kernel matrix, which is a function of σ. Although speedups are lower

on high-dimensional datasets (this is typical of tree-based algorithms), it should not be

overlooked that our algorithm still outperforms other algorithms for large high-dimensional

datasets; other algorithms fail entirely. Performance is poor on the ISOLET and MNIST

datasets, likely because those datasets are high-dimensional, and kd-trees are known to

perform poorly in high dimensions [190]. In either case, when the bandwidth used is such

that the kernel matrix is sufficiently sparse, our algorithm can scale to over half a million

points without a problem; competing algorithms run out of memory.

A more common kernel choice, though, is the Gaussian kernel:

Kg(x, y) = e−‖x−y‖2/(2σ2). (75)

The Gaussian kernel has infinite support. Thus, our algorithm will provide an approx-

imate kernel matrix. In this situation, we can compare both runtimes and approximation
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Table 19: Results for Gaussian kernel.

Data σ dt-kpca ε density dt-kpca nyström nyström kpca
avg. error avg. error

cloud 25 0.12s 0.001 9.7% 3.48e-8 0.08s 1.83e-5 29.8s
sat 12 0.72s 0.01 3.5% 1.69e-7 0.395s 3.57e-6 303.5s
wineq 5 2.10s 0.001 10.6% 1.25e-8 0.92s 3.41e-6 686.7s
isolet 3 59.04s 0.001 8.1% 2.05e-8 3.804s 1.43e-6 1550.2s
corel 0.1 138.4s 0.005 8.7% 1.83e-8 288.8s 2.22e-7 fail
mnist 350 2842.3s 0.001 3.0% 1.84e-8 fail n/a fail
phy 0.75 330.4s 0.001 0.9% n/a fail n/a fail
cover 50 470.3s 1e-5 0.1% n/a fail n/a fail

accuracy between our algorithm and the improved Nyström method. Table 19 shows re-

sults. The error measure is ‖K̂ − K‖F/n2, is the matrix norm of the difference between the

matched eigenvectors; results closer to 0 indicate that the recovered approximate kernel

eigenvectors are closer to the true kernel eigenvectors. For larger datasets, standard kernel

PCA fails, and computing the errors of either our algorithm or the Nyström method is not

possible.

7.5.8 Extensions
7.5.8.1 Any positive definite kernel

Until this point we have only discussed shift-invariant kernels; however, this does not in-

clude many popular kernels such as the polynomial kernel (K(x, y) = (xT y)d), the linear

kernel (K(x, y) = xT y), or the hyperbolic tangent kernel (K(x, y) = tanh(xT y)). It is known

that one can bound kernel values for any positive definite kernel by exploiting the triangle

inequality in the kernel space [79]:

Kmax(Nq,Nr) = K(µq, µr) + λq

√
K(µq, µr) (76)

+ λr

√
K(µq, µr) + λqλr, (77)

Kmin(Nq,Nr) = K(µq, µr) − λq

√
K(µq, µr) (78)

− λr

√
K(µq, µr) − λqλr. (79)
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The use of these bounds requires that K(·, ·) can be evaluated between all µq and µr in

the trees. Thus, each node’s centroid must be a point in the dataset. This is not true of

kd-trees; they cannot be used in this situation. Cover trees [57] provide one alternative,

though there are many others, of course; see Chapter 5 and Section 3.6.

The assumption that K(µq, µr) decreases to 0 as distance between µq and µr increases

is not valid for non-shift-invariant kernels. Thus, the pruning strategy must be to find

when Kmax(Nq,Nr) − Kmin(Nq,Nr) is small, and then approximate the kernel values. The

Score() function given in Algorithm 25 can be easily adapted by removing the first prun-

ing condition (Kmax(Nq,Nr) ≤ ε, in line 3).

However, the main problem with this approach is that there is no guarantee that K is

near sparse. Thus, how to avoid the O(N2) memory requirement for K is unclear, and left

as a future challenge.

7.5.9 Application to other kernel methods

The dual-tree algorithm we have proposed is not specific to kernel PCA, although we have

proposed it in that context. Most kernel-based algorithms require construction of the kernel

matrix K, or at least many kernel evaluations between points in the dataset.

Some examples of these algorithms include kernel discriminant analysis [191], kernel

ICA [192], and support vector machines [161]. In settings where K is sparse, or close to

sparse, our dual-tree algorithm is easy to adapt and could provide similar speedups.

One challenge here is that the thresholding strategy does not guarantee that the result-

ing sparse kernel matrix approximation is positive definite; for those kernel methods that

require a positive definite kernel matrix, then, the technique of Zhang and Genton [181] for

thresholding while maintaining positive definiteness would need to be adapted.

7.5.10 Discussion

This section has described a dual-tree algorithm for quickly approximating a kernel ma-

trix as sparse using thresholding, and has pointed the way toward several extensions and
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improvements, and has also demonstrated the effectiveness of the algorithm for the kernel

principal components analysis problem. However, it is worth taking a step back to consider

those situations in which this algorithm is useful, because it is certainly not useful in all

situations; the earlier discussion in Section 7.5.1 touched on this point.

The underlying assumption of the Nyström method is that the kernel matrix is low-rank;

that is, it is represented well by K = GGT where G ∈ RN×r and r, the rank parameter, is

far smaller than N. Another way to state the assumption of a low-rank K is to say that

there a few large eigenvalues of K, and most are small (or zero); alternately, the eigen-

spectrum decays quickly. This is also the underlying assumption of kernel PCA: the basis

of kernel matrix K can be accurately (though approximately) represented with only a few

eigenvectors of K.

But when a kernel matrix K is assembled with a small bandwidth, the matrix becomes

block diagonal. Consider the extreme case, where the bandwidth is 0 and the only nonzero

elements in K are on the diagonal. If the kernel is shift-invariant then K = I, which is

certainly not low-rank and cannot be approximated well by a few eigenvectors. Therefore,

it is reasonable to say that shrinking the bandwidth of the kernelK(·, ·) will cause the kernel

matrix K to become higher-rank and therefore the underlying assumption of kernel PCA is

more and more violated.

Are sparsified kernel matrices relevant and useful, then? I would argue yes: as in

Section 7.5.1, small-bandwidth kernel machines can still be useful, though often at a per-

formance penalty. Interest has resurfaced recently on small-bandwidth kernels, with the

MEKA algorithm [193] and ASKIT [194] garnering recent attention.

Nonetheless, it is important when considering this particular algorithm to know its lim-

itations and assumptions.

146



7.6 Gaussian mixture model training

In this section, a single-tree algorithm for Gaussian mixture model training is presented.

This is a general restatement of the original algorithm by Moore [40], which was limited

to mrkd-trees; it has been generalized to fit into the tree-independent single-tree algorithm

framework, and thus after introducing the problem, we only need to present a BaseCase()

and Score() function.8

7.6.1 Problem introduction

The use of Gaussian mixture models is a common machine learning technique to represent

complex distributions. Gaussian mixture models are often used in speech recognition ap-

plications to represent the distribution of each phoneme. Although a better introduction to

GMMs, their uses, and their training is given by both Reynolds [196] and Bilmes [197], we

still re-introduce the model briefly and establish our notation. Interested readers who are

unfamiliar with GMMs should consult either of those two introductions.

Assume that we are given a dataset S = {p0, p1, . . . , pn}, and we wish to fit a Gaussian

mixture model with m components to this data. Each component in our Gaussian mixture

model θ is described as c j = (φ j, µ j,Σ j) for j ∈ [0,m), where φ j = P(c j|θ) is the mix-

ture weight of component j, µ j is the mean of component j, and Σ j is the covariance of

component j. Then, the probability of a point arising from the GMM θ may be calculated

as

P(pi|θ) =

m∑
j=1

ω j(2π‖Σ j‖)−1/2e−
1
2 (pi−µ j)T Σ−1

j (pi−µ j). (80)

We may also define the probability of a point pi arising from a particular component in

the mixture as

ai j := P(pi|c j, θ) = ω j(2π‖Σ j‖)−1/2e−
1
2 (pi−µ j)T Σ−1

j (pi−µ j). (81)

8This section is similar to my presentation of this material in a technical report [195].
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Then, we may use Bayes’ rule to define

ωi j := P(c j|pi, θ) =
ai jφ j∑
k aikφk

. (82)

Often, GMMs are trained using an iterative procedure known as the EM (expectation

maximization) algorithm, which proceeds in two steps. In the first step, we will compute

the probability of each point pi ∈ S arising from each component (so, we calculate ai j =

P(pi|c j, θ) for all pi ∈ S and c j ∈ M). We can then calculateωi j using the current parameters

of the model θ and the already-calculated ai j. Then, in the second step, we update the

parameters of the model θ according to the following rules:

φ j ←
1
n

n∑
i=0

ωi j, (83)

µ j ←
1∑n

i=0 ωi j

n∑
i=0

ωi j pi, (84)

Σ j ←
1∑n

i=0 ωi j

n∑
i=0

ωi j(pi − µ j)(pi − µ j)T . (85)

Implemented naively and exactly, we must calculate ai j for each pi and c j, giving O(nm)

operations per iteration. We can do better with trees, although we will have to introduce

some level of approximation.

7.6.2 A generalized single-tree algorithm

We will build a tree, T , on the dataset S , and use this to approximate the values of ai j

and ωi j for each i and j. The basic observation is that for any pi ∈ S , there is likely to be

some component (or many components) c j such that P(pi|c j, θ) (and therefore P(c j|pi, θ))

is quite small. Because P(c j|pi, θ) never decays to 0 for finite ‖pi − µ j‖, we may not avoid

any calculations of ωi j if we want to perform the exact EM algorithm.

However, if we allow some amount of approximation, and can determine (for instance)

that ωi j < ε, then we can avoid empirically calculating ωi j and simply approximate it as
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0. Further, if we can place a bound such that ζ − ε < ωi j < ζ + ε, then we can simply

approximate ωi j as ζ.

Now, note that for some node Ni, we may calculate amax
j for some component j, which

is an upper bound on the value of ai j for any point pi ∈ D p(Ni):

amax
j = (2π‖Σ j‖)−1/2edM

min(Ni,µ j,Σ
−1
j ) (86)

In the equation above, dM(·, ·,Σ−1) is the Mahalanobis distance:

dM(pi, p j,Σ
−1) = (pi − p j)T Σ−1(pi − p j) (87)

and dM
min(·, ·,Σ−1) is a generalization of dmin(·, ·) to the Mahalanobis distance:

dM
min(Ni, p j,Σ

−1) = min
{

(pi − p j)T Σ−1(pi − p j) , pi ∈ D p
i

}
. (88)

We again assume that we can quickly calculate a lower bound on dM
min(·, ·, ·) without

checking every descendant point in the tree node. Now, we may use this lower bound to

calculate the upper bound amax
j . We may similarly calculate a lower bound amin

j :

amin
j = (2π‖Σ j‖)−1/2edM

max(Ni,µ j,Σ
−1
j ) (89)

with dM
max(·, ·, ·) defined similarly to dM

min(·, ·, ·). Finally, we can use Bayes’ rule to produce

the bounds ωmin
j and ωmax

j (see Equation 82):

ωmin
j =

amin
j φ j

amin
j φ j +

∑
k, j amax

k φk
, (90)

ωmax
j =

amax
j φ j

amax
j φ j +

∑
k, j amin

k φk
. (91)

Note that in each of these, we must approximate the term
∑

k aikφk, but we do not know

the exact values aik. Thus, for ωmin
j , we must take the bound aik ≤ amax

k , except for when

j = k, where we can use the tighter amin
j . Symmetric reasoning applies for the case of ωmax

j .
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Algorithm 27 GMM training BaseCase().
1: Input: model θ = {(φ0, µ0,Σ0), . . . , (φm−1, µm−1,Σm−1)}, point pi, partial model θ′ =

{(µ′0,Σ
′
0), . . . , (µ′m−1,Σ

′
m−1)}, weight estimates (ωt

0, . . . , ω
t
m−1)

2: Output: updated partial model θ′

3: {Some trees hold points in multiple places; ensure we don’t double-count.}
4: if point pi already visited then return

5: {Calculate all ai j.}
6: for all j in [0,m) do
7: ai j ← (2π‖Σ j‖)−1/2e−1/2(pi−µ j)T Σ−1

j (pi−µ j)

8: asum ←
∑

k aikφk

9: {Calculate all ωi j and update model.}
10: for all j in [0,m) do
11: ωi j ←

ai jφi

asum

12: ωt
j ← ωt

j + ωi j

13: µ j ← µ j + ωi j pi

14: Σ j ← Σ j + ωi j(pi pT
i )

15: return ai j

Now, following the advice of Moore [40], we note that a decent pruning rule is to prune

if, for all components j, ωmax
j − ωmin

j < τωt
j, where ωt

j is a lower bound on the total weight

that component j has.

Using that intuition, let us define the BaseCase() and Score() functions that will

define our single-tree algorithm. During our single-tree algorithm, we will have the current

model θ and a partial model θ′, which will hold unnormalized means and covariances of

components. After the single-tree algorithm runs, we can normalize θ′ to produce the next

model θ.

Algorithm 27 defines the BaseCase() function and Algorithm 28 defines the Score()

function. At the beginning of the traversal, we initialize the weight estimates ωt
0, . . . , ω

t
m

all to 0 and the partial model θ′ = {(µ′0,Σ
′
0), . . . , (µ′m,Σ

′
m)} to 0. At the end of the traversal,

we will generate our new model as follows, for each component j ∈ [0,m):
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Algorithm 28 GMM training Score().
1: Input: model θ = {(φ0, µ0,Σ0), . . . , (φm−1, µm−1,Σm−1)}, node Ni, weight estimates

(ωt
0, . . . , ω

t
m−1), pruning tolerance τ

2: Output: ∞ if Ni can be pruned, score for recursion priority otherwise

3: {Calculate bounds on ai j for each component.}
4: for all j in [0,m) do
5: amin

j ← (2π‖Σ j‖)−1/2e−1/2(dM
max(Ni,µ j,Σ

−1
j ))

6: amax
j ← (2π‖Σ j‖)−1/2e−1/2(dM

min(Ni,µ j,Σ
−1
j ))

7: {Calculate bounds on ωi j for each component.}
8: for all j in [0,m) do
9: ωmin

j ←
amin

j φ j

amin
j φ j+

∑
k, j amax

k φk

10: ωmax
j ←

amax
j φ j

amax
j φ j+

∑
k, j amin

k φk

11: {Remove parent’s prediction for ωt
j contribution from this node.}

12: if Ni is not the root then
13: ω

p
j ← the value of ωmin

j calculated by the parent
14: ωt

j ← ωt
j − |D

p(Ni)|ω
p
j

15: {Determine if we can prune.}
16: if ωmax

j − ωmin
j < τωt

j for all j ∈ [0,m) then
17: {We can prune, so update µ j and Σ j.}
18: for all j in [0,m) do
19: ω

avg
j ← 1/2(ωmax

j + ωmin
j )

20: ωt
j ← ωt

j + |D p(Ni)|ω
avg
j

21: ci ← centroid of Ni

22: µ j ← µ j + ω
avg
j ci

23: Σ j ← Σ j + ω
avg
j cicT

i
24: return ∞

25: {Can’t prune; update ωt
j and return.}

26: for all j ∈ [0,m) do
27: ωt

j ← ωt
j + |D p(Ni)|ωmin

j
28: return 1/(max j∈[0,m) ω

max
j )

φ j ←
1
n
ωt

j (92)

µ j ←
1
ωt

j
µ′j (93)

Σ j ←
1
ωt

j
Σ′j (94)

After this, the array of φ j values will need to be normalized to sum to 1; this is necessary
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because each ωt
j may be approximate.

To better understand the algorithm, let us first consider the BaseCase() function.

Given some point pi, our goal is to update the partial model θ′ with the contribution of

pi. Therefore, we first calculate ai j for every component (φ j, µ j,Σ j). This allows us to then

calculate ωi j for each component, and then we may update ωt
j (our lower bound on the

total weight of component j) and our partial model components µ′j and Σ′j. Note that in

the BaseCase() function there is no approximation; if we were to call BaseCase() with

every point in the dataset, we would end up with µ′j equal to the result of Equation 84 and

Σ′j equal to the result of Equation 85. In addition, ωt
j would be an exact lower bound.

Now, let us consider Score(), which is where the approximation happens. When we

visit a node Ni, our goal is to determine whether or not we can approximate the contribution

of all of the descendant points of Ni at once. As stated earlier, we prune ifωmax
j −ω

min
j < τωt

j

for all components j. Thus, the Score() function must calculate ωmax
j and ωmin

j (lines 4–

10) and make sure ωt
j is updated.

Keeping ωt
j correct requires a bit of book-keeping. Remember that ωt

j is a lower bound

on
∑

i ωi j; we maintain this bound by using the lower bound ωmin
j for each descendant point

of a particular node. Therefore, when we visit some node Ni, we must remove the parent’s

lower bound before adding the lower bound produced with the ωmin
j value for Ni (lines

12–14).

Because we have defined our single-tree algorithm as only a BaseCase() and Score()

function, we are left with a generic algorithm. We may use any tree and any traversal (so

long as they satisfy the definitions given in Chapter 3).

7.6.3 Possible improvements and extensions

Although we have demonstrated how GMM training can be performed approximately and

efficiently with trees, there are still several extensions and improvements that may be per-

formed but are not detailed here:
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• A better type of approximation. We are only performing relative approximation using

the same heuristic as introduced by Moore [40]. But other types of approximation

exist: absolute-value approximation [28], or budgeting [65].

• Provable approximation bounds. In this algorithm, the user selects τ to control the

approximation, but there is no derived relationship between τ and the quality of the

results. A better user-tunable parameter might be something directly related to the

quality of the results; for instance, the user might place a bound on the total mean

squared error allowed in µ j and Σ j for each j.

• Provable worst-case runtime bounds. Using cover trees, a relationship between the

properties of the dataset and the runtime may be derived, similar to other tree-based

algorithms which use the cover tree [57, 135].

• Caching during the traversal. During the traversal, quantities such as amin
j , amax

j ,

ωmin
j , and ωmax

j for a node Ni will have some geometric relation to those quantities

as calculated by the parent of Ni. These relations could potentially be exploited in

order to prune a node without evaluating those quantities. This type of strategy is

already in use for nearest neighbor search and max-kernel search in mlpack.

Nonetheless, the algorithm, as we have presented it, is generic and flexible and does

indeed solve the Gaussian mixture model training problem approximately and efficiently.

