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Abstract. Nearest neighbor search is a nearly ubiquitous problem in
computer science. When nearest neighbors are desired for a query set
instead of a single query point, dual-tree algorithms often provide the
fastest solution, especially in low-to-medium dimensions (i.e. up to a
hundred or so), and can give exact results or absolute approximation
guarantees, unlike hashing techniques. Using a recent decomposition of
dual-tree algorithms into modular pieces, we propose a new piece: an
improved traversal strategy; it is applicable to any dual-tree algorithm.
Applied to nearest neighbor search using both kd-trees and ball trees, the
new strategy demonstrably outperforms the previous fastest approaches.
Other problems the traversal may easily be applied to include kernel
density estimation and max-kernel search.

1 Introduction

The task of nearest neighbor search arises continually in machine learning, data
mining, and related domains. For instance, many computer vision algorithms re-
quire forms of similarity search [1]; recommendation systems may use k-nearest-
neighbor search internally: BellKor’s Netflix prize solution does this [2]. Nearest
neighbors are also often used in machine learning applications as simple clas-
sifiers [3]; more advanced machine learning techniques may also depend on the
calculation of nearest neighbors [4].

To formally describe the problem, take Sr to be the reference set. The nearest
neighbor search task is, for a given query point pq, find argminpr∈Sr

d(pq, pr) for
some metric d(·, ·).1 The most straightforward technique for solving this problem
is a linear scan over all points in Sr, but for large Sr—or for situations where
answers are desired not just for one query point pq but instead an entire query
set Sq—this approach is computationally infeasible. Given |Sr| = N , a result for
a single query point pq takes O(N) time.

Owing to both this computational difficulty and the wide applicability of
nearest neighbor search, much ink has been spilled describing fast algorithms to
solve the nearest neighbor search problem. The first fast algorithms for nearest-
neighbor search were based on tree structures [5] [6], where some type of tree

1 Extending this to the k-nearest neighbor search task is straightforward: replace
argmin with k argmin.



structure is built on the reference set Sr and then, to find the nearest neigh-
bor of a query point pq, a branch-and-bound algorithm is used. Other popular
approaches include the use of nets [7] and also locality-sensitive hashing [8] [9]
[10]. In general, nets and hashing give approximate solutions, whereas tree-based
approaches can give both approximate and exact solutions.

In the situation where there is a query set Sq and not just a single query
point pq, it often makes sense to build a tree on both the reference set Sr and the
query set Sq, and simultaneously traverse both the query and reference trees.
This type of approach is known as a dual-tree algorithm [11] [12], and is generally
the fastest known way to perform nearest-neighbor search, for sufficiently large
query sets in low-to-medium dimensions (i.e. up to a hundred or so, depending
on the type of tree and the properties of the dataset). Further, when cover trees
are used, and Sq ∼ O(N), search time for all points in Sq is worst-case O(N)
[13] [14]; though, this bound depends on dataset-dependent quantities.

Dual-tree algorithms exist for problems other than nearest neighbor search;
some examples include range search [12], kernel density estimation [15], minimum
spanning tree calculation [16], mean shift clustering [17], kernel summations [18],
max-kernel search [19], and other problems [20] [21] [22]. Thus, results for any
dual-tree algorithm are often readily applied to other dual-tree algorithms.

Curtin et al. recently proposed a generalizing abstraction for all dual-tree
algorithms, which allows dual-tree algorithms to be understood as four separate
components: a type of tree, a dual-tree traversal, a problem-specific pruning rule,
and a problem-specific base case [12]. This convenient, modular abstraction lets
us focus on only one component at a time, independent of the other three pieces.

For tree-based nearest neighbor search, whether single-tree or dual-tree, the
order that tree nodes are visited makes a noticeable difference in both the quality
of the results (for approximate search) and the speed of the results. This is
why single-tree algorithms such as the original kd-tree nearest neighbor search
algorithm [5] first recurse into the nearest node to a query point.

In this paper, we exploit the tree-independent dual-tree algorithm abstraction
in order to develop an improved general depth-first dual-tree traversal. By apply-
ing this traversal to the problem of nearest-neighbor search, we obtain significant
speedup over previous dual-tree traversal strategies, and outperform competing
strategies, such as single-tree search and LSH, in both the approximate and ex-
act nearest neighbor search tasks. Because of the traversal’s generality, it can be
applied to problems other than just nearest neighbor search.

