
Dual-Tree Fast Exact Max-Kernel Search

Ryan R. Curtin∗ and Parikshit Ram

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Received 10 September 2013; revised 11 December 2013; accepted 8 February 2014
DOI:10.1002/sam.11218

Published online 13 May 2014 in Wiley Online Library (wileyonlinelibrary.com).

Abstract: The problem of max-kernel search arises everywhere: given a query point pq , a set of reference objects Sr and
some kernel K, find arg maxpr ∈Sr K(pq , pr). Max-kernel search is ubiquitous and appears in countless domains of science,
thanks to the wide applicability of kernels. A few domains include image matching, information retrieval, bio-informatics,
similarity search, and collaborative filtering (to name just a few). However, there is no generalized technique for efficiently
solving max-kernel search. This paper presents a single-tree algorithm called single-tree FastMKS which returns the max-kernel
solution for a single query point in provably O(log N) time (where N is the number of reference objects), and also a dual-tree
algorithm (dual-tree FastMKS) which is useful for max-kernel search with many query points. If the set of query points is of
size O(N), this algorithm returns a solution in provably O(N) time, which is significantly better than the O(N2) linear scan
solution; these bounds are dependent on the expansion constant of the data. These algorithms work for abstract objects, as they
do not require explicit representation of the points in kernel space. Empirical results for a variety of datasets show up to five
orders of magnitude speedup in some cases. In addition, we present approximate extensions of the FastMKS algorithms that
can achieve further speedups. 2014 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 7: 229–253, 2014

Keywords: similarity search; dual-tree algorithms; branch-and-bound; cover trees; kernel trick

1. MAX-KERNEL SEARCH

One particularly ubiquitous problem in computer science
is that of max-kernel search: for a given set Sr of N objects
(the reference set), a similarity function K(·, ·), and a query
object pq , find the object pr ∈ R such that

pr = arg max
p∈Sr

K(pq , p). (1)

Often, max-kernel search is performed for a large set of
query objects Sq .

The most simple approach to this general problem is
a linear scan over all the objects in Sr . However, the
computational cost of this approach scales linearly with
the size of the reference set for a single query, making
it computationally prohibitive for large datasets. If |Sq | =
|Sr | = O(N), then this approach scales as O(N2); thus, the
approach quickly becomes infeasible for large N .

In our setting we restrict the similarity function K(·, ·)
to be a Mercer kernel. As we will see, this is not very
restrictive. A Mercer kernel is a positive semidefinite kernel

Correspondence to: Ryan R. Curtin (gth671b@mail.gatech.edu)

function; these can be expressed as an inner product in some
Hilbert space H:

K(x, y) = 〈ϕ(x), ϕ(y)〉H. (2)

Often, in practice, the space H is unknown; thus, the
mapping of x to H (ϕ(x)) for any object x is not known.
Fortunately, we do not need to know ϕ because of the
renowned “kernel trick”—the ability to evaluate inner
products between any pair of objects in the space H without
requiring the explicit representations of those objects.

Because Mercer kernels do not require explicit represen-
tations in H, they are ubiquitous and can be devised for any
new class of objects, such as images and documents (which
can be considered as points in R

D), to more abstract objects
like strings (protein sequences [1], text), graphs (molecules
[2], brain neuron activation paths), and time series (music,
financial data) [3].

As we mentioned, the max-kernel search problem
appears everywhere in computer science and related appli-
cations. The widely studied problem of image matching
in computer vision is an instance of max-kernel search
(Figure 1 presents a simple example). The size of the image

 2014 Wiley Periodicals, Inc.

230 Statistical Analysis and Data Mining, Vol. 7 (2014)

Fig. 1 Matching images: an example of max-kernel search.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

sets is continually growing, rendering linear scan compu-
tationally prohibitive. Max-kernel search also appears in
maximum a posteriori inference [4] as well as collabora-
tive filtering via the widely successful matrix factorization
framework [5]. This matrix factorization obtains an accu-
rate representation of the data in terms of user vectors and
item vectors, and the desired result—the user preference of
an item—is the inner product between the two respective
vectors (this is a Mercer kernel). With ever-scaling item
sets and millions of users [6], efficient retrieval of recom-
mendations (which is also max-kernel search) is critical for
real-world systems.