Our formulation, for mrkd-trees, will reduce to Moore’s formulation [40], and should per-

form comparably.

7.7 Max-kernel search

This section introduces the problem of max-kernel search, which is a generalized form of

similarity search. Until the introduction of this algorithm, there has been no fast, exact

algorithm for generalized similarity search (when defined as max-kernel search). Trees can
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be used for a fast, exact solution, though; therefore, a single-tree and dual-tree algorithm

for fast max-kernel search is developed and introduced.

Although the algorithms in this thesis are generally meant to be tree-independent, un-

fortunately this particular problem requires some restrictions on the tree. Here, we present

an algorithm for cover trees, although it is easily generalizable to similar ball trees, and less

easily generalizable to other types of trees (such as cone trees [45]).

This section is a re-presentation of work by myself and Parikshit Ram in SIAM Data

Mining 2013 [46] and a later extension of that work [79].

7.7.1 Introduction to max-kernel search

A particularly ubiquitous problem in computer science is that of max-kernel search: for a

given set S r of N objects (the reference set), a similarity functionK(·, ·), and a query object

pq, find the object pr ∈ R such that

pr = argmax
p∈S r

K(pq, p). (95)

Often, max-kernel search is performed for a large set of query objects S q.

The most simple approach to this general problem is a linear scan over all the objects

in S r. However, the computational cost of this approach scales linearly with the size of the

reference set for a single query, making it computationally prohibitive for large datasets. If

|S q| = |S r| = O(N), then this approach scales as O(N2); thus, the approach quickly becomes

infeasible for large N.

In our setting we restrict the similarity functionK(·, ·) to be a Mercer kernel. As we will

see, this is not very restrictive. A Mercer kernel is a positive semidefinite kernel function;

these can be expressed as an inner product in some Hilbert spaceH :

K(x, y) = 〈ϕ(x), ϕ(y)〉H . (96)

Often, in practice, the spaceH is unknown; thus, the mapping of x toH (ϕ(x)) for any
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Figure 35: Matching images: an example of max-kernel search.

object x is not known. Fortunately, we do not need to know ϕ because of the renowned

“kernel trick”—the ability to evaluate inner products between any pair of objects in the

spaceH without requiring the explicit representations of those objects.

Because Mercer kernels do not require explicit representations in H , they are ubiq-

uitous and can be devised for any new class of objects, such as images and documents

(which can be considered as points in Rd), to more abstract objects like strings (protein

sequences [198], text), graphs (molecules [199], brain neuron activation paths), and time

series (music, financial data) [200].

As we mentioned, the max-kernel search problem appears everywhere in computer sci-

ence and related applications. The widely studied problem of image matching in computer

vision is an instance of max-kernel search (Figure 35 presents a simple example). The

size of the image sets is continually growing, rendering linear scan computationally pro-

hibitive. Max-kernel search also appears in maximum a posteriori inference [81] as well
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as collaborative filtering via the widely successful matrix factorization framework [201].

This matrix factorization obtains an accurate representation of the data in terms of user

vectors and item vectors, and the desired result—the user preference of an item—is the in-

ner product between the two respective vectors (this is a Mercer kernel). With ever-scaling

item sets and millions of users [202], efficient retrieval of recommendations (which is also

max-kernel search) is critical for real-world systems.

Finding similar protein/DNA sequences for a query sequence from a large set of bio-

logical sequences is also an instance of max-kernel search with biological sequences as the

objects and various domain-specific kernels (for example, the p-spectrum kernel [198], the

maximal segment match score [203] and the Smith-Waterman alignment score [204]9).

An efficient max-kernel search algorithm can be directly applied to biological sequence

matching. The field of document retrieval—and information retrieval in general—can be

easily seen to be an instance of max-kernel search: for some given similarity function,

return the document that is most similar to the query. Spell checking systems are an inter-

esting corollary of information retrieval and also an instance of max-kernel search [205].

A special case of max-kernel search is the problem of nearest neighbor search in metric

spaces. In this problem, the closest object to the query with respect to a distance metric is

sought. The requirement of a distance metric allows numerous efficient methods for exact

and approximate nearest neighbor search, including searches based on space partitioning

trees [33, 31, 51, 56, 67, 206] and other types of data structures [150, 156, 132, 157].

However, none of these numerous algorithms are suitable for solving generalized max-

kernel search, which is the problem we are considering.

Given the wide applicability of kernels, it is desirable to have a general method for

efficient max-kernel search that is applicable to any class of objects and corresponding

Mercer kernels. To this end, we present a method to accelerate exact max-kernel search for

any general class of objects and corresponding Mercer kernels. The specific contributions

9These functions provide matching scores for pairs of sequences and can easily be shown to be Mercer
kernels.
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of this section are listed below.

• The first concept for characterizing the hardness of max-kernel search in terms of the

concentration of the kernel values in any direction: the directional concentration.

• An single-tree algorithm to index any set of N objects directly in the Hilbert space

defined by the kernel without requiring explicit representations of the objects in this

space.

• Novel single-tree and dual-tree branch-and-bound algorithms on the Hilbert space

indexing, which can achieve orders of magnitude speedups over linear search.

• Value-approximate, order-approximate, and rank-approximate extensions to the ex-

act max-kernel search algorithms.

• An O(N) runtime bound for exact max-kernel search for O(N) queries with our pro-

posed dual-tree algorithm for any Mercer kernel.

7.7.2 Related work

Although there are existing techniques for max-kernel search, almost all of them solve

the approximate search problem under restricted settings. The most common assumption

is that the objects are in some metric space and the kernel function is shift-invariant—a

monotonic function of the distance between the two objects (K(p, q) = f (‖p − q‖)). One

example is the Gaussian radial basis function (RBF) kernel.

For shift-invariant kernels, a tree-based recursive algorithm has been shown to scale

to large datasets for maximum a posteriori inference [81]. However, a shift-invariant ker-

nel is only applicable to objects already represented in some metric space. In fact, max-

kernel search with a shift-invariant kernel is equivalent to nearest neighbor search in the

input space itself, and can be solved directly using existing methods for nearest neighbor

search—an easier and better-studied problem. For shift-invariant kernels, the points can

be explicitly embedded in some low-dimensional metric space such that the inner product
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between these representations of any two points approximates their corresponding kernel

value [207]. This step takes O(Nd2) time for S r ⊂ R
d and can be followed by nearest neigh-

bor search on these representations to obtain results for max-kernel search in the setting of

a shift-invariant kernel.

This technique of obtaining the explicit embedding of objects in some low-dimensional

metric space while approximating the kernel function can also be applied to dot-product

kernels [208]. Dot-product kernels produce kernel values between any pair of points by

operating a monotonic non-decreasing function on their mutual dot-product (K(x, y) =

f (〈x, y〉)). Linear and polynomial kernels are simple examples of dot-product kernels.

However, this is only applicable to objects which already are represented in some vector

space which allows the computation of the dot-products.

Locality-sensitive hashing (LSH) [155] is widely used for image matching, but only

with explicitly representable kernel functions that admit a locality sensitive hashing func-

tion [209]10. Kulis and Grauman [210] apply LSH to solve max-kernel search approx-

imately for normalized kernels without any explicit representation. Normalized kernels

restrict the self-similarity value to a constant (K(x, x) = K(y, y) ∀ x, y ∈ S ). The prepro-

cessing time for this locality sensitive hashing is O(p3) and a single query requires O(p)

kernel evaluations. Here p controls the accuracy of the algorithm—larger p implies bet-

ter approximation; the suggested value for p is O(
√

N) with no rigorous approximation

guarantees.

A recent work [45] proposed the first technique for exact max-kernel search using a

tree-based branch-and-bound algorithm, but is restricted only to linear kernels and the al-

gorithm does not have any runtime guarantees. The authors suggest a method for extending

their algorithm to non-representable spaces with general Mercer kernels, but this requires

O(N2) preprocessing time.

There has also been recent interest in similarity search with Bregman divergences

10The Gaussian and cosine kernels admit locality sensitive hashing functions with some modifications.
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[211], which are non-metrics. Bregman divergences are not directly comparable to ker-

nels, though; they are harder to work with because they are not symmetric like kernels, and

are also not as generally applicable to any class of objects as kernel functions. In this pa-

per, we do not address this form of similarity search; Bregman divergences are not Mercer

kernels.

7.7.3 Unnormalized kernels

Some kernels used in machine learning are normalized (K(x, x) = K(y, y) ∀ x, y); examples

include the Gaussian and the cosine kernel. As we have discussed, there already exist

techniques to solve the max-kernel search problem with normalized kernels.

However, many common kernels like the linear kernel (K(x, y) = xT y) and the poly-

nomial kernels (K(x, y) = (α + xT y)d) for some offset α and degree d) are not normalized.

Many applications require unnormalized kernels:

• In the retrieval of recommendations, the normalized linear kernel will result in inac-

curate user-item preference scores.

• In biological sequence matching with domain-specific matching functions, K(x, x)

implicitly corresponds to the presence of genetically valuable letters (such as W, H,

or P) or not valuable letters (such as X)11 in the sequence x. This crucial information

is lost in kernel normalization.

Therefore, we consider unnormalized kernels. No existing techniques consider un-

normalized kernels, and thus no existing techniques can be directly applied to every in-

stance of max-kernel search with general Mercer kernels and any class of objects (Equation

95). Moreover, almost all existing techniques resort to approximate solutions. Not only do

our algorithms work for general Mercer kernels instead of just normalized or shift-invariant

kernels, but they also provide exact solutions; in addition, extensions to our algorithms for

11See the score matrix for letter pairs in protein sequences at http://www.ncbi.nlm.nih.gov/Class/
FieldGuide/BLOSUM62.txt.
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approximation are trivial, and for both the exact and approximate algorithms, we can give

asymptotic preprocessing and runtime bounds, as well as rigorous accuracy guarantees for

approximate max-kernel searches.

7.7.4 Analysis of the problem

Remember that a Mercer kernel implies that the kernel value for a pair of objects (x, y) cor-

responds to an inner product between the vector representation of the objects (ϕ(x), ϕ(y)) in

some Hilbert spaceH (see Equation 96). Hence, every Mercer kernel induces the following

metric inH :

dK (x, y) = ‖ϕ(x) − ϕ(y)‖H

=
√
K(x, x) +K(y, y) − 2K(x, y). (97)

7.7.4.1 Reduction to nearest neighbor search

In situations where max-kernel search can be reduced to nearest neighbor search in H ,

nearest neighbor search methods for general metrics [157] can be used for efficient max-

kernel search. This reduction is possible for normalized kernels. The nearest neighbor for

a query pq inH ,

argmin
pr∈S r

dK (pq, pr), (98)

is the max-kernel candidate (Equation 95) ifK(·, ·) is a normalized kernel. To see this, note

that for normalized kernels, K(pq, pq) = K(pr, pr) and thus,

dK (pq, pr) =

√
2c − 2K(pq, pr) (99)

where the normalization constant c = K(pq, pq) = K(pr, pr) and is a constant not depen-

dent on pq or pr. Therefore, dK (pq, pr) decreases as K(pq, pr) increases, and so dK (·, ·) is

minimized when K(·, ·) is maximized. However, the two problems can have very different
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answers with unnormalized kernels, because dK (pq, pr) is not guaranteed to decrease as

K(pq, pr) increases. As we discussed earlier in Section 7.7.3, unnormalized kernels are an

important class of kernels that we wish to consider. Thus, although a reduction to nearest

neighbor search is sometimes possible, it is only under the strict condition of a normalized

kernel.

7.7.4.2 Hardness of max-kernel search

Even if max-kernel search can be reduced to nearest neighbor search, the problem is still

hard (Ω(N) for a single query) without any assumption on the structure of the metric or

the dataset S r. However, better results are possible when assumptions are placed on the

expansion constant c of the dataset (see Section 5.2).

The expansion constant effectively bounds the number of points that could be sitting on

the surface of a hyper-sphere of any radius around any point. If c is high, nearest neighbor

search could be expensive. A value of c ∼ Ω(N) implies that the search cannot be better

than linear scan asymptotically. Under the assumption of a bounded expansion constant,

though, nearest-neighbor search methods with sublinear or logarithmic theoretical runtime

guarantees have been presented [131, 57, 133].

Now, we extend the concept of the expansion concept in order to characterize the diffi-

culty of max-kernel search.

For a given query pq and Mercer kernel K(·, ·), the kernel values are proportional to

the length of the projections in the direction of ϕ(pq) inH . While the hardness of nearest-

neighbor search depends on how concentrated the surface of spheres are (as characterized

by the expansion constant), the hardness of max-kernel search should depend on the distri-

bution of the projections in the direction of the query. This distribution can be characterized

using the distribution of points in terms of distances:

If two points are close in distance, then their projections in any direction are

close as well. However, if two points have close projections in a direction, it is

not necessary that the points themselves are close to each other.
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(a) Projection interval set. (b) Low value of γ. (c) High value of γ.

Figure 36: Concentration of projections.

It is to characterize this reverse relationship between points (closeness in projections to

closeness in distances) that we present a new notion of concentration in any direction:

Definition 13. Let K(x, y) = 〈ϕ(x), ϕ(y)〉H be a Mercer kernel, dK (x, y) be the induced

metric from K (Equation 97), and let BS (p,∆) denote the closed ball of radius ∆ around a

point p inH . Also, let

IS (v, [a, b]) = {r ∈ S : 〈v, ϕ(r)〉H ∈ [a, b]} (100)

be the set of objects in S projected onto a direction v inH lying in the interval [a, b] along

v. Then, the directional concentration constant of S with respect to the Mercer kernel

K(·, ·) is defined as the smallest γ ≥ 1 such that ∀u ∈ H such that ‖u‖H = 1, ∀p ∈ S and

∀∆ > 0, the set

IS (u, [〈u, ϕ(p)〉H − ∆, 〈u, ϕ(p)〉H + ∆])

can be covered by at most γ balls of radius ∆.

The directional concentration constant is not a measure of the number of points pro-

jected into a small interval, but rather a measure of the number of “patches” of the data in

a particular direction. For a set of points to be close in projections, there are at most γ sub-

sets of points that are close in distances as well. Consider the set of points B = IS (q, [a, b])

projected onto an interval in some direction (Figure 36a). A high value of γ implies that
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the number of points in B is high but the points are spread out and the number of balls

(with diameter |b − a|) required to cover all these points is high as well—with each point

possibly requiring an individual ball. Figure 36c provides one such example. A low value

of γ implies that either B has a small size or the size of B is high and B can be covered with

a small number of balls (of diameter |b − a|). Figure 36b is an example of a set with low

γ. The directional concentration constant bounds the number of balls of a particular radius

required to index points that project onto an interval of size twice the radius.

7.7.5 Indexing points inH

We already know that trees are useful for nearest neighbor search—they have been a pri-

mary motivating structure for everything in this thesis—so it should come as no surprise

that we may also use trees to perform max-kernel search. However, there are problems we

must first overcome.

The first problem, which is the lack of distance metric (remember, K(·, ·) does not

satisfy the triangle inequality), is addressed by the induced metric dK (·, ·) in the space H .

However, we now have another problem. The standard procedure for constructing kd-trees

depends on axis-aligned splits along the mean (or median) of a subset of the data in a

particular dimension. InH this does not make sense because we do not have access to the

mapping ϕ(·). Thus, kd-trees—and any tree that requires knowledge of ϕ(·)—cannot be

used to index points in H . This includes random projection trees [212] and principal-axis

trees [55]12.

Metric trees [213] are a type of space tree that does not require axis-aligned splits. In-

stead, during construction, metric trees calculate a mean µ for each node [125]. In general,

µ is not a point in the dataset the tree is built on. In our situation, we cannot calculate µ

because it lies in H and we do not have access to ϕ(·). However, we can use the kernel

trick to avoid calculating µ and evaluate kernels involving µ (assume µ is the mean of node

12The explicit embedding techniques mentioned earlier [207, 208] could be used to approximate the map-
ping ϕ(·) and allow kd-trees (and other types of trees) to be used. However, we do not consider that approach
in this work.
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N , and D p(N ) refers to the set of descendant points of N ):

K(q, µ) =

∑
r∈D p(N )K(q, r)
|D p(N )|

. (101)

This type of trick can also be applied to ball trees and some other similar tree structures.

However, it is clear that a single kernel evaluation against the mean is now numerous ker-

nel evaluations, making the use of metric or ball trees computationally prohibitive in our

setting, for both tree construction inH and max-kernel search.

Therefore, we consider the cover tree [57], a recently formulated tree that bears some

similarity to the ball tree. The cover tree has been detailed at length throughout this thesis;

see Sections 3.6.5 or 5.2 for details.

The cover tree has the interesting property that explicit object representations are un-

necessary for tree construction: the tree can be built entirely with only knowledge of the

metric function dK (·, ·) evaluated on points in the dataset. Each node Ni in the cover tree

represents a ball in H with a known radius λi and its center µi is a point in the dataset.

Thus, we can evaluate the minimum distance between two nodes Nq and Nr quickly:

dmin(Nq,Nr) = dK (µq, µr) − λq − λr. (102)

Our knowledge ofK(·, ·) and its induced metric dK (·, ·) inH , then, is entirely sufficient

to construct a cover tree with no computational penalty. In addition to this clear advantage,

the time complexities of building and querying a cover tree have been analyzed extensively

(see Section 5.2 and [57, 133, 135]), whereas kd-trees, metric trees, and other similar struc-

tures have been analyzed only under very limited settings [32].

Although we have presented the cover tree as the best tree option, it is not the only

option for a choice of tree. What we require of a tree structure is that it can be built only

with kernel evaluations between points in the dataset (or distance evaluations)13. Therefore,

13Earlier, we mentioned kernels that work between abstract objects. For our purposes, it does not make a
difference if the kernel works on abstract objects or points, so for simplicity we use the term ‘points’ instead
of ‘objects’ although the two are essentially interchangeable.
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Figure 37: Point-to-node max-kernel upper bound.

we use the notation introduced in Chapter 3 and summarized in Table 1.

An important note is that for cover trees, the center of node Ni, denoted µi, is simply

the single point held in the cover tree node, pi (that is, for a node Ni, Pi = {pi}).

7.7.6 Bounding the kernel value

To construct a tree-based algorithm that prunes certain subtrees, we must be able to deter-

mine the maximum kernel value possible between a point and any descendant point of a

node.