2 Trees

First, we must introduce the concepts underlying dual-tree algorithms more for-
mally, and we must also introduce notation. As in [12] and more recent contribu-
tions [14] [23], we will use the tree-independent dual-tree algorithm framework.
This means that given some dual-tree algorithm that works on a set of query
points Sq and a set of reference points Sr, we may understand this algorithm as
the combination of four distinct parts:

– A type of space tree.



– A pruning dual-tree traversal, which visits combinations of nodes from the
query tree and reference tree, and is parameterized by a BaseCase() and
Score() function.

– A Score() function, which determines if a combination of two nodes can be
pruned.

– A BaseCase() function, which defines the action to take on a combination
of query point and reference point.

If we have each of these four pieces, then, we may assemble a dual-tree
algorithm: using a pruning dual-tree traversal with the given BaseCase() and
Score() functions on two space trees that are built on the query and reference
sets will yield a working dual-tree algorithm. A formal definition of each of these
components is necessary for complete understanding. These definitions are taken
from the original introduction of Curtin et. al. [12].

Definition 1 A space tree on a dataset S ∈ Rn×d is a rooted, undirected, con-
nected, acyclic simple graph satisfying the following properties:

– Each node (or vertex) holds a number of points (possibly zero) and is con-
nected to one parent node and a number of child nodes (possibly zero).

– There is one node in every space tree with no parent; this is the root of the
tree.

– Each point in S is contained in at least one node of the tree.
– Each node N of the tree corresponds to a convex subset of Rd that con-

tains each of the points in the node as well as each of the convex subsets
corresponding to each child of the node.

Most tree structures in the literature fall under the umbrella definition of
a space tree: kd-trees [5], PCA trees, metric trees, cover trees, R trees and
variants, and even spill trees [24], where the subsets of child nodes are allowed
to overlap. In this document formal script letters will be used to notate trees
and corresponding quantities; this is the same notation used in [12]. In specific,

– A node in a tree will be denoted with the letter N .
– For some node Ni, the set of children of Ni will be denoted Ci.
– For some node Ni, the set of points contained in Ni will be denoted Pi.
– The convex subset of Rd corresponding to the node Ni will be denoted Si.
– For some node Ni, the set of descendant nodes of Ni will be denoted Dn

i .
This set is defined as C (Ni) ∪ C (C (Ni)) ∪ . . ..

– For some node Ni, the set of descendant points of Ni will be denoted Dp
i .

This set is defined as Pi ∪P(Dp
i ).

The utility of trees stems from the ability to quickly place bounds on various
distance-related quantities for a single node. Consider two space tree nodes Ni

and Nj , and suppose our task is to find the minimum distance between any two
descendant points in the nodes:

dmin(Ni,Nj) = min
pi∈Dp

i ,pj∈Dp
j

d(pi, pj). (1)



Now, suppose Si is a ball centered at some point µi ∈ Rd with radius λi,
and Sj is a ball centered at some point µj ∈ Rd with radius λj . Then, we
may easily place a lower bound: dmin(Ni,Nj) ≥ d(µi, µj)− λi − λj . This bound
may be calculated with just one distance calculation, instead of |Dp

i ||D
p
j | distance

calculations. During the traversal, bounds like the one on dmin(Ni,Nj) are often
used to prune away large amounts of work.

3 Traversals

Next, we formally introduce the notion of a dual-tree traversal, again from [12].

Definition 2 A pruning dual-tree traversal is a process that, given two space
trees Tq (the query tree, built on the query set Sq) and Tr (the reference tree,
built on the reference set Sr), will visit combinations of nodes (Nq,Nr) such
that Nq ∈ Tq and Nr ∈ Tr no more than once, and call a function Score(Nq,

Nr) to assign a score to that node. If the score is ∞ (or above some bound),
the combination is pruned and no combinations (Nqc, Nrc) such that Nqc ∈ Dn

q

and Nrc ∈ Dn
r are visited. Otherwise, for every combination of points (pq, pr)

such that pq ∈ Pq and pr ∈ Pr, a function BaseCase(pq, pr) is called. If no
node combinations are pruned during the traversal, BaseCase(pq, pr) is called
at least once on each combination of pq ∈ Sq and pr ∈ Sr.