Finding similar protein/DNA sequences for a query
sequence from a large set of biological sequences is
also an instance of max-kernel search with biological
sequences as the objects and various domain-specific
kernels (for example, the p-spectrum kernel [1], the
maximal segment match score [7] and the Smith-Waterman
alignment score [8]1).

An efficient max-kernel search algorithm can be directly
applied to biological sequence matching. The field of docu-
ment retrieval—and information retrieval in general—can
be easily seen to be an instance of max-kernel search: for
some given similarity function, return the document that
is most similar to the query. Spell checking systems are
an interesting corollary of information retrieval and also an
instance of max-kernel search [9].

A special case of max-kernel search is the problem
of nearest neighbor search in metric spaces. In this

1 These functions provide matching scores for pairs of
sequences and can easily be shown to be Mercer kernels.

problem, the closest object to the query with respect to a
distance metric is sought. The requirement of a distance
metric allows numerous efficient methods for exact and
approximate nearest neighbor search, including searches
based on space partitioning trees [10–15] and other types of
data structures [16–19]. However, none of these numerous
algorithms are suitable for solving generalized max-kernel
search, which is the problem we are considering.

Given the wide applicability of kernels, it is desirable
to have a general method for efficient max-kernel search
that is applicable to any class of objects and corresponding
Mercer kernels. To this end, we present a method to
accelerate exact max-kernel search for any general class
of objects and corresponding Mercer kernels. The specific
contributions of this document (which is an extension of a
previous work [20]) are listed below.

• The first concept for characterizing the hardness of
max-kernel search in terms of the concentration of
the kernel values in any direction: the directional
concentration.

• An O(N log N) algorithm to index any set of N
objects directly in the Hilbert space defined by the
kernel without requiring explicit representations of
the objects in this space.

• Novel single-tree and dual-tree branch-and-bound
algorithms on the Hilbert space indexing, which can
achieve orders of magnitude speedups over linear
search.

• Value-approximate, order-approximate, and rank-
approximate extensions to the exact max-kernel
search algorithms.

• An O(log N) runtime bound for exact max-kernel
search for one query with our proposed single-tree
algorithm for any Mercer kernel.

• An O(N) runtime bound for exact max-kernel
search for O(N) queries with our proposed dual-tree
algorithm for any Mercer kernel.

1.1. Related Work

Although there are existing techniques for max-kernel
search, almost all of them solve the approximate search
problem under restricted settings. The most common
assumption is that the objects are in some metric space
and the kernel function is shift-invariant—a monotonic
function of the distance between the two objects (K(p, q) =

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 231

f (‖p − q‖)). One example is the Gaussian radial basis
function (RBF) kernel.

For shift-invariant kernels, a tree-based recursive algo-
rithm has been shown to scale to large datasets for maxi-
mum a posteriori inference [4]. However, a shift-invariant
kernel is only applicable to objects already represented in
some metric space. In fact, max-kernel search with a shift-
invariant kernel is equivalent to nearest neighbor search
in the input space itself, and can be solved directly using
existing methods for nearest neighbor search—an easier
and better-studied problem. For shift-invariant kernels, the
points can be explicitly embedded in some low-dimensional
metric space such that the inner product between these
representations of any two points approximates their cor-
responding kernel value [21]. This step takes O(ND2)
time for Sr ⊂ R

D and can be followed by nearest neigh-
bor search on these representations to obtain results for
max-kernel search in the setting of a shift-invariant kernel.

This technique of obtaining the explicit embedding
of objects in some low-dimensional metric space while
approximating the kernel function can also be applied to
dot-product kernels [22]. Dot-product kernels produce ker-
nel values between any pair of points by operating a mono-
tonic non-decreasing function on their mutual dot-product
(K(x, y) = f (〈x, y〉)). Linear and polynomial kernels are
simple examples of dot-product kernels. However, this is
only applicable to objects which already are represented
in some vector space which allows the computation of the
dot-products.