Theorem 11. Given a space tree node Ni with center ϕ(pi) = µi and furthest descendant

distance λi, the maximum kernel function value between some point pq and any point in D p
i

is bounded by the function

Kmax(pq,Ni) = K(pq, pi) + λi

√
K(pq, pq). (103)

Proof. Suppose that p∗ is the best possible match in D p
i for pq, and let ~u be a unit vector in

the direction of the line joining ϕ(pi) to ϕ(p∗) inH . Then,

ϕ(p∗) = ϕ(pi) + ∆~u (104)

where ∆ = dK (µi, p∗) is the distance between ϕ(pi) and the best possible match ϕ(p∗) (see

Figure 37). Then, we have the following:
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K(pq, p∗) = 〈ϕ(pq), ϕ(p∗)〉H

= 〈ϕ(pq), ϕ(pi) + ∆~u〉H

= 〈ϕ(pq), ϕ(pi)〉H + 〈ϕ(pq),∆~u〉H

≤ 〈ϕ(pq), ϕ(pi)〉H + ∆
∥∥∥ϕ(pq)

∥∥∥
H
, (105)

where the inequality step follows from the Cauchy-Schwartz inequality (〈x, y〉 ≤ ‖x‖ · ‖y‖)

and the fact that
∥∥∥~u∥∥∥

H
= 1. From the definition of the kernel function, Equation 105 gives

K(pq, p∗) ≤ K(pq, pi) + ∆

√
K(pq, pq). (106)

We can bound ∆ by noting that the distance dK (·, ·) between the center of Ni and any

point in D p
i is less than or equal to λi. We call our bound Kmax(pq,Ni), and the statement

of the theorem follows. �

In addition, to construct a dual-tree algorithm, it is useful to extend the maximum point-

to-node kernel value of Theorem 11 to the node-to-node setting.

Theorem 12. Given two space tree nodes Nq and Nr with centers µq = ϕ(pq) and µr =

ϕ(pr), respectively, the maximum kernel function value between any point in D p
q and D p

r is

bounded by the function

Kmax(Nq,Nr) = K(pq, pr) + λq

√
K(pr, pr) + λr

√
K(pq, pq) + λqλr. (107)

Proof. Suppose that p∗q ∈ D p
q and p∗r ∈ D p

r are the best possible matches between Nq and

Nr (see Figure 38 for an illustration); that is,

K(p∗q, p∗r) = max
pq∈D

p
q ,pr∈D

p
r

K(pq, pr). (108)

Now, let ~uq be a vector in the direction of the line joining ϕ(pq) to ϕ(p∗q) inH , and let ~ur

be a vector in the direction of the line joining ϕ(pr) to ϕ(p∗r) inH . Then let ∆q = dK (pq, p∗q)

166



ϕ(µr)

λr

ϕ(p∗r)

ϕ(µq)

λq

ϕ(p∗q)

∆rur

∆quq

Figure 38: Node-to-node max-kernel upper bound.

and ∆r = dK (pr, p∗r). We can use similar reasoning as in the proof for Theorem 11 to show

the following:

K(p∗q, p∗r) = 〈ϕ(p∗q), ϕ(p∗r)〉H

= 〈ϕ(pq) + ∆q ~uq, ϕ(pr) + ∆r ~ur〉H

= 〈ϕ(pq) + ∆q ~uq, ϕ(pr)〉H + 〈ϕ(pq) + ∆q ~uq,∆r ~ur〉H

= 〈ϕ(pq), ϕ(pr)〉H + 〈∆q ~uq, ϕ(pr)〉H + 〈ϕ(pq),∆r ~ur〉H + 〈∆q ~uq,∆r ~ur〉H

≤ 〈ϕ(pq), ϕ(pr)〉H + ∆q ‖ϕ(pr)‖H + ∆r

∥∥∥ϕ(pq)
∥∥∥
H

+ ∆q∆r, (109)

where again the inequality steps follow from the Cauchy-Schwarz inequality. We can then

substitute in the kernel functions to obtain

K(p∗q, p∗r) ≤ K(pq, pr) + ∆q

√
K(pr, pr) + ∆r

√
K(pq, pq) + ∆q∆r. (110)

Then, as with the point-to-node case, we can bound ∆q by λq and ∆r can be bounded by

λr. Call the bound Kmax(Nq,Nr), and the statement of the theorem follows. �

For normalized kernels (K(x, x) = 1 ∀x)14, all the points are on the surface of a hyper-

sphere in H . In this case, the above bounds in Theorems 11 and 12 are both correct but

possibly loose. Therefore, we can present tighter bounds specifically for this condition.

14Earlier we defined normalized kernels as K(x, x) = c for some constant c, but here for simplicity we
consider only c = 1. Adapting the proof and bounds for c , 1 is straightforward.
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Theorem 13. Consider a kernel K such that K(x, x) = 1 ∀ x, and space tree node Ni with

center µi = ϕ(pi) and furthest descendant distance λi. Define the following quantities:

αi =

(
1 −

1
2
λ2

i

)
, (111)

βi = λi

√
1 −

1
4
λ2

i . (112)

Then, the maximum kernel function value between some point pq and any point in D p
i

is bounded from above by the function

Kn
max(pq,Ni) =


K(pq, pi)αi + βi

√
(1 − K(pq, pi)2) if K(pq, pi) ≤ αi

1 otherwise
(113)

Proof. Since all the points pq and D p
i are sitting on the surface of a hypersphere in H ,

K(pq, p) denotes the cosine of the angle made by ϕ(pq) and ϕ(p) at the origin. If we

first consider the case where pq lies within the ball bounding space tree node Ni (that

is, if dK (pq, pi) < λi), it is clear that the maximum possible kernel evaluation should be 1,

because there could exist a point in D p
i whose angle to pq is 0. We can restate our condition

as a condition on K(pq, pi) instead of dK (pq, pi):

dK (pq, pi) < λi,√
K(pq, pq) +K(pi, pi) − 2K(pq, pi) < λi,

K(pq, pi) > 1 −
1
2
λ2

i ,

K(pq, pi) > αi.

Now, for the other case, let cos θpq pi = K(pq, pi) and p∗ = argmaxp∈D p
i
K(pq, p). Let

θpi p∗ be the angle between ϕ(pi) and ϕ(p∗) at the origin, let θpq p∗ be the angle between ϕ(pq)

and ϕ(p∗) at the origin, and let θpq pi be the angle between ϕ(pq) and ϕ(pi) at the origin.

Then,
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K(pq, p∗) = cos θpq p∗

≤ cos({θpq pi − θpi p∗}+).

We know that dK (pi, p∗) ≤ λi, and also that dK (pi, p∗) =
√

2 − 2 cos θpi p∗ . Therefore,

cos θpi p∗ ≥ 1 − 1
2λ

2
i . This means

θpi p∗ ≤ | cos−1(1 −
1
2
λ2

i )|. (114)

Combining this with Equation 114, we get:

K(pq, p∗) ≤ cos
(
[θpq pi − θpi p∗]+

)
(115)

Now, if we substitute | cos−1(1− 1
2λ

2
i )|, the largest possible value for θpi p∗ , we obtain the

following:

Kmax(pq,Ni) ≤ cos
([
θqpi −

∣∣∣∣∣cos−1(1 −
1
2
λ2

i )
∣∣∣∣∣]

+

)
which can be reduced to the statement of the theorem by the use of trigonometric identities.

Combine with the case where K(pq, pi) > αi, and call that bound Kn
max(pq,Ni). Then, the

theorem holds. �

We can show a similar tighter bound for the dual-tree case.

Theorem 14. Consider a kernel K such that K(x, x) = 1 ∀ x, and two space tree nodes

Nq and Nr with centers ϕ(pq) = µq and ϕ(pr) = µr, respectively, and furthest descendant

distances λq and λr, respectively. Define the following four quantities:

169



αq =

(
1 −

1
2
λ2

q

)
, (116)

αr =

(
1 −

1
2
λ2

r

)
, (117)

βq = λq

√
1 −

1
4
λ2

q, (118)

βr = λr

√
1 −

1
4
λ2

r . (119)

(120)

Then, the maximum kernel function value between any point in D p
q and D p

r is bounded

from above by the function

Kn
max(Nq,Nr) =


K(pq, pr)(αqαr − βqβr) +


√

1 − K(pq, pr)2

 (γqδr + δrγq

)
if K(pq, pr) ≤ 1 − 1

2

(
λq + λr

)2

1 otherwise.

(121)

Proof. All of the points in D p
q and D p

r are sitting on the surface of a hypersphere inH . This

means thatK(pq, pr) denotes the cosine of the angle made by ϕ(pq) and ϕ(pr) at the origin.

Similar to the previous proof, we first consider the case where the balls in H centered at

ϕ(pq) and ϕ(pr) with radii λq and λr, respectively, overlap. This situation happens when

dK (pq, pr) < λq + λr. In this case, it is clear that the maximum possible kernel evaluation

should be 1, because there could exist a point in D p
q whose angle to a point in D p

r is 0. We

can restate the condition as a condition on K(pq, pr):

K(pq, pr) > 1 −
1
2

(
λq + λr

)2
. (122)

Now, for the other case, assume that p∗q and p∗r are the best matches between points in

D p
q and D p

r . Let cos θpq pr = K(pq, pr); let θpq p∗q be the angle between ϕ(pq) and ϕ(p∗q) at

the origin; similarly, let θpr p∗r be the angle between ϕ(pr) and ϕ(p∗r) at the origin. Lastly, let

θp∗q p∗r be the angle between ϕ(p∗q) and ϕ(p∗r) at the origin. Then,
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K(p∗q, p∗r) = cos θp∗q p∗r

≤ cos
([
θpq pr − θpq p∗q − θpr p∗r

]
+

)
. (123)

Using reasoning similar to the last proof, we obtain the following bounds:

θpq p∗q ≤

∣∣∣∣∣∣cos−1
(
1 −

1
2
λ2

q

)∣∣∣∣∣∣ (124)

θpr p∗r ≤

∣∣∣∣∣∣cos−1
(
1 −

1
2
λ2

r

)∣∣∣∣∣∣ . (125)

We can substitute these two values into Equation 123 to obtain

K(p∗q, p∗r) ≤ cos
([
θpq pr −

∣∣∣∣∣∣cos−1
(
1 −

1
2
λ2

q

)∣∣∣∣∣∣ −
∣∣∣∣∣∣cos−1

(
1 −

1
2
λ2

r

)∣∣∣∣∣∣
]
+

)
. (126)

This can be reduced to the statement of the theorem by the use of trigonometric identi-

ties. Combine with the conditional from earlier and call the combined boundKn
max(Nq,Nr).

Then, the theorem holds. �

In the upcoming algorithms, we will not use the tighter bounds for normalized kernels

given in Theorems 13 and 14; however, it is easy to re-derive the algorithm with the tighter

bounds, if a normalized kernel is being used. Simply replace instances of Kmax(·, ·) with

Kn
max(·, ·).

7.7.7 Single-tree max-kernel search

First, we will present a single-tree algorithm called single-tree FastMKS that works on a

single query pq and a reference set S r. As with all other algorithms in the thesis, we will

simply present a BaseCase() and Score() function, and this is all we need to describe the

algorithm (details of this abstraction are the topic of Chapter 3). This allows us to formulate

the single-tree algorithm simply and intuitively.
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Algorithm 29 BaseCase(pq, pr) for FastMKS.
1: Input: query point pq, reference point pr

2: Output: none

3: if K(pq, pr) > k∗ then
4: k∗ ← K(pq, pr)
5: p∗ ← pr

Algorithm 30 Score(pq, Nr) for FastMKS.
1: Input: query point pq, reference space tree node Nr, max-kernel candidate p∗ for pq

and corresponding max-kernel value k∗

2: Output: a score for the node, or∞ if the node can be pruned

3: if Kmax(pq,Nr) < k∗ then
4: return ∞
5: else
6: return Kmax(pq,Nr)

In our problem setting, we can prune a node Nr if no points in D p
r can possibly contain

a better max-kernel candidate than what has already been found as a max-kernel candidate

for pq. Thus, any descendants of Nr do not need to be visited, as they cannot improve the

solution.

The BaseCase() function can be seen in Algorithm 29. It assumes p∗ is a global vari-

able representing the current max-kernel candidate and k∗ is a global variable representing

the current best max-kernel value. The method itself is very simple: calculate K(pq, pr),

and if that kernel evaluation is larger than the current best max-kernel value candidate k∗,

then store that kernel and pr as the new best max-kernel candidate andK(pq, pr) as the new

best max-kernel value candidate.

The Score() function for single-tree FastMKS is given in Algorithm 30. The intuition

is clear: if the maximum possible kernel value between pq and any point in D p
i is less than

the current max-kernel candidate value, then Ni cannot possibly hold a better candidate and

it can be pruned (return∞). Otherwise, the kernel value itself is returned. This return value

is chosen because pruning single-tree traversals may use the value returned by Score() to

determine the order in which to visit subsequent nodes [28].

172



The actual single-tree FastMKS algorithm is constructed by selecting a type of space

tree and selecting a pruning single-tree traversal with the BaseCase() function as in Algo-

rithm 29 and the Score() function as in Algorithm 30. The algorithm is run by building a

space tree Tr on the set of reference points S r, then using the pruning single-tree traversal

with point pq and tree Tq. At the beginning of the traversal, p∗ is initialized to an invalid

value and k∗ is initialized to −∞.

Proving the correctness of the single-tree FastMKS algorithm is trivial.

Theorem 15. At the termination of the single-tree FastMKS algorithm for a given space

tree and pruning single-tree traversal,

p∗ = argmax
pr∈S r

K(pq, pr). (127)

Proof. First, assume that Score() does not prune any nodes during the traversal of the tree

Tr. Then, by the definition of pruning single-tree traversal, BaseCase() is called with pq

and every pr ∈ S r. This is equivalent to linear scan and will give the correct result.

Then, by Theorem 11 (or Theorem 13 if K(·, ·) is normalized and Kn
max(·, ·) is being

used), a node is only pruned if it does not contain a point pr where K(pq, pr) > k∗. Thus,

BaseCase() is only not called in situations where p∗ and k∗ would not be modified. This,

combined with the previous observation, means that p∗ and k∗ are equivalent to the linear

scan results at the end of the traversal—and we know the linear scan results are correct.

Thus, the theorem holds. �

In the original publications, an O(log N) per query runtime bound was claimed. How-

ever, this proof depends on the original nearest neighbor runtime proof for cover trees,

which I now believe to be either unclear or incorrect (see Section 5.3). Therefore, I have

omitted this runtime bound.
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7.7.8 Dual-tree fast max-kernel search

Now, we present a dual-tree algorithm for max-kernel search, called dual-tree FastMKS.

This algorithm, as with the single-tree algorithm in Section 7.7.7, is presented as only a

BaseCase() and Score() function; in this case, BaseCase() remains the same (Algo-

rithm 29).

Because the dual-tree algorithm solves max-kernel search for an entire set of query

points S q, we must store a kernel candidate p∗ and value k∗ for each query point pq; call

these p∗(pq) and k∗(pq), respectively. At the initialization of the algorithm k∗(pq) = ∞ for

each pq ∈ S q and p∗(pq) is set to some invalid point.

The pruning rule is slightly more complex. In the dual-tree setting, we can only prune

a node combination (Nq,Nr) if and only if D p
r contains no points that can improve p∗(pq)

and k∗(pq) for any pq ∈ D p
q . There are multiple ways to express this concept, and we

will use two of them to construct a bound function to determine when we can prune. This

section is heavily based on the reasoning used to derive the nearest-neighbor search bound;

see Section 7.1 and [28].

First, consider the smallest max-kernel value k∗(pq) for all points pq ∈ D p
q ; call this

B1(Nq):

B1(Nq) = min
pq∈D

p
q

k∗(pq)

= min
{

min
pq∈Pq

k∗(pq), min
Nc∈Cq

B1(Nq)
}

where the simplification is a result of expressing B1(Nq) recursively. Now, note also that

for any point pq ∈ D p
q with max-kernel candidate value k∗(pq), we can place a lower bound

on the true max-kernel value k̂(p′q) for any p′q ∈ D p
r by bounding K(p′q, p∗(pq)). This gives

k̂(p′q) ≥ k∗(pq) − (ρq + λq)
√
K

(
p∗(pq), p∗(pq)

)
where ρq is the maximum distance from any p ∈Pq to the centroid of Nq (for cover trees,
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Algorithm 31 Score(Nq, Nr) for FastMKS.
1: Input: query node Nq, reference node Nr

2: Output: a score for the node combination (Nq,Nr) or ∞ if the combination can be
pruned

3: if Kmax(Nq,Nr) < B(Nq) then
4: return ∞
5: else
6: return Kmax(Nq,Nr)

this value is always 0). This inequality follows using similar reasoning as Theorem 11,

except for that we are finding a lower bound instead of an upper bound.

Considering all the points pq ∈ D p
q , we find that the minimum possible max-kernel

value for any point pq can be expressed as

max
pq∈D

p
q

k∗(pq) − (ρq + λq)
√
K

(
p∗(pq), p∗(pq)

)
.

However, this is difficult to calculate in practice; thus, we introduce a second bounding

function that can be quickly calculated by only considering points in Pq and not D p
q :

B2(Nq) = max
pq∈Pq

k∗(pq) − (ρq + λq)
√
K

(
p∗(pq), p∗(pq)

)
.

Now, we can take the better of B1(Nq) and B2(Nq) as our pruning bound:

B(Nq) = max
{
B1(Nq), B2(Nq)

}
. (128)

This means that we can prune a node combination (Nq,Nr) if

Kmax(Nq,Nr) < B(Nq),

and therefore we introduce a Score() function in Algorithm 31 that uses B(Nq) to deter-

mine if a node combination should be pruned.

As with the single-tree algorithm, a correctness proof is straightforward.
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Theorem 16. At the termination of the dual-tree FastMKS algorithm for a given space tree

and pruning dual-tree traversal,

p∗(pq) = argmax
pr∈S r

K(pq, pr) ∀ pq ∈ S q. (129)

Proof. First, assume that Score() does not prune any node combinations during the dual

traversal of the trees Tq and Tr. Then, by the definition of pruning dual-tree traversal,

BaseCase() will be called with each pq ∈ S q and each pr ∈ S r; this is equivalent to linear

scan and will give the correct results.