Although the definition is quite complex, real-world dual-tree traversals tend
to be straightforward. The standard depth-first dual-tree traversal is shown in
Algorithm 1; this is the same traversal used in most dual-tree algorithms that use
the kd-tree [11] [16] [18]2 and is often used in practice [25]. Generally, a depth-
first traversal is preferred because many space trees in practice only hold points
in the leaves; breadth-first traversals do not perform well in these situations.

The traversal is originally called with the root of the query tree Tq and
the root of the reference tree Tr. First, BaseCase() is called with every pair
of query and reference points (lines 4–6). Then, for recursion, we collect a list
of combinations to recurse into, sorted by their score. Any combinations with
score ∞ are not recursed into. If both nodes have children, then we recurse into
combinations of query children and reference children. If only the reference node
has children, we recurse into combinations of the query node and the reference
children. If only the query node has children, we recurse into combinations of
the query children and the reference node. If neither node has children, there is
no need to recurse.

The algorithm first recurses into those node combinations with lowest score.
Depending on the task being solved (that is, which Score() and BaseCase()

functions are being used), this prioritized approach to recursion can provide
significant speedup over unprioritized recursion. For nearest neighbor search, a
prioritized recursion gives significantly faster results.

2 The algorithms in each of the referenced papers tend to look very different because
they are not derived in a tree-independent form, but using the kd-tree with the
traversal in Algorithm 1 and simplifying will yield the same algorithm.



Algorithm 1 DualDepthFirstTraversal(Nq, Nr).

1: Input: query node Nq, reference node Nr

2: Output: none

3: {Perform base cases for points in node combination.}
4: for all pq ∈Pq do
5: for all pr ∈Pr do
6: BaseCase(pq, pr)

7: {Assemble list of combinations to recurse into.}
8: q ← empty priority queue
9: if Nq and Nr both have children then

10: for all Nqc ∈ Cq do
11: for all Nrc ∈ Cr do
12: si ← Score(Nqc,Nrc)
13: if si 6=∞ then push (Nqc,Nrc) into q with priority 1/si
14: else if Nq has children but Nr does not then
15: for all Nqc ∈ Cq do
16: si ← Score(Nqc,Nr)
17: if si 6=∞ then push (Nqc,Nr) into q with priority 1/si
18: else if Nq does not have children but Nr does then
19: for all Nrc ∈ Cr do
20: si ← Score(Nq,Nrc)
21: if si 6=∞ then push (Nq,Nrc) into q with priority 1/si

22: {Recurse into combinations with highest priority first.}
23: for all (Nqi,Nri) ∈ q, highest priority first do
24: DualDepthFirstTraversal(Nqi, Nri)

4 Nearest neighbor search

With the notions of space tree and dual-tree traversal established, we may now
introduce the problem-specific BaseCase() and Score() functions used to per-
form dual-tree nearest neighbor search. These are the same rules introduced by
Curtin et. al. [12] and used in mlpack [25]. The rules depend on auxiliary arrays
N and D; during the traversal, N [pq] holds the current nearest neighbor candi-
date for query point pq, and D[pq] holds d(pq, N [pq]). At the beginning of the
traversal, each element in D is initialized to∞. At the end of the traversal, N [pq]
will hold the nearest neighbor of pq, and D[pq] will hold the distance between pq
and its nearest neighbor.

The BaseCase() function (Algorithm 2) receives a query point pq and a
reference point pr as input. The distance between the points is calculated, and if
this is better than the current best candidate distance for pq, d(pq, pr) is taken as
the new best candidate distance and pr as the new nearest neighbor candidate.

The Score() function is significantly more complex due to the bound func-
tion Bdf (Nq)3. Given a query node Nq and a reference node Nr, we can prune

3 Our formulation here is specialized for depth-first traversals, unlike some more gen-
eral formulations [12]. We are only considering depth-first traversals in this work,
though, so there is no need to introduce a more complicated bound function.



Algorithm 2 BaseCase(pq, pr) for nearest neighbor search.