Locality-sensitive hashing (LSH) [23] is widely used
for image matching, but only with explicitly representable
kernel functions that admit a locality sensitive hashing
function [24]2. Kulis and Grauman [25] apply LSH to solve
max-kernel search approximately for normalized kernels
without any explicit representation. Normalized kernels
restrict the self-similarity value to a constant (K(x, x) =
K(y, y) ∀ x, y ∈ S). The preprocessing time for this locality
sensitive hashing is O(p3) and a single query requires
O(p) kernel evaluations. Here p controls the accuracy
of the algorithm—larger p implies better approximation;
the suggested value for p is O(

√
N) with no rigorous

approximation guarantees.
A recent work [26] proposed the first technique for

exact max-kernel search using a tree-based branch-and-
bound algorithm, but is restricted only to linear kernels and
the algorithm does not have any runtime guarantees. The
authors suggest a method for extending their algorithm to
non-representable spaces with general Mercer kernels, but
this requires O(N2) preprocessing time.

2 The Gaussian and cosine kernels admit locality sensitive
hashing functions with some modifications.

There has also been recent interest in similarity search
with Bregman divergences [27], which are non-metrics.
Bregman divergences are not directly comparable to
kernels, though; they are harder to work with because they
are not symmetric like kernels, and are also not as generally
applicable to any class of objects as kernel functions. In this
paper, we do not address this form of similarity search;
Bregman divergences are not Mercer kernels.

1.2. Unnormalized Kernels

Some kernels used in machine learning are normalized
(K(x, x) = K(y, y) ∀ x, y); examples include the Gaussian
and the cosine kernel. As we have discussed, there already
exist techniques to solve the max-kernel search problem
with normalized kernels.

However, many common kernels like the linear kernel
(K(x, y) = xT y) and the polynomial kernels (K(x, y) =
(α + xT y)d) for some offset α and degree d) are not nor-
malized. Many applications require unnormalized kernels:

• In the retrieval of recommendations, the normalized
linear kernel will result in inaccurate user-item
preference scores.

• In biological sequence matching with domain-specific
matching functions, K(x, x) implicitly corresponds to
the presence of genetically valuable letters (such as
W, H, or P) or not valuable letters (such as X)3 in the
sequence x. This crucial information is lost in kernel
normalization.

Therefore, this paper considers unnormalized kernels.
No existing technique considers unnormalized kernels, and
thus no existing technique can be directly applied to every
instance of max-kernel search with general Mercer kernels
and any class of objects (Equation 1). Moreover, almost
all existing techniques resort to approximate solutions.
Our algorithms not only work for general Mercer kernels
instead of just normalized or shift-invariant kernels, but
also provide exact solutions; in addition, extensions to our
algorithms for approximation are trivial, and for both the
exact and approximate algorithms, we can give asymptotic
preprocessing and runtime bounds, as well as rigorous
accuracy guarantees for approximate max-kernel searches.

2. SPEEDUPS VIA TREES

The introduction of the quad tree in 1974 [28] and kd-tree
in 1975 [11] for use in nearest neighbor search [29], range

3 See the score matrix for letter pairs in protein sequences at
http://www.ncbi.nlm.nih.gov/Class/FieldGuide/BLOSUM62.txt.

Statistical Analysis and Data Mining DOI:10.1002/sam

232 Statistical Analysis and Data Mining, Vol. 7 (2014)

Nr

pq
dmin(pq, Nr)

dmax(pq, Nr)

Fig. 2 dmin(pq , Nr) and dmax(pq , Nr) in R
2.

search [30], and minimum spanning tree calculation [31]
paved the way for numerous algorithms that took advantage
of the triangle inequality to eliminate unnecessary calcula-
tions.