We have already stated the validity of B(Nq) (Equation 128). Because of that, and also

by Theorem 12 (or Theorem 14 ifK(·, ·) is normalized andKn
max(·, ·) is being used), a node

combination is only pruned is it does not contain a point pr that would modify p∗(pq) or

k∗(pq) for any pq ∈ D p
q . This, combined with the previous observation, means that p∗ and

k∗ are equivalent to the linear scan results for each pq ∈ S r, and thus, the theorem holds. �

7.7.9 Dual-tree algorithm runtime analysis

Now, we bound the runtime of dual-tree FastMKS using the same adaptive algorithm analy-

sis techniques for the cover tree as in other sections. The original formulation of this bound

depended on a virtually ununderstandable quantity called the inverse constant of bichro-

maticity [79], which is related to the similarly ununderstandable constant of bichromaticity

from a few years prior [133]. Here, we re-derive the FastMKS runtime bound using Theo-

rem 1, from Section 5.2 (or [135]), which provides a much easier to understand bound that

depends on the imbalance of the tree and a few other quantities.

As with all other adaptive analysis runtime bounds in this thesis, we restrict our con-

sideration of the dual-tree algorithm to the cover tree and the standard cover tree dual-tree

traversal (Algorithm 8).

We still must introduce a handful of additional quantities, though. First, we define the

maximum norms and minimum norms of the query set S q and reference set S r:
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ηq = max
pq∈S q
‖ϕ(pq)‖H , (130)

ηr = max
pr∈S r
‖ϕ(pr)‖H , (131)

τq = min
pq∈S q
‖ϕ(pq)‖H , (132)

τr = min
pr∈S r
‖ϕ(pr)‖H . (133)

Next, we use these quantities to place bounds on the maximum distances dH (·, ·) be-

tween points in the dataset, and place an upper bound on the maximum scale of cover tree

nodes.

Lemma 5. For the query set S q, the maximum distance between any points in S q,

dmax
H

(S q) ≤ 2ηq. (134)

Proof. We can alternately write dmax
H

(S q) as

dmax
H

(S q) = max
pi∈S q,p j∈S q

dH (pi, p j)

(dmax
H

(S q))2 = max
pi∈S q,p j∈S q

‖ϕ(pi)‖2H + ‖ϕ(p j)‖2H − 2〈ϕ(pi), ϕ(p j)〉H .

Note that 〈ϕ(pi), ϕ(p j)〉H is minimized when ϕ(pi) and ϕ(p j) point opposite ways inH :

ϕ(pi)/‖ϕ(pi)‖H = −(ϕ(p j)/‖ϕ(p j)‖H ). Thus,

(dmax
H

(S q))2 ≤ max
pi∈S q,p j∈S q

‖ϕ(pi)‖2H + ‖ϕ(p j)‖2H

− 2 max{〈ϕ(pi),−ϕ(pi)〉H , 〈ϕ(p j),−ϕ(p j)〉H } (135)

≤ max
pi∈S q,p j∈S q

‖ϕ(pi)‖2H + ‖ϕ(p j)‖2H + 2 max{‖ϕ(pi)‖2H , ‖ϕ(p j)‖2H } (136)

≤ 4η2
q. (137)

This trivially reduces to the result. �
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Corollary 3. The maximum distance between any points in S r is

dmax
H

(S r) ≤ 2ηr. (138)

Lemma 6. The top scale sT
r (maximum/largest scale) in the cover tree Tr built on S r is

bounded as

sT
r ≤ log2(ηr). (139)

Proof. The root of the tree Tr is the node with the largest scale, and it is the only node of

that scale (call this scale sT
r ). The furthest descendant distance of the root node is bounded

by 2sT
r +1; however, this is not necessarily the distance between the two furthest points in

the dataset (consider a tree where the root node is near the centroid of the data). This, with

Corollary 3, yields 2sT
r +1 ≤ 2ηr which is trivially reduced to the result. �

Finally, we are ready to show the main result of the section.

Theorem 17. Given a Mercer kernel K(·, ·), a reference set S r of size N with expansion

constant cr and directional concentration constant γr, a query set S q of size O(N), and with

α defined as

α = 1 +
2ηr

τq
, (140)

the dual-tree FastMKS algorithm using cover trees and the standard dual-tree cover tree

traversal on Tq (a cover tree built on S q) and Tr (a cover tree built on S r) with it(·) defined

as in Definition 10 and θ defined as in Lemma 4 requires time

O
(
γrc

(7 log2 α)
r (N + it(Tq) + θ)

)
(141)

Proof. We know from Theorem 1 that the running time of any dual-tree algorithm which

uses the cover tree and the standard cover tree dual-tree traversal is O(c4
r |R
∗|χψ(N + it(Tq)+

θ)). Our only job, then, is to fill in each of these quantities and simplify.
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Smart caching strategies allow BaseCase() and Score() to be written such that they

each take O(1) time, meaning that χ = ψ = O(1) and we have no further need to consider

those terms. For Score(), the primary calculation is that of B(Nq). This can be made

O(1) by caching the values of both B1(Nq) and B2(Nq) and only updating when necessary:

changes to B2(Nq) for a node are propagated upwards, and changes to B1(Nq) only require

an O(1) check anyway because each cover tree node has only one point.

The last thing, then, is to bound |R∗|, the size of the largest reference set; this turns out

to be quite in-depth. Consider some reference set R encountered with maximum reference

scale smax
r and query node Nq. Every node Nr ∈ R satisfies the property enforced in line

10 that

Kmax(Nq,Nr) ≥ B(Nq). (142)

Remembering that
√
K(p, p) = ‖ϕ(p)‖H , we can relax B(Nq) (Equation 128) for the

cover tree (where ρi = 0 for all Ni) to show

B(Nq) ≥ max
p∈Pq

(
k∗(p) + λq ‖ϕ(p∗(p))‖H

)
= k∗(pq) − λq

∥∥∥ϕ(p∗(pq))
∥∥∥
H

(143)

which we can combine with Equation 142 to obtain

Kmax(Nq,Nr) ≥ k∗(pq) + λq‖ϕ(pq)‖H

K(pq, pr) ≥ k∗(pq) − λq
(
‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H

)
− λr‖ϕ(pq)‖H − λqλr (144)

and, remembering that the scale of Nq is sq and the scale of Nr is bounded above by smax
r ,

we simplify further to

K(pq, pr) ≥ k∗(pq) − 2sq+1(‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H
)
− 2smax

r +1‖ϕ(pq)‖H − 2sq+smax
r +2. (145)
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We can express this conditional as membership in a set IS r by first defining the true

maximum kernel value for pq as

k̂(pq) = max
pr∈S r
K(pq, pr). (146)

The condition (Equation 145) can be stated as membership in a set:

ϕ(pr) ∈ IS r

(
ϕ(pq),

[
bl, k̂(pq)

])
(147)

where

bl = k∗(pq) − 2sq+1(‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H
)
− 2smax

r +1‖ϕ(pq)‖H − 2sq+smax
r +2. (148)

Now, we produce a lower bound for bl. Note that k̂(pq) ≤ k∗(pq) + 2smax
r +1‖ϕ(pq)‖H , and

see

bl ≥ k̂(pq) − 2sq+1(‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H
)
− 2smax

r +2‖ϕ(pq)‖H − 2sq+smax
r +2 (149)

≥ k̂(pq) − 2smax
r +1(‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H

)
− 2smax

r +2‖ϕ(pq)‖H − 22smax
r +2 (150)

which follows because sq < smax
r during a reference recursion (see line 4). Using the

maximum and minimum norms defined earlier, we can bound bl further:

bl ≥ k̂(pq) − 2smax
r +1(ηr + ηr) − 2smax

r +2‖ϕ(pq)‖H − 22smax
r +2 (151)

= k̂(pq) − 2smax
r +2(‖ϕ(pq)‖H + ηr + 2smax

r
)

(152)

≥ K(pq, pr) − 2smax
r +2(‖ϕ(pq)‖H + ηr + 2smax

r
)

(153)

≥ K(pq, pr) − 2smax
r +2(‖ϕ(pq)‖H + ηr + 2sT

r
)

(154)

≥ K(pq, pr) − 2smax
r +2(‖ϕ(pq)‖H + 2ηr

)
(155)

where the last two bounding steps result from Lemma 6.
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Now, note that

bl

‖ϕ(pq)‖H
≥ 〈u, ϕ(pr)〉H − 2smax

r +2

1 +
ηr + 2sT

r

τq

 (156)

then set α = 1 + (2ηr/τq) (α is not dependent on the scale smax
r ; this is important) and use

the conditional from Equation 147 to get

ϕ(pr) ∈ IS r (ϕ(pq), [bl, k̂(pq)]) (157)

⊆ IS r (ϕ(pq), [bl,K(pq, pr) + 2smax
r +1‖ϕ(pq)‖H ]) (158)

⊆ IS r (u, [〈u, ϕ(pr)〉H − 2smax
r +2α, 〈u, ϕ(pr)〉H + 2smax

r +1]) (159)

⊆ IS r (u, [〈u, ϕ(pr)〉H − 2smax
r +2α, 〈u, ϕ(pr)〉H + 2smax

r +2α]). (160)

This is true for each point pi of each node Ni in Ri. Thus, if we can place a bound on

the number of points in the set given in Equation 160, then we are placing a bound on |Ri|

for any scale si. To this end, we can use the definition of directional concentration constant,

to show that there exist γr points p j ∈ S r such that

IS r (u, [〈u, ϕ(pr)〉H − 2sr+2α, 〈u, ϕ〉(pr)H + 2sr+2α]) ⊆
γr⋃
j=1

BS r (p j, 2sr+2α). (161)

By Lemma 2, each point pr of each node Nr ∈ R must be separated by at least 2smax
r ,

because each point in R must have a parent with scale at least smax
r +1. Thus, we must bound

the number of balls of radius 2smax
r −1 that can be packed into the set defined by Equation 161.

For each p j, we have

|BS r (p j, 2smax
r +2α)| ≤ c2

r |BS r (p j, 2smax
r −1α)|

≤ c3 log2 α
r |BS r (p j, 2smax

r −1)|.

This allows us to conclude that |R∗| ≤ γrc
(3 log2 α)
r and therefore the total running time of

the algorithm is O(γrc
(7 log2 α)
r νN), and the theorem holds. �
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Note that if dual-tree FastMKS is being run with the same set as the query set and

reference set (i.e. monochromatic search), θ = 0, yielding a tighter bound.

7.7.10 Extensions for approximate max-kernel search

For further scalability, we can develop an extension of FastMKS that does not return the

exact max-kernel value but instead an approximation thereof. Even though we are focusing

on exact max-kernel search, we wish to demonstrate that the tree based method can be

very easily extended to perform the approximate max-kernel search. For any query pq, we

are seeking p̂(pq) = arg maxpr∈S r K(pq, pr). Let K(pq, p̂(pq)) = k̂(pq) (as before). Then

approximation can be achieved in the following ways:

1. Absolute value approximation: for all queries pq ∈ S q, find pr ∈ S r such that

K(pq, pr) ≥ k̂(pq) − ε for some ε > 0.

2. Relative value approximation: for all queries pq ∈ S q, find pr ∈ S r such that

K(pq, pr) ≥ (1 − ε)k̂(pq) for some ε > 015.

3. Rank approximation: return pr ∈ S r such that
∣∣∣{p′r ∈ S r : K(pq, p′r) > K(pq, pr)}

∣∣∣ ≤ τ.

The following three subsubsections present how both single-tree FastMKS and dual-tree

FastMKS can be easily extended for approximate max-kernel search.

7.7.10.1 Absolute value approximation

From Theorem 11 and Algorithm 30, at any point in the single-tree algorithm with query

point pq and node Ni and best candidate kernel value k∗(pq), we know that we must descend

Ni if

Kmax(pq,Ni) ≥ k∗(pq) (162)

but with absolute value approximation for some ε, we can loosen the condition to

15Here we are assuming that k̂(pq) > 0. In the case where k̂(pq) < 0, we seek a pr ∈ S r such that
K(pq, pr) > k̂(pq) − ε|k̂(pq)|
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Algorithm 32 Score(pq, Nr) for absolute value approximation of FastMKS.
1: Input: query point pq, reference space tree node Nr, max-kernel candidate p∗ for pq

and corresponding max-kernel value k∗, absolute value approximation ε
2: Output: a score for the node, or∞ if the node can be pruned

3: if ε > λr
√
K(pq, pq) then

4: return ∞
5: else if Kmax(pq,Nr) < k∗ then
6: return ∞
7: else
8: return Kmax(pq,Nr)

Kmax(pq,Ni) ≥ k∗(pq) + ε (163)

which can be simplified:

K(pq, pi) + λi

√
K(pq, pq) ≥ k∗(pq) + ε

K(pq, pi) + λi

√
K(pq, pq) ≥ K(pq, pi) + ε

λi

√
K(pq, pq) ≥ ε. (164)

This yields that we can prune if ε > λi
√
K(pq, pq). While this is looser than possible,

it has the advantage that K(pq, pi) does not need to be calculated to prune Ni. This yields

a modified Score() algorithm, given in Algorithm 32.

In the dual-tree case, we must descend (Nq,Nr) if

Kmax(Nq,Nr) ≥ B(Nq). (165)

Using absolute value approximation this condition loosens to

Kmax(Nq,Nr) ≥ B(Nq) + ε (166)

but we cannot easily simplify this to eliminate the evaluation of K(pq, pr) due to the com-

plexity of B(Nq). A modified Score() function for dual-tree absolute value approximate

FastMKS is given in Algorithm 33.
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Algorithm 33 Score(Nq, Nr) for absolute value approximation of FastMKS.
1: Input: query node Nq, reference node Nr, absolute value approximation ε
2: Output: a score for the node combination (Nq,Nr) or ∞ if the combination can be

pruned

3: if Kmax(Nq,Nr) < B(Nq) + ε then
4: return ∞
5: else
6: return Kmax(Nq,Nr)

7.7.10.2 Relative value approximation

Relative value approximation is a more useful form of approximation, because the user

does not need knowledge of k̂(pq) to set ε reasonably. However, care has to be taken for

relative value approximation because there is no guarantee that k̂(pq) > 0.

We can take Equation 162 and modify it for ε-relative-value-approximate pruning. In

this case, we must descend Ni if

Kmax(pq,Ni) ≥ (1 + ε)k∗(pq) (167)

and similar algebraic manipulations yield

K(pq, pi) + λi

√
K(pq, pq) ≥ (1 + ε)k∗(pq)

K(pq, pi) + λi

√
K(pq, pq) ≥ K(pq, pi) + εk∗(pq)

λi

√
K(pq, pq) ≥ εk∗(pq)

meaning we can prune a node Ni when k∗(pq) > (λi/ε)
√
K(pq, pq). This is looser than

possible (like the absolute-value approximation bound) but has the advantage thatK(pq, pi)

does not need to be calculated to prune Ni. This yields a modified Score() algorithm,

given in Algorithm 34.

Similar to absolute value approximation, we can loosen the condition for recursion

given in Equation 165 to obtain the rule
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Algorithm 34 Score(pq, Nr) for relative value approximation of FastMKS.
1: Input: query point pq, reference space tree node Nr, max-kernel candidate p∗ for pq

and corresponding max-kernel value k∗, relative value approximation ε
2: Output: a score for the node, or∞ if the node can be pruned

3: if k∗ > (λr/ε)
√
K(pq, pq) then

4: return ∞
5: else if Kmax(pq,Nr) < k∗ then
6: return ∞
7: else
8: return Kmax(pq,Nr)

Algorithm 35 Score(Nq, Nr) for relative value approximation of FastMKS.
1: Input: query node Nq, reference node Nr, relative value approximation ε
2: Output: a score for the node combination (Nq,Nr) or ∞ if the combination can be

pruned

3: if Kmax(Nq,Nr) < (1 + ε)B(Nq) then
4: return ∞
5: else
6: return Kmax(Nq,Nr)

Kmax(Nq,Nr) ≥ (1 + ε)B(Nq). (168)

This rule does not easily simplify, as in the case of the single-tree relative value approx-

imation rule; this is due to the complexity of B(Nq). A modified Score() function is given

in Algorithm 35.

7.7.10.3 Rank Approximation

Rank approximation is a relatively new approximation paradigm introduced by Ram et al.

[67]. The idea is to return a max-kernel candidate p′r for query pq, reference set S r, and

parameter τ such that p′r is in the top τ max-kernel results with high probability. That is,

for pq, S r, and τ, find an object pr ∈ S r such that

∣∣∣∣{p′r ∈ S r : K(pq, p′r) > K(q, pr)
}∣∣∣∣ < τ. (169)

This is often a better technique than absolute-value-approximate search, which requires
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Algorithm 36 Score(pq, Nr) for rank approximation of FastMKS.
1: Input: query point pq, reference space tree node Nr, max-kernel candidate p∗ for

pq and corresponding max-kernel value k∗, required number of samples k for τ-rank
approximation in a reference set of size n

2: Output: a score for the node, or∞ if the node can be pruned

3: if |D p
r | ≤ (n/k) then

4: S ′r ← d(k/n)|D p
r |e random samples from |D p

r |

5: for all p′r ∈ S ′r do
6: BaseCase(pq, p′r)
7: return ∞
8: else if Kmax(pq,Nr) < k∗ then
9: return ∞

10: else
11: return Kmax(pq,Nr)

a tuned parameter ε for each dataset, and relative-value-approximate search, which may

return useless results when the values of K(pq, pr) are very close for all pr ∈ S r.

The idea presented in [67] is to draw a set of samples S ′r large enough that the maximum

kernel value between pq and any point in S ′r (call this k∗) is such that

Pr
(∣∣∣∣{p′r ∈ S r : K(pq, p′r) > k∗

}∣∣∣∣ < τ) ≥ 1 − δ. (170)

Simplifying the formulation presented in [67], the probability of always missing the

top τ values for a given query pq after k samples with replacement is given by (1 − (τ/n))k,

where |S r| = n. If we want a (1 − δ) success rate of sampling, then we want k to be such

that

(
1 −

τ

n

)k
< δ, and

(
1 −

τ

n

)k−1
> δ, (171)

which gives

k =

 log δ

log
(
1 − τ

n

) . (172)

Following the logic of [67], if a node Ni contains more than (n/k) points (|D p
i | > (n/k)),

then we can prune the node after we randomly sample d(k/n)|D p
i |e points from |D p

i |. In
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Algorithm 37 Score(Nq, Nr) for rank approximation of FastMKS.
1: Input: query node Nq, reference node Nr, required number of samples k for τ rank

approximation in a reference set of size n
2: Output: a score for the node combination (Nq,Nr) or ∞ if the combination can be

pruned

3: if |D p
r | ≤ (n/k) then

4: for all pq ∈ D p
q do

5: S ′r ← d(k/n)|D p
r |e random samples from |D p

r |

6: for all p′r ∈ S ′r do
7: BaseCase(pq, p′r)
8: return ∞
9: else if Kmax(Nq,Nr) > B(Nq) then

10: return ∞
11: else
12: return Kmax(Nq,Nr)

addition to that, the standard FastMKS pruning rules still apply. An updated single-tree

Score() function is given in Algorithm 36.