1: Input: query point pq, reference point pr, candidate point N [pq], candidate dis-
tance D[pq]

2: Output: none

3: if d(pq, pr) < D[pq] then
4: N [pq]← pr
5: D[pq]← d(pq, pr)

Algorithm 3 Score(Nq, Nr) for nearest neighbor search.

1: Input: query node Nq, reference node Nr

2: Output: a score for the node combination (Nq,Nr), or ∞ if it should be pruned

3: if dmin(Nq,Nr) > Bdf (Nq) then
4: return ∞
5: return dmin(Nq,Nr)

if we can determine that no descendant point of Nr can possibly be the near-
est neighbor of any descendant point of Nq. If we had perfect knowledge, this
condition is easily expressed; we would prune if

dmin(Nq,Nr) > max
pq∈Dp

q

D[pq]. (2)

But of course, because this requires looping over every descendant point in
Nq, we cannot calculate this every time Score() is called. Instead, we can use
caching. Define the depth-first traversal bound function, Bdf (Nq), recursively:

Bdf (Nq) = max

{
max
pq∈Pq

D[pq], max
Nqc∈Cq

Bdf (Nqc)

}
. (3)

When we visit a node combination (Nq,Nr), we may cache the result of
the calculation Bdf (Nq), for use by subsequent calls to Score(). Then, a call
to Score() takes just one distance calculation (dmin(Nq,Nr)) and |Pq| + |Cq|
accesses. Proving the correctness of this algorithm is straightforward.

We may use this to construct a generalized dual-tree algorithm for nearest
neighbor search. Any type of space tree can be paired with any type of pruning
dual-tree traversal that uses the BaseCase() and Score() above, and correct
nearest-neighbor search results will be obtained. With this algorithm established,
we will now turn towards improving the depth-first dual-tree recursion strategy.

5 Delaying reference recursion

Algorithm 1 is the standard depth-first dual-tree traversal that is used in prac-
tice, and it prioritizes recursions: node combinations with lower scores (from
Score()) are recursed into first. So, for instance, consider nearest neighbor
search, where the result of Score(), if the node combination is not pruned, is
dmin(Nq,Nr). In the situation depicted in Figure 1(a), combination (Nq,Nr1)
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Fig. 1. Different situations for recursion.

should be visited before combination (Nq,Nr2). It is clear that this is the right
choice, because a depth-first traversal of (Nq,Nr1) is more likely to tighten the
bound Bdf (Nq) such that (Nq,Nr2) can be pruned when it is recursed into.

But, consider a more tricky case, depicted in Figure 1(b). Here, dmin(Nq,Nr1) =
dmin(Nq,Nr2) = 0, so we are unable to tell whether it is better to recurse into
(Nq,Nr1) first or into (Nq,Nr2) first. Indeed, Algorithm 1 will select arbitrarily.
This situation may occur in Algorithm 1 from lines 11 to 13 if, for a given child
query node Nqc, two or more reference children Nrc have the same score si.

We can do better than arbitrary selection. Consider some child Nqc of Nq.
Figure 1(c) shows an example Nqc. In this example, the choice is now clear: the
combination (Nqc,Nr1) should be recursed into before (Nqc,Nr2). Thus, the
correct answer to the question “should we recurse into (Nq,Nr1) or (Nq,Nr2)
first?” is to sidestep the question entirely: we should not recurse in the reference
node, but instead in the query node. Then, at the level of the query child, the
decision may be clearer.

In essence, the strategy is to delay recursion in the reference nodes until it is
clear which reference node should be recursed into first. This improvement, once
generalized, is encapsulated in Algorithm 4. Lines 15–20 check if reference recur-
sion should be delayed because the scores of all reference children are identical.
If so, the recursion will proceed by recursing only in the queries. If necessary,
this reference recursion delay will continue until no longer possible. This delay
is not possible when the query node does not have any children. This improved
strategy can make a huge difference in the performance of the algorithm; re-
cursing into a suboptimal reference child first can cause the bound Bdf (·) to
be unnecessarily loose, whereas first recursing into the best reference child will
tighten Bdf (·) more quickly and possibly allow other reference children to be
pruned entirely.