An extension of this for a dual-tree algorithm is straightforward; for a reference node

Nr, if |D p
r | > (n/k), then we can sample it for each query point pq ∈ D p

q and prune the node

combination. A Score() function is given in Algorithm 37.

7.7.11 Empirical evaluation

We evaluate single-tree and dual-tree FastMKS with different kernels and datasets. For each

experiment, we query the top {1, 2, 5, 10} max-kernel candidates and report the speedup

over linear search (in terms of the number of kernel evaluations performed during the

search). The cover tree and the algorithms are implemented in C++ in mlpack [87].

7.7.11.1 Datasets

We use two different classes of datasets. First, we use datasets with fixed-length objects.

These include the MNIST dataset [138], the Isomap “Images” dataset, several datasets from

the UCI machine learning repository [134], three collaborative filtering datasets (Movie-

Lens, Netflix [214], Yahoo! Music [202]), the LCDM astronomy dataset [147], the Live-

Journal blog moods text dataset [215] and a subset of the 80 Million Tiny Images dataset
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Table 20: Vector dataset details; |S q| and |S r| denote the number of objects in the query and
reference sets respectively and dims denotes the dimensionality of the sets.

Datasets |S q| |S r| dims
Y! Music 10000 624961 51
MovieLens 6040 3706 11
Opt-digits 450 1347 64
Physics 37500 112500 78
Homology 75000 210409 74
Covertype 100000 481012 55
LiveJournal 10000 10000 25327
MNIST 10000 60000 784
Netflix 17770 480189 51
Corel 10000 27749 32
LCDM 6000000 10777216 3
TinyImages 1000 1000000 384

[216]. The sizes of the datasets are presented in Table 20.

The second class of dataset we use are those without fixed length representation. We

use protein sequences from GenBank16.

7.7.11.2 Kernels

We consider the following kernels for the vector datasets:

• linear: K(x, y) = xT y

• polynomial: K(x, y) = (xT y)2

• cosine: K(x, y) = (xT y)/(‖xT ‖‖y‖)

• polynomial, deg. 10: K(x, y) = (xT y)10

• Epanechnikov: K(x, y) = max(0, 1 − ‖x − y‖2/b2)

While the Epanechnikov kernel is normalized and thus reduces to nearest neighbor

search, we choose it regardless to show the applicability of FastMKS to a variety of ker-

nels. It is important to remember that standard techniques for nearest neighbor search

16See ftp://ftp.ncbi.nih.gov/refseq/release/complete.
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Figure 39: Speedups of single-tree and dual-tree FastMKS over linear scan with k =

{1, 2, 5, 10}.

should be able to perform the task faster—we do not compare with those techniques in

these experiments.

For the protein sequences, we use the p-spectrum string kernel [198], which is a mea-

sure of string similarity. The kernel value for two given strings is the number of length-p

substrings that appear in both strings.

7.7.11.3 Implementation

For maximum performance, the implementation in mlpack does not precisely follow the

algorithms we have given. By default, the cover tree is designed to use a base of 2 during

construction, but following the authors’ observations, we find that a base of 1.3 seems to

give better performance results [57]. In addition, for both the single-tree algorithms, we

attempt to first score nodes (and node combinations) whose kernel values K(pq, pr) are

higher, in hopes of tightening the bounds B(Nq) and k∗(pq) more quickly.
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Lastly, the Score() method as implemented in mlpack is somewhat more complex: it

attempts to prune the node combination (Nq,Nr) with a looser bound that does not evaluate

K(pq, pr). If that is not successful, Score() proceeds as in Algorithm 31 (or 30 in the

single-tree case). This type of prune seems to give 10–30% reductions in the number of

kernel evaluations (or more, depending on the dataset).

The mlpack implementation can be downloaded from http://www.mlpack.org/ and

its FastMKS implementation includes both C++ library bindings for FastMKS and each

kernel we have discussed as well as a fastmks executable that can be used to run FastMKS

easily from the command line. In addition, a tutorial can be found on the website, and the

source code is extensively documented.

7.7.11.4 Results

The results for the vector datasets are summarized in Figure 39 and detailed for k = 1

in Tables 21 and 22. The tables also provide the number of kernel evaluations calculated

during the search for linear search, single-tree FastMKS, and dual-tree FastMKS. Speedups

over a factor of 100 are highlighted in bold. While the speedups range from anywhere

between 1 (which indicates no speedup) to 50000, many datasets give speedups of an order

of magnitude or more. As would be expected with the postulated O(log N) bounds for

single-tree FastMKS and the O(N) bounds for dual-tree FastMKS, larger datasets (such

as LCDM) tend to provide larger speedups. In the cases where large datasets are used

but small speedup values are obtained, the conclusion must be that the expansion constant

cr and the directional concentration constant γr for that dataset and kernel are large. In

addition, the Epanechnikov kernel is parameterized by a bandwidth b; this bandwidth will

seriously affect the runtime if it is too small (all kernel evaluations are 0) or too large (all

kernel evaluations are 1). We have arbitrarily chosen 10 as our bandwidth for simplicity in

simulations, but for each dataset, it is certain that a better bandwidth value that will provide

additional speedup exists.

Another observation is that the single-tree algorithm tends to perform better than the
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Table 21: Single-tree and dual-tree FastMKS on vector datasets with k = 1, part one.

Kernel evaluations Speedup
Kernel Dataset Linear scan Single-tree Dual-tree Single-tree Dual-tree
linear Y! Music 6.249B 859.1M 1.056B 7.27 5.91

MovieLens 22.38M 2.635M 2.790M 8.49 8.02
Optdigits 606.1k 333.2k 366.6k 1.82 1.65
Physics 4.219B 628.8M 852.9M 6.71 4.95

Bio 20.36B 100.2M 8.174B 203.2 2.49
Covertype 48.10B 35.06M 160.9M 1372 299.0

LiveJournal 100.0M 13.88M 36.09M 7.21 2.77
MNIST 600.0M 229.6M 288.2M 2.62 2.08
Netflix 8.532B 2.632B 2.979B 3.12 2.86
Corel 277.5M 6.626M 44.02M 41.88 6.30

LCDM 64.66T 1.566B 2.778B 41282 23269
TinyImages 100.0M 22.30M 35.70M 4.48 2.80

poly. Y! Music 6.249B 2.187B 2.221B 2.86 2.81
MovieLens 22.38M 1.865M 1.833M 12.00 12.21
Optdigits 606.1k 235.1k 296.5k 2.58 2.04
Physics 4.219B 823.9M 1.017B 5.12 4.15

Bio 20.36B 1.538B 10.87B 13.23 1.87
Covertype 48.10B 30.65M 629.7M 1569 76.39

LiveJournal 100.0M 12.91M 38.16M 7.75 2.62
MNIST 600.0M 202.8M 266.8M 2.96 2.25
Netflix 8.532B 2.528B 2.953B 3.37 2.89
Corel 277.5M 4.687M 60.30M 59.20 4.60

LCDM 64.66T 1.171B 14.98B 55204 4316
TinyImages 100.0M 6.957M 34.32M 14.37 2.91

poly. Y! Music 6.249B 4.296B 4.310B 1.45 1.45
deg. 10 MovieLens 22.38M 2.814M 2.826M 7.96 7.92

Optdigits 606.1k 212.3k 318.2k 2.86 1.91
Physics 4.219B 1.441B 1.481B 2.93 2.91

Bio 20.36B 6.018B 12.45B 3.38 1.63
Covertype 48.10B 361.1M 13.78B 133.2 3.49

LiveJournal 100.0M 12.75M 43.25M 7.84 2.31
MNIST 600.0M 205.4M 277.1M 2.92 2.17
Netflix 8.532B 2.977B 3.470B 2.87 2.46
Corel 277.5M 19.68M 131.1M 14.10 2.12

LCDM 64.66T 8.124B 485.2B 7959 133.3
TinyImages 100.0M 1.076M 42.23M 92.96 2.37

dual-tree algorithm, in spite of the better scaling of the dual-tree algorithm. There are

multiple potential explanations for this phenomenon:
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Table 22: Single-tree and dual-tree FastMKS on vector datasets with k = 1, part two.

Kernel evaluations Speedup
Kernel Dataset Linear scan Single-tree Dual-tree Single-tree Dual-tree
cosine Y! Music 6.249B 849.6M 1.586B 7.36 3.94

MovieLens 22.38M 4.044M 8.322M 5.54 2.69
Optdigits 606.1k 190.0k 319.8k 3.19 1.90
Physics 4.219B 28.82M 140.0M 146.3 30.14

Bio 20.36B 14.40B 15.54B 1.41 1.31
Covertype 48.10B 50.15M 3.119B 959.2 15.42

LiveJournal 100.0M 99.23M 98.78M 1.01 1.01
MNIST 600.0M 237.0M 376.7M 2.53 1.59
Netflix 8.532B 3.426B 5.344B 2.49 1.60
Corel 277.5M 16.22M 61.95M 17.10 4.48

LCDM 64.66T 1.058B 112.9B 61063 572.6
TinyImages 100.0M 50.49M 92.36M 1.98 1.02

Epan. Y! Music 6.249B 3.439B 3.630B 1.82 1.72
MovieLens 22.38M 3.243M 4.471M 6.90 5.01
Optdigits 606.1k 606.1k 606.1k 1.00 1.00
Physics 4.219B 957.6M 1.213B 4.40 3.48

Bio 20.36B 20.25B 20.25B 1.01 1.01
Covertype 48.10B 48.10B 48.10B 1.00 1.00

LiveJournal 100.0M 99.57M 99.15M 1.00 1.01
MNIST 600.0M 600.0M 600.0M 1.00 1.00
Netflix 8.532B 7.602B 8.293B 1.12 1.03
Corel 277.5M 18.53M 119.9M 14.98 2.31

LCDM 64.66T 72.32B 119.0B 894.1 543.3
TinyImages 100.0M 42.49M 87.99M 2.35 1.14

• The single-tree bounds given in Theorem 11 (Equation 103) and Theorem 13 (Equa-

tion 113) are tighter than the dual-tree bounds of Theorem 12 (Equation 107) and

Theorem 14 (Equation 121).

• The dual-tree algorithm’s runtime is also bounded by the parameters ν, ηr, and τq,

whereas the single-tree algorithm is not. This could mean that N would need to

be very large before the dual-tree algorithm became faster, despite the fact that the

dual-tree algorithm scales with c7
r and the single-tree algorithm scales with c12

r .

• The single-tree algorithm scales considers each element in the set |S q| linearly, but

the dual-tree algorithm is able to obtain max-kernel bounds for many query points at
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Table 23: Single-tree and dual-tree FastMKS on protein sequences with k = 1.

Kernel evaluations Speedup
|S q| |S r| Linear scan Single-tree Dual-tree Single-tree Dual-tree
391 649 253.8k 5.255k 43.27k 48.29 5.87

1091 649 708.1k 14.99k 122.7k 47.25 5.77
2635 649 1.710M 36.04k 327.7k 47.45 5.22
8604 649 5.584M 115.3k 832.9k 48.43 6.70
37606 649 24.41M 512.9k 3.763M 47.58 6.49
63180 649 41.00M 848.1k 4.999M 48.35 8.20
63180 391 24.70M 484.3k 3.511M 51.01 7.04
63180 1091 68.93M 834.9k 7.529M 82.56 9.16
63180 2635 166.5M 927.8k 22.95M 179.4 7.25
63180 8604 543.6M 692.5k 32.26M 785.1 16.85
63180 37606 2.376B 743.2k 65.09M 3197 36.50
63180 63180 3.992B 1.140M 150.2M 3500 26.59
391 391 152.8k 2.973k 30.68k 51.42 4.98

1091 1091 1.190M 14.96k 183.2k 79.56 6.50
2635 2635 6.943M 43.95k 1.689M 158.0 4.11
8604 8604 323.6M 104.4k 13.76M 783.2 12.79
37606 37606 1.414B 470.2k 39.70M 3007 35.62
63180 63180 3.992B 1.141M 150.2M 3500 26.59

once thanks to the use of the second tree. Thus, the dual-tree algorithm may require

a much larger S q before it outperforms the single-tree algorithm.

The results for the protein sequence data are shown in Figure 40 and Table 23. The table

shows that for constant reference set size (649), the dual-tree algorithm provides better

scaling as the query set grows. This agrees with the better scaling of dual-tree FastMKS as

exhibited in Theorem 17.

However, in every case in Table 23, the single-tree algorithm provides better perfor-

mance than the dual-tree algorithm. This implies that the query sets and reference sets

would have to be possibly several orders of magnitude larger for the dual-tree algorithm

to provide better speedups. With larger datasets, the single-tree algorithm showed more

than 3000x speedup over linear scan. Other datasets may exhibit better or worse scaling

depending on the expansion constant and directional concentration constant.
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Figure 40: Speedups of single-tree and dual-tree FastMKS over linear scan for protein
sequences with k = {1, 2, 5, 10}.

7.7.12 Future directions for max-kernel search

We have now presented two algorithms to solve exact max-kernel search, and six additional

extensions for approximation. However, as always, there is room for improvement and

further investigation, and a few avenues are laid out below. Another possible avenue is

parallelism, but this is an improvement to a traversal, and thus is not restricted to max-

kernel search. Traversal improvements are detailed further in Chapter 6.

7.7.12.1 Tighter bounds for specific kernels

In Theorems 13 and 14 we described a tighter bound for normalized kernels (K(x, x) =

1 ∀x). It is our intuition that similar tighter bounds can be developed for other specific

types of Mercer kernels.

This may be especially applicable in domain-specific kernels such as string kernels or

graph kernels. Any kernel that has some known structure on how points are mapped to H
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may be bounded more tightly than the general Mercer kernel bounds given in Equations

103 and 107.

7.7.12.2 Domain-specific applications

In the introduction, we mentioned the wide applicability of max-kernel search, discussing

its use in image retrieval, document retrieval, collaborative filtering, and even finding sim-

ilar protein/DNA sequences. That list only contains a few of the numerous max-kernel

search problems that arise ubiquitiously in countless fields (not just computing-related

fields).

In many of these fields, there are existing domain-specific solutions. One example in

genomics is BLAST (Basic Local Alignment Search Tool) [203], a utility that searches for

similarity between biological sequences. Another tool of this sort is the older FASTA algo-

rithm [217]. Both of these algorithms are improvements over linear scan with the Smith-

Waterman alignment score [204]. However, in contrast with its large speedups, BLAST

cannot guarantee exact results.

The Smith-Waterman alignment score can easily be shown to be a Mercer kernel; there-

fore, FastMKS could be used to give speedups over linear scan and it would also return

provably exact results. Furthermore, approximation extensions to FastMKS could provide

additional speedups by relaxing the exact result constraint, potentially making FastMKS

competitive with BLAST.

7.7.13 Wrap-up for max-kernel search

In this section, we have described a tree-independent single-tree and dual-tree algorithm in

Algorithms 29, 30 and 31 which are able to quickly perform the task of max-kernel search,

for individual query points and also for sizeable query sets. As we have seen, max-kernel

search is ubiquitious in computer science, so these algorithms—the first to solve max-

kernel search exactly—are groundbreaking and useful. In addition, the dual-tree algorithm

can be shown to scale linearly, with some assumptions on the dataset. Lastly, the empirical
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results show both algorithms to be effective in practice.

Next, we will move toward another common problem in machine learning—clustering.

7.8 k-means clustering

This section develops a dual-tree algorithm for fast k-means clustering for large datasets

and large k. It is based upon work recently submitted [80].

7.8.1 Introduction

Of all the clustering algorithms in use today, among the simplest and most utilized is

the venerated k-means clustering algorithm, usually implemented via Lloyd’s algorithm.

Lloyd’s algorithm is quite simple and well-known: given a dataset S , repeat the following

two steps (a ‘Lloyd iteration’) until the centroids of each of the k clusters converge:

1. Assign each point pi ∈ S to the cluster with nearest centroid.

2. Recalculate the centroids for each cluster using the assignments of each point in S .

Clearly, a simple implementation of this algorithm will take O(kN) time where N = |S |.

However, the number of iterations is not bounded unless the practitioner manually sets a

maximum, and k-means is not guaranteed to converge to the global best clustering. Despite

these shortcomings, in practice k-means tends to quickly converge to reasonable solutions.

Even so, there is no shortage of techniques for improving the clusters k-means converges

to: refinement of initial centroid selection [218] and weighted sampling of initial centroids

[219] are just two of the many popular existing strategies.

There are also a number of methods for accelerating the runtime of a single iteration

of k-means. In general, these ideas use the triangle inequality to prune work during the

assignments step. Pelleg and Moore [39] build a kd-tree on the set S in order to rule

out certain centroids for entire kd-tree nodes. Elkan [220] describes an algorithm which

constructs an O(k2 + kN)-size data structure to store between-cluster distances and bounds;

Hamerly [221] proposes his own improvement to Elkan’s algorithm. These algorithms have
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been shown to provide massive speedup—however, the quadratic scaling in k of Hamerly

and Elkan’s algorithms makes them problematic for large k.

In the development of this fast dual-tree k-means algorithm, we first show the relevance

of the large k case; then, we observe that a tree can also be built on the k clusters, and then

a dual-tree algorithm [28, 61] can be used to efficiently perform an exact single iteration

of k-means clustering. The dual-tree algorithm developed here is independent of the type

of tree used and therefore can be used with not only kd-trees, but also metric trees, cover

trees, and other types of space trees [28]. When cover trees are used, we use adaptive

runtime analysis techniques to show a worst-case runtime bound of O(N + k log k); this

bound depends on properties of the dataset. To our knowledge, these are the first sub-

O(kN) worst-case runtime bounds for an exact Lloyd iteration. Empirical results indicate

that our algorithm is the best in its intended scenario: the large k and large N case.

7.8.2 Scaling k-means

Although the original publications on k-means only applied the algorithm to a maximum

dataset size of 760 points, the half-century of relentless progress since then has seen dataset

sizes scale into the billions. Due to its simplicity, though, k-means has remained relevant,

and is still applied in numerous large-scale applications.

In cases where N scales but k remains small, a good choice of algorithm is a sampling

algorithm, which will return an approximate clustering. One sampling technique, coresets,

can produce good clusterings for n in the millions using several hundred or a few thou-

sand points [222]. However, for large k, the number of samples required to produce good

clusterings can become prohibitive.