For trees such as the kd-tree where each node has two children only, the extra
implementation overhead for this strategy is trivial and simplifies to the addition
of a single if statement. However, note that there are some situations where
the modified traversal will not outperform the original prioritized traversal. For
instance, for nearest neighbor search, if the query tree is identical to the reference
tree and nodes in the tree cannot overlap, then it is very unlikely that the
situation described in Figure 1(a) will be encountered: during the recursion, the
query node will only overlap itself and possibly be adjacent to a sibling node.



Algorithm 4 ImprovedDualDepthFirstTraversal(Nq, Nr).

1: Input: query node Nq, reference node Nr

2: Output: none

3: {Perform base cases for points in node combination.}
4: for all pq ∈Pq do
5: for all pr ∈Pr do
6: BaseCase(pq, pr)

7: {Assemble list of combinations to recurse into.}
8: q ← empty priority queue
9: if Nq and Nr both have children then

10: for all Nqc ∈ Cq do
11: qqc ← {}
12: for all Nrc ∈ Cr do
13: si ← Score(Nqc,Nrc)
14: if si 6=∞ then push (Nqc,Nrc, si) into qqc
15: if all elements of qqc have identical score then
16: si ← Score(Nqc,Nr)
17: push (Nqc,Nr) into q with priority 1/si
18: else
19: for all (Nqi,Nri, si) ∈ qqc do
20: push (Nqi,Nri) into q with priority 1/si
21: else if Nq has children but Nr does not then
22: for all Nqc ∈ Cq do
23: si ← Score(Nqc,Nr)
24: if si 6=∞ then push (Nqc,Nr) into q with priority 1/si
25: else if Nq does not have children but Nr does then
26: for all Nrc ∈ Cr do
27: si ← Score(Nq,Nrc)
28: if si 6=∞ then push (Nq,Nrc) into q with priority 1/si

29: {Recurse into combinations with highest priority first.}
30: for all (Nqi,Nri) ∈ q, highest priority first do
31: ImprovedDualDepthFirstTraversal(Nqi, Nri)

6 Experiments

To test the efficiency of this strategy, we will observe the performance of our
recursion strategy on the tasks of exact and approximate nearest neighbor search,
with multiple types of trees, and with many different datasets. For approximate
search, we compare with LSH (locality-sensitive hashing). The datasets utilized
in these experiments are described in Table 1. Each dataset is from the UCI
dataset repository [26], with the exception of the birch3 dataset [27], LCDM
dataset [28], and SDSS-DR6 dataset [29].

The first test will focus on the task of exact nearest neighbor search: Al-
gorithms 2 and 3 paired with a type of tree and traversal. Using the flexible
mlpack library [25], we test with the kd-tree and the ball tree, using three
dual-tree traversal strategies: a depth-first unordered recursion (equivalent to
Algorithm 1 where the recursion priority is ignored); the standard depth-first



prioritized recursion (Algorithm 1); and our improved recursion (Algorithm 4).
In addition, a single-tree algorithm is used; this is the canonical tree-based near-
est neighbor search algorithm [5] with a prioritized recursion, run once for each
query point. The dataset is randomly split into 60% reference set and 40% query
set, and the algorithm is run ten times. The number of distance evaluations and
the total runtime are collected. Table 2 shows the average number of distance
calculations for each algorithm and the average runtime for each algorithm.

Dataset n d
cloud 2048 10
winequality 6497 11
birch3 100000 2
miniboone 130064 50
covertype 581012 55
power 2075259 7
lcdm 16777216 3
sdss-dr6 39761242 4

Table 1. Dataset information.

We can see from the results that our im-
provement is, in many cases, significant. In
the best case, it gives more than 2x speedup
over the next fastest strategy. This effect is es-
pecially pronounced on larger datasets, which
will have deeper trees: a bad recursion decision
early on can significantly affect the ability to
prune during the algorithm. Ball trees exhibit
less pronounced effects. This is because the
bounding structure is a ball of fixed radius,
whereas the kd-tree is adaptive in all dimen-
sions. Therefore, two child nodes of a ball tree node may overlap, causing the
improved strategy of delaying reference recursions to not pay off at lower levels.
Nonetheless, especially for large datasets, where the dual-tree strategy is faster
than the single-tree strategy, the improved traversal is a clear best choice.