For large k, then, we turn to an alternative approach: accelerating exact Lloyd iter-

ations. Existing techniques include the naive linear scan implementation implied in the

previous section, the blacklist algorithm [39], Elkan’s algorithm [220], and Hamerly’s al-

gorithm [221]. The blacklist algorithm builds a kd-tree on the dataset and, while the tree

is traversed, blacklists individual clusters that cannot be the closest cluster (the owner) of
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Table 24: Runtime and memory bounds for k-means algorithms.

Algorithm Setup Worst-case Memory
naive n/a O(kN) O(k + N)

blacklist O(N log N) O(kN) O(k log N + N)
elkan n/a O(k2 + kN) O(k2 + kN)

hamerly n/a O(k2 + kN) O(k + N)
dualtree O(N log N) O(k log k + N)1 O(k + N)

any descendant points of a node. Elkan’s algorithm maintains an upper bound and a lower

bound on the distance between each point and centroid; Hamerly’s algorithm is a simplifi-

cation of this technique which uses less memory. Table 24 shows setup costs, worst-case

per-iteration runtimes, and memory usage of each of these algorithms as well as the pro-

posed dual-tree algorithm17. The expected runtime of the blacklist algorithm is, under some

assumptions, roughly O(k + k log N + N) per iteration. The expected runtime of Hamerly’s

and Elkan’s algorithm is O(k2 + αN) time, where α is the expected number of clusters

visited by each point (in both Elkan and Hamerly’s results, α seems to be small).

However, none of these algorithms are specifically tailored to the large k case, and the

large k case is common. Pelleg and Moore [39] report several hundred clusters in a subset

of 800k objects from the SDSS dataset. Clusterings for n-body simulations on astronomical

data often involve several thousand clusters [223]. Csurka et al. [224] extract vocabularies

from image sets using k-means with k ∼ 1000. Coates et al. [225] show that k-means can

work surprisingly well for unsupervised feature learning for images, using k as large as

4000 on 50000 images. Also, in text mining, datasets can have up to 18000 unique labels

[226]. Can and Ozkarahan [227] suggest that the number of clusters in text data is directly

related to the size of the vocabulary, suggesting k ∼ mN/t where m is the vocabulary size,

n is the number of documents, and t is the number of nonzero entries in the term matrix.

Further, in vector quantization codebook generation, for which k-means is sometimes used,

k may be in the tens of thousands [225].

17The worst-case runtime bound for the dual-tree algorithm also depends on some assumptions on dataset-
dependent constants. This is detailed further in Section 7.5.6.
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Thus, it is important to have an algorithm with favorable scaling properties for both

large k and N.

7.8.3 The blacklist algorithm and trees

The blacklist algorithm is a single-tree algorithm: one tree (the reference tree) is built on

the dataset, and then that tree is traversed in order to assign each point to its nearest cluster

centroid. We know from Chapter 2 that there are numerous single-tree algorithms to solve

a whole host of problems, and we also know that most of these single-tree algorithms have

related dual-tree algorithms.

Following the empirical success of the blacklist algorithm, then, it is only natural to

build a tree on the data points. Tree-building is (generally) a one-time O(N log N) cost and

for large N and/or k, the cost of tree building is often negligible compared to the time it

takes to perform the clustering. We may also build a tree on the k centroids (the query tree)

which will allow us to rule out many centroids for many points at once.

Due to the tree-independent dual-tree algorithm abstraction introduced in Chapter 3,

we know that to describe a dual-tree algorithm we only need to provide a BaseCase()

and Score() function. Then, we may use any tree and any traversal in order to create a

working dual-tree algorithm.

The two types of trees we will explicitly consider for dual-tree k-means are the kd-tree

[31] and the cover tree [57], but it should be remembered that the algorithm as provided is

sufficiently general to work with any other type of tree. As with everything in this thesis,

notation is standardized according to Section 3.4 and Table 1.

7.8.4 Pruning strategies

All of the existing accelerated k-means algorithms operate by avoiding unnecessary work

via the use of pruning strategies.

A first observation is that the first step of a Lloyd iteration—assign each point pi ∈ S

to the cluster with the nearest centroid—is exactly nearest neighbor search, with the set of
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query points equal to S and the set of reference points equal to the set of centroids. Thus,

it is possible to use dual-tree nearest neighbor search as a black box. However, we may

implement more complex pruning strategies which can give significantly more speedup.

We will base our algorithm on dual-tree nearest neighbor search with the S as the query

points and the centroids as the reference points. Below are the four pruning strategies we

will pursue:

Strategy one. When visiting a particular combination (Nq,Nr) (with Nq holding

points in the dataset and Nr holding centroids), the combination should be pruned if every

descendant centroid in Nr can be shown to own none of the points in Nq. If we have cached

an upper bound ub(Nq) on the distance between any descendant point of Nq and its nearest

cluster centroid that satisfies

ub(Nq) ≥ max
pq∈D

p
q

d(pq, cq) (173)

where cq is the cluster centroid nearest to point pq, the node Nr can contain no centroids

that own any descendant points of Nq if

dmin(Nq,Nr) > ub(Nq). (174)

This relation bears similarity to the pruning rules for nearest neighbor search [28] and

max-kernel search [79]. A graphical depiction of a situation where Nr can be pruned is

given in Figure 41a; in this case, ball-shaped tree nodes are used, and the upper bound

ub(Nq) is set to dmax(Nq,Nr2).

Strategy two. The recursion down a particular branch of the query tree should termi-

nate early if we can determine that only one cluster can possibly own all of the descendant

points of that branch. This is related to the first strategy. If we have been caching the

number of pruned centroids (call this pruned(Nq)), as well as the identity of any arbitrary

non-pruned centroid (call this closest(Nq)), then if pruned(Nq) = k − 1, we may conclude

that the centroid closest(Nq) is the owner of all descendant points of Nq, and there is no
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(c) pq’s owner can change.

Figure 41: Different pruning situations.

need for further recursion in Nq.

Strategy three. The traversal should not visit nodes whose owner could not have pos-

sibly changed between iterations; that is, the tree should be coalesced before traversal to

include only nodes whose owners may have changed.

There are two easy ways to use the triangle inequality to show that the owner of a point

cannot change between iterations. Figures 41b and 41c show the first: assume that we have

a point pq with owner c j and second-closest centroid ck. Between iterations, each centroid

will move when it is recalculated; define the distance that centroid ci has moved as mi.

Using these quantities, we may bound the distances for the next iteration: d(pq, c j)+m j is an

upper bound on the distance between pq and its owner next iteration, and d(pq, ck)−maxi mi

is a lower bound on the distance between pq and its second closest centroid next iteration.

We may use these bounds to conclude that if

d(pq, c j) + m j < d(pq, ck) −max
i

mi, (175)

then the owner of pq next iteration must be c j. Now, let us generalize this from individual

points pq to tree nodes Nq. This pruning strategy can only be used when all descendant

points of Nq are owned by a single centroid, and in order to perform the prune, we need

to establish a lower bound on the distance between any descendant point of the node Nq

and the second closest centroid. Call this bound lb(Nq). Now, remember that ub(Nq)

provides an upper bound on the distance between any descendant point of Nq and its nearest

centroid. Then, if all descendant points of Nq are owned by some cluster c j in one iteration,

and
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ub(Nq) + m j < lb(Nq) −max
i

mi, (176)

then Nq is owned by cluster c j in the next iteration. Implementationally, it is convenient

to have lb(Nq) store a lower bound on the distance between any descendant point of Nq

and the nearest pruned centroid. Then, if Nr is entirely owned by one cluster, all other

centroids are pruned, and lb(Nq) holds the necessary lower bound for pruning according to

the rule above.

The second way to use the triangle inequality to show that an owner cannot change

depends on the distances between centroids. Suppose that pq is owned by c j at the current

iteration; then, if

d(pq, c j) − m j < 2
(

min
ci∈C,ci,c j

d(ci, c j)
)

(177)

then c j will own pq next iteration [220]. We may adapt this rule to tree nodes Nq in the

same way as the previous rule; if Nq is owned by cluster c j during this iteration and

ub(Nq) + m j < 2
(

min
ci∈C,ci,c j

d(ci, c j)
)

(178)

then Nq is owned by cluster c j in the next iteration. Note that the above rules do work

with individual points pq instead of nodes Nq if we have a valid upper bound ub(pq) and

a valid lower bound lb(pq). Any nodes or points that satisfy the above conditions do not

need to be visited during the next iteration, and thus can be removed from the tree for the

next iteration.

Strategy four. The traversal should use bounding information from previous iterations;

for instance, ub(Nq) should not be reset to ∞ at the beginning of each iteration. Between

iterations, we may update ub(Nq), ub(pq), lb(Nq), and lb(pq) according to the following

rules:
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ub(Nq) ←


ub(Nq) + m j if Nq is owned by a single cluster c j

ub(Nq) + maxi mi if Nq is not owned by a single cluster,
(179)

ub(pq) ← ub(pq) + m j, (180)

lb(Nq) ← lb(Nq) −max
i

mi, (181)

lb(pq) ← lb(pq) −max
i

mi. (182)

Note that special handling is required when descendant points of Nq are not owned by

a single centroid (Equation 179). It is also true that for a child node Nc of Nq, ub(Nq) is a

valid upper bound for Nc and lb(Nq) is a valid lower bound for Nc: that is, the upper and

lower bounds may be taken from a parent, and they are still valid.

7.8.5 The dual-tree k-means algorithm

These four pruning strategies lead to a high-level k-means algorithm, described in Algo-

rithm 38. During the course of this algorithm, to implement each of our pruning strategies,

we will need to maintain the following quantities:

• ub(Nq): an upper bound on the distance between any descendant point of a node Nq

and the nearest centroid to that point.

• lb(Nq): a lower bound on the distance between any descendant point of a node Nq

and the nearest pruned centroid.

• pruned(Nq): the number of centroids pruned during traversal for Nq.

• closest(Nq): if pruned(Nq) = k − 1, this holds the owner of all descendant points of

Nq.

• canchange(Nq): whether or not Nq can change owners next iteration.

• ub(pq): an upper bound on the distance between point pq and its nearest centroid.
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Algorithm 38 High-level outline of dual-tree k-means.
1: Input: dataset S ∈ RN×d, initial centroids C ∈ Rk×d.
2: Output: converged centroids C.

3: T ← a tree built on S
4: while centroids C not converged do
5: {Remove nodes in the tree whose nearest cluster is already known.}
6: T ← CoalesceNodes(T )
7: Tc ← a tree built on C

8: {Call dual-tree algorithm for finding nearest clusters.}
9: Perform a dual-tree recursion with T , Tc, BaseCase(), and Score().

10: {Restore the tree to its non-coalesced form.}
11: T ← DecoalesceNodes(T )

12: {Update centroids and bounding information in the tree.}
13: C ← UpdateCentroids(T )
14: T ← UpdateTree(T )
15: return C

• lb(pq): a lower bound on the distance between point pq and its second nearest cen-

troid.

• closest(pq): the closest centroid to pq (this is also the owner of pq).

• canchange(pq): whether or not pq can change owners next iteration.

At the beginning of the algorithm, each upper bound is initialized to ∞, each lower

bound is initialized to∞, pruned(·) is initialized to 0 for each node, and closest(·) is initial-

ized to an invalid centroid for each cluster and point. canchange(·) is initialized to true for

each node and point. Because of this, line 6 will do nothing on the first iteration.

7.8.5.1 BaseCase() and Score()

First, consider the dual-tree algorithm called on line 9. As detailed earlier, we can

describe a dual-tree algorithm as a combination of tree type, traversal type, and point-to-

point BaseCase() and node-to-node Score() functions. Therefore, we need only present

BaseCase() (Algorithm 39) and Score() (Algorithm 40)18. The BaseCase() function is

18In these algorithms, we assume that any point present in a node Ni will also be present in at least one
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Algorithm 39 BaseCase() for dual-tree k-means.
1: Input: query point pq, reference centroid cr

2: Output: distance between pq and cr

3: if d(pq, cr) < ub(pq) then
4: lb(pq)← ub(pq)
5: ub(pq)← d(pq, cr)
6: closest(pq)← cr

7: else if d(pq, cr) < lb(pq) then
8: lb(pq)← d(pq, cr)

9: return d(pq, cr)

Algorithm 40 Score() for dual-tree k-means.
1: Input: query node Nq, reference node Nr

2: Output: score for node combination (Nq,Nr), or∞ if the combination can be pruned

3: {Update the number of pruned nodes, if necessary.}
4: if Nq not yet visited and Nq is not the root node then
5: pruned(Nq)← parent(Nq)
6: lb(Nq)← lb(parent(Nq))
7: if pruned(Nq) = k − 1 then return∞

8: s← dmin(Nq,Nr)
9: c← any descendant cluster centroid ofNr

10: if dmin(Nq,Nr) > ub(Nq) then
11: {This cluster node can own no points in this query node.}
12: if dmin(Nq,Nr) < lb(Nq) then
13: {We may improve the lower bound for pruned nodes.}
14: lb(Nq)← dmin(Nq,Nr)
15: pruned(Nq)← pruned(Nq) + |D p

r \ {clusters not pruned}|
16: s← ∞

17: else if dmax(Nq, c) < ub(Nq) then
18: {We may improve the upper bound.}
19: ub(Nq)← dmax(Nq,Nr)
20: closest(Nq)← c

21: {Check if all clusters (except one) are pruned.}
22: if pruned(Nq) = k − 1 then return∞

23: return s

straightforward: given a point pq and a centroid cr, the distance d(pq, cr) is calculated, and

ub(pq), lb(pq), and closest(pq) are updated if necessary. Score(), however, is significantly

child Nc ∈ Ci. It is possible to fully generalize to any tree type, but the exposition is significantly more
complex, and our assumption covers most standard tree types anyway.

205



more complex.

The first stanza (lines 4–6) take the values of pruned(·) and lb(·) from the parent node of

Nq; this is necessary because centroids may have been pruned before the node combination

(Nq,Nr) was visited, and if pruned(·) and lb(·) are not taken from the parent node, then

pruned(·) may undercount and lb(·) may be too tight. Next, we prune if the owner of Nq is

already known (line 7). If the minimum distance between any descendant point of Nq and

any descendant centroid of Nr is greater than the current upper bound for Nq, then we may

prune the combination (line 16). In addition, this gives us an opportunity to improve the

lower bound (line 14). Note the special handling in line 15: our definition of tree allows

points to be held in more than one node; thus, we must avoid double-counting clusters that

we prune. The details are left to the implementation19. If the node combination cannot be

pruned in this way, an attempt is made to update the upper bound (lines 17–20). Instead

of using dmax(Nq,Nr) (the maximum possible distance between any descendant point of

Nq and any descendant centroid of Nr), we may use a tighter upper bound: select any

descendant centroid c from Nr and use dmax(Nq, c). This still provides a valid upper bound,

and in practice is generally smaller than dmax(Nq,Nr). We may simply set closest(Nq) to

c (line 20): remember that closest(Nq) only holds the owner of Nq if all centroids except

one are pruned—in which case the owner must be c.

Thus, at the end of the dual-tree algorithm, we know the owner of every node (if it

exists) via closest(·) and pruned(·), and we know the owner of every point via closest(·).

7.8.5.2 Updating the centroids with ExtractCentroids()

After running the dual-tree algorithm with BaseCase() and Score(), the centroids must

be updated. A simple algorithm to do this is given in Algorithm 41: it is a depth-first

recursion through the tree that terminates a branch when a node is owned by a single cluster.

We first initialize the new centroids C to zero; then, starting at the root node, we check

19For trees like the kd-tree and the metric tree, which do not hold points in more than one node, no special
handling is required: we will never prune a cluster twice for a given query node Nq.
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Algorithm 41 UpdateCentroids() for dual-tree k-means.
1: Input: tree T built on dataset S
2: Output: new centroids C

3: C := {c0, . . . , ck−1} ← 0k×d

4: n = 0k

5: {A depth-first recursion to calculate centroids. s is a stack.}
6: s← {root(T )}
7: while |s| > 0 do
8: Ni ← s.pop()
9: if pruned(Ni) = k − 1 then

10: {The node is entirely owned by a cluster.}
11: j← index of closest(Ni)
12: c j ← c j + |D p

i | centroid(Ni)
13: n j ← n j + |D p

i |

14: else
15: {The node is not entirely owned by a cluster. Recurse.}
16: if |Ci| > 0 then s.push(Ci)
17: else
18: for pi ∈Pi not yet considered
19: j← index of closest(pi)
20: c j ← c j + pi

21: n j ← n j + 1

22: for ci ∈ C, if ni > 0 then ci ← ci/ni

23: return C

if the node is owned by a single cluster. If so (lines 9–13), then the centroid of the node

multiplied by the number of descendants is added to the right centroid and the counts for

that cluster are updated (lines 12 and 13). Otherwise, we add all the children of the node to

the stack, and then add the contributions of each point which has not yet been considered

(lines 18–21).

7.8.5.3 Updating the tree with UpdateTree()

The next step is updating the bounds in the tree and determining if nodes and points can

change owners next iteration; this work is encapsulated in the UpdateTree() algorithm.

Essentially, this is an implementation of Strategies 3 and 4. Unfortunately, though, this

yields a particularly complex recursive algorithm, given in Algorithms 42 and 43 (it is too

long for one page). At the end of this algorithm, canchange(·) is set correctly for every
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Algorithm 42 UpdateTree() for dual-tree k-means.
1: Input: Ni, ub(·), lb(·), pruned(·), closest(·), canchange(·), centroid movements m
2: Output: updated ub(·), lb(·), pruned(·), canchange(·)

3: canchange(Ni)← true
4: if Ni has a parent and canchange(parent(Ni)) = false then
5: {Use the parent’s bounds.}
6: closest(Ni)← closest(parent(Ni))
7: j← index of closest(Ni)
8: ub(Ni)← ub(Ni) + m j

9: lb(Ni)← lb(Ni) + maxi mi

10: canchange(Ni)← false

11: else if pruned(Ni) = k − 1 then
12: {Ni is owned by a single cluster. Can that owner change next iteration?}
13: j← index of closest(Ni)
14: ub(Ni)← ub(Ni) + m j

15: lb(Ni)← max
(
lb(Ni) −maxi mi,mink, j d(ck, c j)/2

)
16: if ub(Ni) < lb(Ni) then
17: {The owner cannot change next iteration.}
18: canchange(Ni)← false
19: else
20: {Tighten the upper bound and try to prune again.}
21: ub(Ni)← min

(
ub(Ni), dmax(Ni, c j)

)
22: if ub(Ni) < lb(Ni) then canchange(Ni)← false

23: else
24: j← index of closest(Ni)
25: ub(Ni)← ub(Ni) + m j

26: lb(Ni)← lb(Ni) −maxk mk

27: {Recurse into each child.}
28: for each child Nc of Ni, call UpdateTree(Nc)

29: {The function is too long for one page...}
30: call UpdateTreePartTwo(Ni)

point and node.

The first if statement (lines 4–10) catches the case where the parent cannot change

owner next iteration; in this case, the parent’s upper bound and lower bound can be taken

as valid bounds. In addition, the upper and lower bounds are adjusted to account for cluster

movement between iterations, so that the bounds are valid for next iteration.
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Algorithm 43 UpdateTreePartTwo() for dual-tree k-means.
1: Input: Ni, ub(·), lb(·), pruned(·), closest(·), canchange(·), centroid movements m
2: Output: updated ub(·), lb(·), pruned(·), canchange(·)

3: {Try to determine points whose owner cannot change if Ni can change owners.}
4: if canchange(Ni) = true then
5: for pi ∈Pi do
6: j← index of closest(pi)
7: ub(pi)← ub(pi) + m j

8: lb(pi)← min
(
lb(pi) −maxk mk,mink, j d(ck, c j)/2

)
9: if ub(pi) < lb(pi) then

10: canchange(pi)← false
11: else
12: {Tighten the upper bound and try again.}
13: ub(pi)← min

(
ub(pi), d(pi, c j)

)
14: if ub(pi) < lb(pi) then
15: canchange(pi)← false
16: else
17: {Point cannot be pruned.}
18: ub(pi)← ∞
19: lb(pi)← ∞

20: else
21: for pi ∈Pi where canchange(pi) = false do
22: {Maintain upper and lower bounds for points whose owner cannot change.}
23: j← index of closest(pi)
24: ub(pi)← ub(pi) + m j

25: lb(pi)← lb(pi) −maxk mk

26: if canchange(·) = false for all children Nc of Ni and all points pi ∈Pi then
27: canchange(Ni)← false

28: if canchange(Ni) = true then
29: pruned(Ni)← 0

If the node Ni has an owner, the algorithm then attempts to use the pruning rules estab-

lished in Equations 176 and 178 to determine if the owner of Ni can change next iteration.

If not, canchange(Ni) is set to false (line 18). On the other hand, if the pruning check

fails, the upper bound is tightened and the pruning check is performed a second time. It

is worth noting that dmax(Ni, c j) may not actually be less than the current value of ub(Ni),

which is why the min is necessary.

After recursing into the children of Ni, if Ni could have an owner change, each point
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is individually checked using the same approach (lines 4–20). However, there is a slight

difference: if a point’s owner can change, the upper and lower bounds must be set to ∞

(lines 18–19). This is only necessary with points; BaseCase() does not take bounding

information from previous iterations into account, because no work can be avoided in that

way.

Then, we may set canchange(Ni) to false if every point in Ni and every child of Ni

cannot change owners (and the points and nodes do not necessarily have to have the same

owner). Otherwise, we must set pruned(Ni) to 0 for the next iteration.

7.8.5.4 Coalescing (and decoalescing) the tree

Once UpdateTree() sets the correct value of canchange(·) for every point and node, we

may coalesce the tree for the next iteration with the CoalesceTree() function. Coa-

lescing the tree is straightforward: essentially, we simply remove any nodes from the tree

where canchange(·) is false. This leaves us with a smaller tree that has no nodes where

canchange(·) is false.

This can be accomplished via a single pass over the tree. A simple implementation is

given in Algorithm 44. DecoalesceTree() may be implemented by simply restoring a

pristine copy of the tree which was cached right before CoalesceTree() is called.

7.8.6 Theoretical results

In this subsection, we show theoretical results for the dual-tree k-means algorithm, includ-

ing a correctness proof, bounds on per-iteration runtime, and memory bounds. We will start

with the (quite complex) correctness proof.

7.8.6.1 Correctness of the algorithm

We will individually prove the correctness of various pieces of the dual-tree k-means algo-

rithm, and then we will prove the main correctness result. Correctness is proven not just

for a certain type of tree but for all types of trees that satisfy the definition of space tree

and all types of traversals that satisfy the definition of pruning dual-tree traversal as given
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Algorithm 44 CoalesceTree() for dual-tree k-means.
1: Input: tree T
2: Output: coalesced tree T

3: {A depth-first recursion to hide nodes where canchange(·) is false.}
4: s← {root(T )}
5: while |s| > 0 do
6: Ni ← s.pop()

7: {Special handling is required for leaf nodes and the root node.}
8: if |Ci| = 0 then
9: continue

10: else if Ni is the root node then
11: for Nc ∈ Ci do
12: s.push(Nc)

13: {See if children can be removed.}
14: for Nc ∈ Ci do
15: if canchange(Nc) = false then
16: remove child Nc

17: else
18: s.push(Nc)

19: {If only one child is left, then this node is unnecessary.}
20: if |Ci| = 1 then
21: add child to parent(Ni)
22: remove Ni from parent(Ni)’s children

23: return T

in Chapter 3.

Lemma 7. A pruning dual-tree traversal which uses BaseCase() as given in Algorithm

39 and Score() as given in Algorithm 40 which starts with valid ub(·), lb(·), pruned(·),

and closest(·) for each node Ni ∈ T , and ub(pq) = lb(pq) = ∞ for each point pq ∈ S , will

satisfy the following conditions upon completion:

• For every pq ∈ S that is a descendant of a node Ni that has been pruned (that is,

pruned(Ni) = k − 1), ub(Ni) is an upper bound on the distance between pq and its

closest centroid, and closest(Ni) is the owner of pq.

• For every pq ∈ S that is not a descendant of any node that has been pruned, ub(pq) is

an upper bound on the distance between pq and its closest centroid, and closest(pq)
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is the owner of pq.

• For every pq ∈ S that is a descendant of a node Ni that has been pruned (that is,

pruned(Ni) = k − 1), lb(Ni) is a lower bound on the distance between pq and its

second closest centroid.

• For every pq ∈ S that is not a descendant of any node that has been pruned, the

quantity min(lb(pq), lb(Nq)) where Nq is a node such that pq ∈Pq is a lower bound

on the distance between pq and its second closest centroid.

Proof. It is easiest to consider each condition individually. Thus, we will first consider the

upper bound on the distance to the closest cluster centroid. Consider some pq and suppose

that the closest cluster centroid to pq is c∗.

Now, suppose first that the point pq is a descendant point of a node Nq that has been

pruned. We must show, then, that c∗ is closest(Nq). Take R = {Nr0,Nr1, . . . ,Nr j} to be

the set of reference nodes visited during the traversal with Nq as a query node; that is, the

combinations (Nq,Nri) were visited for all Nri ∈ R. Any Nri is pruned only if

dmin(Nq,Nri) > ub(Ni) (183)

according to line 10 of Score(). Thus, as long as ub(Ni) is a valid upper bound on the

closest cluster distance for every descendant point in Nq, then no nodes are incorrectly

pruned. It is easy to see that the upper bound is valid: initially, it is valid by assump-

tion; each time the bound is updated with some node Nri (on lines 19 and 20), it is set to

dmax(Ni, c) where c is some descendant centroid of Nri. This is clearly a valid upper bound,

since c cannot be any closer to any descendant point of Ni than c∗. We may thus conclude

that no node is incorrectly pruned from R; we may apply this reasoning recursively to the

Nq’s ancestors to see that no reference node is incorrectly pruned.

When a node is pruned from R, the number of pruned clusters for Nq is updated: the

count of all clusters not previously pruned by Nq (or its ancestors) is added. We cannot
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double-count the pruning of a cluster; thus the only way that pruned(Nq) can be equal to

k− 1 is if every centroid except one is pruned. The centroid which is not pruned will be the

nearest centroid c∗, regardless of if closest(Nq) was set during this traversal or still holds

its initial value, and therefore it must be true that ub(Nq) is an upper bound on the distance

between pq and c∗, and closest(Nq) = c∗.

This allows us to finally conclude that if pq is a descendant of a node Nq that has been

pruned, then ub(Nq) contains a valid upper bound on the distance between pq and its closest

cluster centroid, and closest(Nq) is that closest cluster centroid.

Now, consider the other case, where pq is not a descendant of any node that has been

pruned. Take Ni to be any node containing pq
20. We have already reasoned that any cluster

centroid node that could possibly contain the closest cluster centroid to pq cannot have been

pruned; therefore, by the definition of pruning dual-tree traversal, we are guaranteed that

BaseCase() will be called with pq as the query point and the closest cluster centroid as

the reference point. This will then cause ub(pq) to hold the distance to the closest cluster

centroid—assuming ub(pq) is always valid, which it is even at the beginning of the traversal

because it is initialized to∞—and closest(pq) to hold the closest cluster centroid.

Therefore, the first two conditions are proven. The third and fourth conditions, for the

lower bounds, require a slightly different strategy.

There are two ways lb(Nq) is modified: first, at line 14, when a node combination

is pruned, and second, at line 6 when the lower bound is taken from the parent. Again,

consider the set R = {Nr0,Nr1, . . . ,Nr j} which is the set of reference nodes visited during

the traversal with Nq as a query node. Call the set of reference nodes that were pruned Rp.

At the end of the traversal, then,
20Note that the meaning here is not that pq is a descendant of Ni (pi ∈ D p

i ), but instead that pq is held
directly in Ni: pq ∈Pi.
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lb(Nq) ≤ min
Nri∈Rp

dmin(Nq,Nri) (184)

≤ min
ck∈Cp

dmin(Nq, ck) (185)

where Cp is the set of centroids that are descendants of nodes in Rp. Applying this reasoning

recursively to the ancestors of Nq shows that at the end of the dual-tree traversal, lb(Nq)

will contain a lower bound on the distance between any descendant point of Nq and any

pruned centroid. Thus, if pruned(Nq) = k − 1, then lb(Nq) will contain a lower bound on

the distance between any descendant point in Nq and its second closest centroid. So if we

consider some point pq which is a descendant of Nq and Nq is pruned (pruned(Nq) = k−1),

then lb(Nq) is indeed a lower bound on the distance between pq and its second closest

centroid.

Now, consider the case where pq is not a descendant of any node that has been pruned,

and take Nq to be some node that owns pq (that is, pq ∈ Pq). In this case, BaseCase()

will be called with every centroid that has not been pruned. So lb(Nq) is a lower bound

on the distance between pq and every pruned centroid, and lb(pq) will be a lower bound on

the distance between pq and the second-closest non-pruned centroid, due to the structure

of the BaseCase() function. Therefore, min(lb(pq), lb(Nq)) must be a lower bound on the

distance between pq and its second closest centroid.

Finally, we may conclude that each item in the theorem holds. �

Next, we must prove that UpdateTree() functions correctly.

Lemma 8. In the context of Algorithm 38, given a tree T with all associated bounds ub(·)

and lb(·) and information pruned(·), closest(·), and canchange(·), a run of UpdateTree()

as given in Algorithm 42 will have the following effects:

• For every node Ni, ub(Ni) will be a valid upper bound on the distance between any

descendant point of Ni and its nearest centroid next iteration.
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• For every node Ni, lb(Ni) will be a valid lower bound on the distance between any

descendant point of Ni and any pruned centroid next iteration.

• A node Ni will only have canchange(Ni) = false if the owner of any descendant

point of Ni cannot change next iteration.

• A point pi will only have canchange(pi) = false if the owner of pi cannot change

next iteration.

• Any point pi with canchange(pi) = true that does not belong to any node Ni with

canchange(Ni) = false will have ub(pi) = lb(pi) = ∞, as required by the dual-tree

traversal.

• Any node Ni with canchange(Ni) = false at the end of UpdateTree() will have

pruned(Ni) = 0.

Proof. Each point is best considered individually. It is important to remember during this

proof that the centroids have been updated, but the bounds have not. So any cluster centroid

ci is already set for next iteration. Take cl
i to mean the cluster centroid ci before adjustment

(that is, the old centroid). Also take ubl(·), lbl(·), prunedl(·), and canchangel(·) to be the

values at the time UpdateTree() is called, before any of those values are changed. Due to

the assumptions in the statement of the lemma, each of these quantities is valid.

Suppose that for some node Ni, closest(Ni) is some cluster c j. For ub(Ni) to be

valid for next iteration, we must guarantee that ub(Ni) ≥ maxpq∈D
p
q

d(pq, c j) at the end

of UpdateTree(). There are four ways ub(Ni) is updated: it may be taken from the parent

and adjusted (line 8), it may be adjusted before a prune attempt (line 14), it may be tight-

ened after a failed prune attempt (line 21), or it may be adjusted without a prune attempt

(line 25). If we can show that each of these four ways always results in ub(Ni) being valid,

then the first condition of the theorem holds.
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If ub(Ni) is adjusted in line 14 or 25, the resulting value of ub(Ni), assuming that

closest(Ni) = c j, is

ub(Ni) = ubl(Ni) + m j (186)

≥ max
pq∈D

p
q

d(pq, cl
j) + m j (187)

≥ max
pq∈D

p
q

d(pq, c j) (188)

where the last step follows by the triangle inequality: d(c j, cl
j) = m j. Therefore those two

updates to ub(Ni) result in valid upper bounds for next iteration. If ub(Ni) is recalculated,

in line 21, then we are guaranteed that ub(Ni) is valid because

dmax(Ni, c j) ≥ max
pq∈D

p
q

d(pq, c j). (189)

We may therefore conclude that ub(Ni) is correct for the root of the tree, because line 8

can never be reached. Reasoning recursively, we can see that any upper bound passed from

the parent must be valid. Therefore, the first item of the lemma holds.

Next, we will consider the lower bound, using a similar strategy. We must show that

lb(Ni) ≤ min
pq∈D

p
q

min
cp∈Cp

d(pq, cp) (190)

where Cp is the set of centroids pruned by Ni and ancestors during the last dual-tree traver-

sal. The lower bound can be taken from the parent in line 10 and adjusted, it can be adjusted

before a prune attempt in line 15 or in a similar way without a prune attempt in line 26.

The last adjustment can easily be shown to be valid:

lb(Ni) = lbl(Ni) −max
k

mk (191)

≤

(
min
pq∈D

p
q

min
cp∈Cp

d(pq, cl
p)
)
−max

k
mk (192)

≤ min
pq∈D

p
q

min
cp∈Cp

d(pq, cp) (193)
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which follows by the triangle inequality: d(cl
p, cp) ≤ maxk mk. Line 15 is slightly more

complex; we must also consider the term mink, j d(ck, c j)/2. Suppose that

min
k, j

d(ck, c j)/2 > lbl(Ni) + max
k

mk. (194)

We may use the triangle inequality (d(pq, ck) ≤ d(c j, ck) + d(pq, c j)) to show that if

this is true, the second closest centroid ck is such that d(pq, ck) > 2d(ck, c j) and therefore

mink, j d(ck, c j)/2 is also a valid lower bound. We can lastly use the same recursive argu-

ment from the upper bound case to show that the second item of the lemma holds.

Showing the correctness of canchange(Ni) is straightforward: we know that ub(Ni) and

lb(Ni) are valid for next iteration by the time any checks to set canchange(Ni) to false

happens, due to the discussion above. The situations where canchange(Ni) is set to false,

in line 16 and 22, are simply applications of Equations 176 and 178, and are therefore valid.

There are two other ways canchange(Ni) can be set to false. The first is on line 10, and

this is easily shown to be valid: if a parent’s owner cannot change, then a child’s owner

cannot change either. The other way to set canchange(Ni) to false is in line 27. This is

only possible if all points in Pi and all children of Ni have canchange(·) set to false; thus,

no descendant point of Ni can change owner next iteration, and we may set canchange(Ni)

to false.

Next, we must show that canchange(pi) = false only if the owner of pi cannot change

next iteration. If canchangel(pi) = true, then due to Lemma 7, ubl(pi) and lbl(pi) will be

valid bounds. In this case, we may use similar reasoning to show that ub(pi) and lb(pi)

are valid, and then we may see that the pruning attempts at line 9 and 14 are valid. Now,

consider the other case, where canchangel(pi) = false. Then, ubl(pi) and lbl(pi) will not

have been modified by the dual-tree traversal, and will hold the values set in the previous

run of UpdateTree(). As long as those values are valid, then the fourth item holds.

The checks to see if canchange(pi) can be set to false (from lines 4 to 20) are only

reached if canchange(Ni) is true. We already have shown that ub(pi) and lb(pi) are set
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correctly in that stanza. The other case is if canchange(Ni) is false. In this case, lines 21

to 25. It is easy to see using similar reasoning to all previous cases that these lines result in

valid ub(pi) and lb(pi). Therefore, the fourth item does hold.

The fifth item is taken care of in line 18 and 19. Given some point pi with canchange(pi)

set totrue, and where pi does not belong to any node Ni where canchange(Ni) = false,

these two lines must be reached, and therefore the fifth item holds.

The last item holds trivially—any node Ni where canchange(Ni) = true will have

pruned(Ni) set to 0 on line 29. �

Showing that the three auxiliary methods CoalesceTree(), DecoalesceTree(), and

UpdateCentroids() function correctly follows directly from the algorithm descriptions.

Therefore, we are ready to show the main correctness result.

Theorem 18. A single iteration of dual-tree k-means as given in Algorithm 38 will produce

exactly the same results as the standard brute-force O(kN) implementation.

Proof. We may use the previous lemmas to flesh out our earlier proof sketch.

First, we know that the dual-tree algorithm (line 9) produces correct results for ub(·),

lb(·), pruned(·), and closest(·) for every point and node, due to Lemma 7. Next, we know

that UpdateTree() maintains the correctness of those four quantities and only marks

canchange(·) to false when the node or point truly cannot change owner, due to Lemma 8.

Next, we know from earlier discussion that CoalesceTree() and DecoalesceTree() do

not affect the results of the dual-tree algorithm because the only nodes and points removed

are those where canchange(·) = false. We also know that UpdateCentroids() pro-

duces centroids correctly. Therefore, the results from Algorithm 38 are identical to those

of a brute-force O(kN) k-means implementation. �

7.8.6.2 Per-iteration runtime bound

Next, we consider the runtime of the algorithm, using adaptive algorithm analysis tech-

niques in order to bound the per-iteration running time of Algorithm 38. In order to use
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these techniques, this runtime bound assumes the use of the cover tree and the standard

pruning cover-tree traversal (see Algorithm 8).