The second task is approximate nearest neighbor search, and in this situation
we will also be able to compare with locality-sensitive hashing. Relative-value
approximation means that for an approximation parameter ε, we are guaranteed
for a query point pq with true nearest neighbor p∗r , the algorithm will return
an approximate nearest neighbor p̂r such that d(pq, p̂r) ≤ (1 + ε)d(pq, p

∗
r). It is

algorithm cloud winequality birch3 miniboone

kd-tree, unordered 0.036s (270k) 0.288s (2.15M) 7.310s (62.2M) 62.481s (214M)
kd-tree, prioritized 0.005s (34.2k) 0.039s (222k) 0.419s (2.90M) 25.081s (78.8M)
kd-tree, improved 0.005s (27.7k) 0.021s (104k) 0.201s (1.10M) 12.643s (34.5M)

single kd-tree 0.005s (32.9k) 0.017s (112k) 0.262s (1.65M) 6.637s (19.2M)

ball tree, unordered 0.011s (356k) 0.104s (3.08M) 1.817s (71.6M) 32.947s (616M)
ball tree, prioritized 0.003s (104k) 0.023s (666k) 0.285s (10.9M) 27.934s (514M)
ball tree, improved 0.003s (86.8k) 0.017s (455k) 0.160s (5.65M) 2.332s (351M)

single ball tree 0.002s (69.6k) 0.012s (315k) 0.165s (5.38M) 26.357s (254M)

algorithm covertype power lcdm sdss-dr6

kd-tree, unordered 302.8s (1.09B) 1163.0s (18.7B) 5628.7s (41.5B) 24717s (156B)
kd-tree, prioritized 15.823s (52.5M) 30.072s (302M) 319.871s (1.87B) 9069s (50.3B)
kd-tree, improved 4.469s (12.8M) 12.714s (200M) 71.587s (350M) 428.9s (2.14B)

single kd-tree 6.207s (16.3M) 19.684s (232M) 120.6s (476M) 471.4s (2.24B)

ball tree, unordered 163.027s (2.90B) 771.975s (25.3B) 1861.9s (71.1B) 9444s (363B)
ball tree, prioritized 52.487s (902M) 113.437s (3.90B) 386.74s (14.4B) 5202s (192B)
ball tree, improved 27.251s (392M) 83.744s (2.58B) 195.175s (6.46B) 5150s (136B)

single ball tree 29.948s (228M) 138.422s (2.49B) 402.6s (5.93B) 7226s (101B)

Table 2. Runtime (distance evaluations) for exact nearest neighbor search.



algorithm cloud winequality birch3 miniboone

kd-tree, unordered 0.005s (34.5k) [1.5] 0.025s (148k) [1.44] 0.267s (2.14M) [1.44] 6.831s (22.6M) [1.38]
kd-tree, prioritized 0.003s (17.4k) [1.5] 0.012s (74.5k) [1.5] 0.140s (1.16M) [1.5] 4.863s (15.5M) [1.38]
kd-tree, improved 0.002s (13.7k) [1.7] 0.010s (51.2k) [1.63] 0.107s (654k) [1.63] 3.360s (9.28M) [1.38]

single kd-tree 0.003s (23.2k) [2.45] 0.013s (78.0k) [2.33] 0.198s (1.47M) [2.33] 1.845s (5.75M) [1.5]

ball tree, unordered 0.002s (50.8k) [27.6] 0.007s (186k) [32.3] 0.079s (2.72M) [11.5] 2.942s (50.4M) [285]
ball tree, prioritized 0.002s (49.2k) [27.6] 0.006s (167k) [32.3] 0.072s (2.46M) [11.5] 3.266s (54.2M) [249]
ball tree, improved 0.002s (45.1k) [27.6] 0.006s (161k) [32.3] 0.072s (2.25M) [11.5] 3.494s (50.3M) [99]

single ball tree 0.002s (43.2k) [999] 0.006s (176k) [36.0] 0.111s (3.56M) [10.1] 3.812s (36.1M) [99]

multiprobe LSH 0.031s (19.3k) [20/122] 0.011s (472k) [37/33] 1.614s (8.85M) [8/16k] 175.995s (1.77B) [13/328]