These bounds are based on techniques and quantities introduced comprehensively in

Section 5.2 and in other works [57, 135, 133]; the results are with respect to the expansion

constant ck of the centroids, which is a measure of intrinsic dimension. cqk is a related

quantity: the largest expansion constant of C plus any point in the dataset. Our results also

depend on the imbalance of the tree it(T ), which in practice generally scales linearly in N

[135].

We may first use the runtime bound result from nearest neighbor search (Section 7.1.4)

to bound the running time of the dual-tree algorithm part of dual-tree k-means.

Theorem 19. The dual-tree k-means algorithm with BaseCase() as in Algorithm 39 and

Score() as in Algorithm 40, with a point set S q that has expansion constant cq and size

N, and k centroids C with expansion constant ck, takes no more than O(c4
kc5

qk(N + it(Tq)))

time.

Proof. Both Score() and BaseCase() for dual-tree k-means can be performed in O(1)

time. In addition, the pruning of Score() for dual-tree k-means is at least as tight as

Score() for nearest neighbor search: the pruning rule in Equation 176 is equivalent to the

pruning rule for nearest neighbor search. Therefore, dual-tree k-means can visit no more

nodes than nearest neighbor search would with query set S q and reference set C. Lastly,

note that the range of pairwise distances of C will be entirely contained in the range of

pairwise distances in S q, to see that we can use the result of Theorem 4. Adapting that

result, then, yields the statement of the algorithm. �

The expansion constant of the centroids, ck, can be expected to behave similarly to

the expansion constant cq of the dataset, because the centroids will arise from a similar

distribution as the points. It is thus reasonable to assume ck does not scale with k, if it is

already assumed that cq does not scale with N. It is also reasonable to assume cqk does not
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scale with N or k, for the same reasons.

Next, we turn to bounding the entire algorithm.

Theorem 20. A single iteration of the dual-tree k-means algorithm on a dataset S q using

the cover tree T , the standard cover tree pruning dual-tree traversal, BaseCase() as

given in Algorithm 39, Score() as given in Algorithm 40, will take no more than

O(c4
kc5

qk(N + it(T )) + c9
kk log k) (195)

time, where ck is the expansion constant of the centroids, cqk is defined as in Theorem 19,

and it(T ) is the imbalance of the tree as defined in Definition 10.

Proof. Consider each of the steps of the algorithm individually:

• CoalesceNodes() can be performed in a single pass of the cover tree N , which

takes O(N) time.

• Building a tree on the centroids (Tc) takes O(c6
kk log k) time due to the result for cover

tree construction time [57].

• The dual-tree algorithm takes O(c4
kc5

qk(N + it(T ))) time due to Theorem 19.

• DecoalesceNodes() can be performed in a single pass of the cover tree N , which

takes O(N) time.

• UpdateCentroids() can be performed in a single pass of the cover tree N , so it

also takes O(N) time.

• UpdateTree() depends on the calculation of how much each centroid has moved;

this costs O(k) time. In addition, we must find the nearest centroid of every centroid;

this is nearest neighbor search, and we may use the runtime bound for monochro-

matic nearest neighbor search for cover trees from [133], so this costs O(c9
kk) time.

Lastly, the actual tree update visits each node once and iterates over each point in
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the node. Cover tree nodes only hold one point, so each visit costs O(1) time, and

with O(N) nodes, the entire update process costs O(N) time. When we consider the

preprocessing cost too, the total cost of UpdateTree() per iteration is O(c9
kk + N).

We may combine these into a final result:

O(N) + O(c6
kk log k) + O(c4

kc5
qk(N + it(T ))) + O(N) + O(N) + O(c9

kk + N) (196)

and after simplification, we get the statement of the theorem:

O(c4
kc5

qk(N + it(T )) + c9
kk log k). (197)

�

Therefore, we see that under some assumptions on the data, we can bound the runtime

of the dual-tree k-means algorithm to something tighter than O(kN) per iteration. As ex-

pected, we are able to amortize the cost of k across all N nodes, giving amortized O(1)

search for the nearest centroid per point in the dataset. This is similar to the results for

nearest neighbor search, which obtain amortized O(1) search for a single query point. Also

similar to the results for nearest neighbor search is that the search time may, in the worst

case, degenerate to O(kN + k2) when the assumptions on the dataset are not satisfied. How-

ever, empirical results [67, 61, 68, 57] show that well-behaved datasets are common in the

real world, and thus degeneracy of the search time is uncommon.

Comparing this bound with the bounds for other k-means algorithms is somewhat diffi-

cult; first, none of the other algorithms have bounds which are adaptive to the characteristics

of the dataset. It is possible that the blacklist algorithm could be refactored to use the cover

tree, but even if that was done it is not completely clear how the running time could be

bounded. How to apply the expansion constant to an analysis of Hamerly’s algorithm and

Elkan’s algorithm is also unclear at the time of this writing.
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Lastly, the bound we have shown above is potentially loose. We have reduced dual-tree

k-means to the problem of nearest neighbor search, but our pruning rules are tighter. Dual-

tree nearest neighbor search assumes that every query node will be visited (this is where

the O(N) in the bound comes from), but dual-tree k-means can prune a query node entirely

if all but one cluster is pruned (Strategy 2). These bounds do not take this pruning strategy

into account, and they also do not consider the fact that coalescing the tree can greatly

reduce its size. These would be interesting directions for future theoretical work.

7.8.6.3 Memory usage bounds

Bounding the memory usage of dual-tree k-means is comparatively a walk in the park.

Theorem 21. Algorithm 38 uses no more than O(N +k) memory when cover trees are used.

Proof. This proof is straightforward. Because a cover tree on N points takes O(N) space,

holding the tree built on the points and all associated bounds takes O(N) space. Holding

the tree built on the centroids takes O(k) space. The dataset takes O(N) space, and the

centroids take O(k) space. Therefore, the theorem holds. �

7.8.7 Experiments

The next thing to consider is the empirical performance of the algorithm. The kmeans

program in mlpack [87] implements each of the k-means algorithms we have discussed to

this point. In our experiments, we run it as follows:

$ kmeans -i dataset.csv -I centroids.csv -c $k -v -e -a $algorithm

where $k is the number of clusters and $algorithm is one of a handful of choices:

• elkan: Elkan’s algorithm [220],

• hamerly: Hamerly’s algorithm [221],

• blacklist: Pelleg and Moore’s blacklist algorithm [39],
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Table 25: Dataset information for dual-tree k-means.

tree build time
Dataset N d kd-tree cover tree
cloud 2048 10 0.001s 0.005s

cup98b 95413 56 1.640s 32.41s
birch3 100000 2 0.037s 2.125s

phy 150000 78 4.138s 22.99s
power 2075259 7 7.342s 1388s
lcdm 6000000 3 4.345s 6214s

• dualtree-kd: the dual-tree algorithm using kd-trees, and

• dualtree-ct: the dual-tree algorithm using cover trees.

Each algorithm is implemented in C++ in the same framework, so no algorithm has

an implementation quality advantage. We use a variety of k values on mostly real-world

datasets; details are shown in Table 25. These datasets are each from the UCI dataset

repository [134], with the exception of the (synthetic) birch3 dataset [145] and the LCDM

dataset [146]. Table 25 also contains the time taken to build a kd-tree (for blacklist and

dualtree-kd) and a cover tree (for dualtree-ct). Cover tree construction is signifi-

cantly more complex than kd-tree construction21; this accounts for the long cover tree build

time. Even so, the tree only needs to be built once during the k-means run. If results are

required for multiple values of k—such as in the X-means algorithm [229]—then the tree

built on the points may be re-used.

Average runtime per iteration results are shown in Table 26. The amount of work that

is being pruned away is somewhat unclear from the runtime results, because the elkan and

hamerly algorithms access points linearly and thus benefit from cache effects; this is not

true of the tree-based algorithms. Therefore, the average number of distance calculations

per iteration are also included in the results.

21Izbicki and Shelton recently proposed a parallel cover tree construction algorithm which might be useful
in this situation [228]. They also provide a few improvements to the cover tree construction algorithm which
can make search faster for nearest neighbor search; whether or not those improvements would be useful here
is as of yet unknown, but in my personal opinion it’s at least worth trying someday.
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Table 26: Empirical results for k-means.

avg. per-iteration runtime (distance calculations)
dataset k iter. elkan hamerly blacklist dualtree-kd dualtree-ct

cloud 3 8 1.50e-4s (867) 1.11e-4s (1.01k) 4.68e-5s (302) 1.27e-4s (278) 2.77e-4s (443)
cloud 10 14 2.09e-4s (1.52k) 1.92e-4s (4.32k) 1.55e-4s (2.02k) 3.69e-4s (1.72k) 5.36e-4s (2.90k)
cloud 50 19 5.87e-4s (2.57k) 5.30e-4s (21.8k) 8.20e-4s (12.6k) 1.23e-3s (5.02k) 1.09e-3s (9.84k)

cup98b 50 224 0.0445s (25.9k) 0.0557s (962k) 0.0409s (277k) 0.0955s (254k) 0.1089s (436k)
cup98b 250 168 0.1972s (96.8k) 0.4448s (8.40M) 0.2033s (1.36M) 0.4585s (1.38M) 0.3237s (2.73M)
cup98b 750 116 1.1719s (373k) 1.8778s (36.2M) 0.6365s (4.11M) 1.2847s (4.16M) 0.8056s (81.4M)
birch3 50 129 0.0194s (24.2k) 0.0093s (566k) 0.0030s (42.7k) 0.0082s (37.4k) 0.0378s (67.9k)
birch3 250 812 0.0895s (42.8k) 0.0314s (2.59M) 0.0164s (165k) 0.0183s (79.7k) 0.0485s (140k)
birch3 750 373 0.3253s (292k) 0.0972s (8.58M) 0.0554s (450k) 0.02989s (126k) 0.0581s (235k)

phy 50 34 0.0668s (82.3k) 0.1064s (1.38M) 0.0081s (33.0k) 0.02689s (67.8k) 0.0945s (188k)
phy 250 38 0.1627s (121k) 0.4634s (6.83M) 0.0249s (104k) 0.0398s (90.4k) 0.1023s (168k)
phy 750 35 0.7760s (410k) 2.9192s (43.8M) 0.2478s (1.19M) 0.2939s (1.10M) 0.3330s (1.84M)

covertype 50 405 0.2660s (180k) 0.1970s (3.13M) 0.1220s (747k) 0.1951s (419k) 0.4252s (656k)
covertype 100 455 0.4625s (224k) 0.5347s (9.71M) 0.2025s (1.15M) 0.3152s (754k) 0.5523s (1.31M)
covertype 500 1000 2.0546s (295k) 3.4966s (69.0M) 0.7583s (3.49M) 0.8989s (2.12M) 0.8890s (4.12M)

power 25 4 0.3872s (2.98M) 0.2880s (12.9M) 0.0301s (216k) 0.0950s (87.4k) 0.6658s (179k)
power 250 101 2.6532s (425k) 0.1868s (7.83M) 0.1504s (1.13M) 0.1354s (192k) 0.6405s (263k)
power 1000 870 out of memory 6.2407s (389M) 0.6657s (2.98M) 0.4115s (1.57M) 1.1799s (4.81M)
power 5000 504 out of memory 29.816s (1.87B) 4.1597s (11.7M) 1.0580s (3.85M) 1.7070s (12.3M)
power 15000 301 out of memory 111.74s (6.99B) out of memory 2.3708s (8.65M) 2.9472s (30.9M)
lcdm 500 507 out of memory 6.4084s (536M) 0.9347s (4.20M) 0.7574s (3.68M) 2.9428s (7.03M)
lcdm 1000 537 out of memory 16.071s (1.31B) 2.0345s (5.93M) 0.9827s (5.11M) 3.3482s (10.0M)
lcdm 5000 218 out of memory 64.895s (5.38B) 12.909s (16.2M) 1.8972s (8.54M) 3.9110s (19.0M)
lcdm 20000 108 out of memory 298.55s (24.7B) out of memory 4.1911s (17.8M) 5.5771s (43.2M)

It is immediately clear that for large datasets, the dualtree-kd algorithm is fastest,

and the dualtree-ct algorithm is almost as fast. However, for small datasets, the extra

overhead of tree construction and tree traversal is not sufficient to provide good speedup.

The elkan algorithm, because it holds kN bounds, is able to prune away a huge amount of

work; however, maintaining all of these bounds becomes prohibitive with large k and the

algorithm exhausts all available memory. The same is true of the blacklist algorithm:

on the largest datasets, with the largest k values, the space required to maintain blacklists

for each node in the stack is too much. The hamerly and dual-tree algorithms, on the other

hand, are the best-behaved with memory usage and do not have any issues with large N or

large k; however, the hamerly algorithm is very slow on large datasets because it is not

able to prune many points at once.
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Similar to the observations about the blacklist algorithm, the tree-based approaches

are less effective in higher dimensions [39]. In our results, though, we do still see compet-

itive speedup in datasets up to a hundred dimensions or so.

Another clear observation is that when k is scaled on a single dataset, the dualtree-kd

and dualtree-ct algorithms nearly always scale better (in terms of runtime) than the other

algorithms. These results show that our algorithm satisfies its original goals: to be able to

scale effectively to large k and N.

7.8.8 Future directions

Using four pruning strategies, we have developed a flexible, tree-independent dual-tree

k-means algorithm that is the best-performing algorithm for large datasets and large k in

small-to-medium dimensions. It is theoretically favorable, with the first provably sub-

O(kN) bounds (though these depend on dataset-dependent constants), has a small memory

footprint, and may be used in conjunction with initial point selection and approximation or

sampling schemes to provide additional speedup.

There are still interesting future directions to pursue, though. The first direction is

parallelism: because our dual-tree algorithm is agnostic to the type of traversal used, we

may use a parallel traversal [28], such as an adapted version of a recent parallel dual-tree

algorithm [76]. This parallelism can either be at the single-node level, allowing faster

clustering on a single system, or at a larger scale, allowing distributed k-means clustering

on a large set of systems. Potentially, this could allow k-means to be an effective strategy

for extremely large data which traditionally has been handled with single-pass algorithms.

The second direction is kernel k-means and other spectral clustering techniques: it is

possible to merge the dual-tree algorithm here with ideas from the dual-tree algorithm for

max-kernel search to perform kernel k-means. This work thus opens promising avenues to

further accelerated clustering algorithms. In addition, because spectral clustering has a con-

nection to nonnegative matrix factorization [166], there may be further extensions in that

direction: it may be possible to adapt the k-means algorithm given here to the seemingly
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completely different problem of matrix factorization for fast collaborative filtering.
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CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

Throughout this thesis three things have been quite clear:

1. There is no end of large-scale statistical problems, and ‘large-scale’ is getting larger

every day.

2. Hierarchical representations (trees) can provide alleviation to these large-scale prob-

lems.

3. Most of these tree-based approaches have some serious similarity.

It is rooted in this perspective that the contributions of this thesis are most apparent and

resonant. By unifying the class of dual-tree algorithms in Chapter 3 (and also the class

of single-tree algorithms), the path to improvement becomes deobfuscated. The logical

split of a dual-tree algorithm into a type of space tree, pruning dual-tree traversal, and

problem-specific BaseCase() and Score() functions allows consideration of each piece

individually, as opposed to intertwined (which was the way of most previous improve-

ments).

Chapter 4 showed how the mlpack library can exploit this logical split to provide a

clean interface for programmers and an efficient library for users; then, each subsequent

chapter detailed improvements for one of the three pieces of dual-tree algorithms: Chapter

5 focused on the improvement of trees—primarily theoretical improvemnts. Chapter 6 de-

tailed an improved dual depth-first traversal that can be applied to any situation. Chapter

7, by far the longest, detailed a cabal of problems that can be solved with dual-tree al-

gorithms, describing each one as a combination of a BaseCase() and Score() function.

Although in many cases empirical results were shown for only one or two types of trees,

it cannot be emphasized enough that these BaseCase() and Score() functions can be
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used with any combination of tree type and traversal. mlpack exploits this fact, providing

easily-configurable yet fast algorithms.

The original thesis statement, laid clear in Chapter 1, states that we may improve and

expand the class of dual-tree algorithms by focusing on and providing improvements for

each of the three independent components of a dual-tree algorithm. All of the evidence in

the past horde of pages supports this statement, and therefore I consider my justification of

the thesis complete.

But, I am not yet done writing. No work is ever complete, and I think it is important to

highlight a few issues in the field of tree-based algorithms that warrant further investigation.

High-dimensional data structures. It is well-known that trees scale poorly to high

dimensions. Yet, a large amount of data today exists in high dimensions (thousands or

more), and traditional tree-based techniques for search are mostly ineffective. Hashing

techniques can often provide decent results in high dimension, but these are still not near

the speedups seen for low-dimensional datasets with trees.

Automatic selection of algorithm components. One notable disadvantage of the tree-

independent dual-tree algorithm abstraction is that it now burdens the practitioner with

the choice of tree, the choice of traversal, and the choice of problem to solve (though a

practitioner will generally know what problem they want to solve). Especially with the

number of choices available, making an informed choice is something of a daunting task

that requires a large amount of experimentation. However, simple heuristics like those

employed by Muja and Lowe [206] could provide at least a partial solution to this problem

and help to assemble an auto-tuned black box that generally makes decent choices for the

parameters. For this to happen, though, a better understanding of the dataset characteristics

that make trees more or less effective is required.

More reasonable and tight runtime bounds. The expansion constant is to date the

only quantity that has allowed more descriptive runtime bounds for dual-tree algorithms.

However, it has some serious drawbacks: it is sensitive to individual points and outliers,

228



it is extremely time-consuming to calculate1, and it is not necessarily a great indicator of

the performance of trees [57]. Worse yet, the bounds that are shown are with respect to

particularly large powers of the expansion constant. These bounds are useful in that they

show the scaling properties of the algorithm, but they are not useful in practice, for the

reasons listed above. A more robust notion of intrinsic dimensionality could pave the way

towards better and more practically usable runtime bounds for dual-tree algorithms.

To my mind, these three issues are the most important issues that need to be addressed

in the tree-based algorithm literature, and it is my hope that in the time that follows, I will

be able to make attempts at solving these problems.

1There is a relatively straightforward O(N2 log N) algorithm to do this calculation; but it would be difficult
to make it any faster while still being exact, which it would need to be.
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