algorithm covertype power lcdm sdss-dr6

kd-tree, unordered 7.796s (27.4M) [1.5] 419.725s (13.0B) [1.27] 75.432s (508M) [1.33] 512.829s (2.89B) [1.27]
kd-tree, prioritized 2.954s (10.6M) [1.5] 8.392s (189M) [1.44] 44.187s (306M) [1.38] 380.047s (2.17B) [1.27]
kd-tree, improved 2.045s (6.25M) [1.5] 11.044s (191M) [1.56] 29.069s (160M) [1.44] 242.624s (1.11B) [1.27]

single kd-tree 3.869s (11.2M) [1.86] 16.674s (226M) [2.33] 85.821s (397M) [1.78] 329.663s (1.58B) [1.27]

ball tree, unordered 2.187s (33.0M) [99] 415.964s (13.0B) [11.5] 19.776s (668M) [19] 73.638s (239M) [49]
ball tree, prioritized 2.183s (32.3M) [75.9] 6.753s (233M) [13.3] 20.158s (660M) [19] 75.687s (237M) [49]
ball tree, improved 2.539s (33.8M) [49] 8.269s (248M) [15.7] 25.749s (702M) [21.2] 299.8s (451M) [49]

single ball tree 5.496s (40.3M) [27.6] 19.097s (431M) [15.7] 113.299s (1.46B) [21.2] 2054.8s (3.06B) [19]

multiprobe LSH 130.699s (963M) [0.51] 1181.32s (14.0B) [63/9.6] timeout [14/0.968] timeout [7/0.29]

Table 3. Runtime (distance calculations) [ε or M/W ] for approximate NN search.

easy to modify the given Score() function to enforce this condition; replace the
equation in line 3 with dmin(Nq,Nr) > (1/(1 + ε))B(Nq).

After applying this change, testing is performed in the same way as for exact
nearest neighbor search. ε for each tree-based approach is selected to give an
average per-point relative error of 0.1 (±0.01) for each dataset. Because our
scheme does not allow the error for an individual point to exceed ε, the actual
relative error for an individual query point is often much lower. Thus, it is often
necessary to set ε far higher than the target average error of 0.1. For LSH, the
LSHKIT package is used, which implements multi-probe LSH and autotunes the
hashing parameters [30]. We use the suggested number of hash tables (L = 10)
and probes (T = 20), and then autotune to select the number of hash functions
(M) and bin width (W ). Autotuning failed for the larger power, lcdm, and sdss-
dr6 datasets; in these cases suggestions of the LSHKIT authors are used [31].

The results are given in Table 3. With approximation, the improved dual-
tree traversal performs fewer distance calculations on smaller datasets, and is
still dominant for the larger datasets with kd-trees. But with ball trees, the
bounds are looser and thus nodes are more likely to be overlapping. Because
only an approximate nearest neighbor is required, finding the absolute best ref-
erence child to recurse into is of less importance, and the added overhead of
delaying query recursions may not necessarily be helpful. Thus, the benefit of
the improved traversal may be related to the type of tree being used and the
problem being solved. LSH is not competitive on the larger datasets, and on the
largest datasets LSH did not complete within 3 days, but it should be noted that
the low-dimensional setting is where trees are most effective.

Overall, for large datasets in low-to-medium dimensions, dual-tree search is
faster, and the improved traversal we have proposed is the fastest. These experi-
ments, as well as further investigations (not shown here due to space constraints)
seem to show for smaller datasets, single-tree search may be fastest; for suffi-
ciently high dimensions, LSH is faster. This corroborates existing results [32]; as
the dimension of data gets higher, pruning rules become less effective. Regard-
less, in low-to-medium dimensions, the improved dual-tree traversal is dominant.



7 Conclusion

Using the recent abstraction of tree-independent dual-tree algorithms, we have
proposed a novel depth-first dual-tree traversal which compares favorably against
other techniques for exact and approximate nearest neighbor search. Addition-
ally, because of the generic nature of the traversal, it may be applied to many
problems: the traversal simply needs to be paired with a type of space tree
and Score() and BaseCase() functions. Examples of problems with existing
Score() and BaseCase() functions include kernel density estimation [12] and
max-kernel search [23]. These problems, as well as nearest neighbor search, all
stand to benefit from the improved traversal strategy we have proposed.
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