A tree (or space tree) is a hierarchical structure where
each node in the tree corresponds to a certain subset of
the dataset it is built on [32]. For a kd-tree, this sub-
set is a hyperrectangle. In the context of a problem such
as nearest neighbor search, the triangle inequality can be
used to place bounds on the minimum and maximum dis-
tances between a point pq and a node Nr : dmin(pq , Nr)
and dmax(pq , Nr), respectively. An example of this bound-
ing is shown in Figure 2. These bounds, then, can be used
to prune nodes in the tree, reducing the number of distance
computations necessary to find the solution. For instance,
in the case of range search, a node can be pruned if the
range [dmin(q, Nr), dmax(q, Nr)] does not overlap with the
desired range—in that case, there can be no points in Nr
that are in the desired distance range to the query point
q. For a better review of this type of approach, see [31]
and [32].

Later years witnessed the introduction of numerous
other types of trees: oct-trees [33], metric trees [12],
vantage-point trees [34], random projection trees [35], spill
trees [13], cover trees [36], cone trees [26]—to name just
a few.

Trees have been applied to a variety of problems,
in addition to nearest neighbor search, range search,
and minimum spanning tree calculation. These problems
include approximate nearest neighbor search [16], Gaussian
summation [37], particle smoothing [4], Gaussian process
regression [38], clustering [39], feature subset selection
[40], and mixture model training [41]. More recently,
Gray and Moore proposed using a second tree for
problems with large query sets [42], such as all-nearest-
neighbors and density estimation [43]. This dual-tree
approach was then applied to numerous problems: singular

value decomposition [44], n-point correlation estimates
in astronomy [45], mean shift [46], kernel summation
[37,47,48], rank-approximate nearest neighbor search [14],
and minimum spanning tree calculation [49], as well as
numerous others.

The use of a hierarchical space-partitioning approach
such as the kd-tree gives large speedups. For instance,
nearest neighbor search for a single query point with a
kd-tree runs in expected O(log N) time (where N is the
number of points in the dataset), as opposed to O(N)
time for linear scan. Similar results can be shown for
other trees and other tasks. The cover tree [36], a more
recent tree structure, can be shown to have a worst-time
bound of O(log N) for single-query nearest neighbor search
[36] and a total all-nearest-neighbors runtime that scales
as O(N) [50]. This is a huge improvement over the
linear scan all-nearest-neighbors runtime of O(N2). Similar
runtime bound results have been shown for some dual-tree
algorithms when cover trees are chosen as the tree type
[14,45,49].

These results from the literature make the use of
trees an attractive option for solving max-kernel search.
Importantly, trees only require a single construction. Thus,
we can re-use trees for multiple tasks and amortize the
cost of construction over many runs of an algorithm.
In addition, once a tree has been constructed, point
insertions and deletions are generally cheap. However,
as we mentioned earlier, the numerous existing nearest-
neighbor search approaches using trees [11,15,36] all
require a distance metric. In general, a Mercer kernel
K(·, ·) is not a distance metric—so we must find a novel
approach.

3. ANALYSIS OF THE PROBLEM

Remember that a Mercer kernel implies that the kernel
value for a pair of objects (x, y) corresponds to an inner
product between the vector representation of the objects
(ϕ(x), ϕ(y)) in some Hilbert space H (see Equation 2).
Hence, every Mercer kernel induces the following metric
in H:

dK(x, y) = ‖ϕ(x) − ϕ(y)‖H

=
√

K(x, x) + K(y, y) − 2K(x, y). (3)

3.1. Reduction to Nearest Neighbor Search

In situations where max-kernel search can be reduced
to nearest neighbor search in H, the nearest neighbor
search methods for general metrics [19] can be used for
efficient max-kernel search. This reduction is possible for

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 233

normalized kernels. The nearest neighbor for a query pq
in H,

arg min
pr ∈Sr

dK(pq , pr), (4)

is the max-kernel candidate (Equation 1) if K(·, ·) is a
normalized kernel. To see this, note that for normalized
kernels, K(pq , pq) = K(pr , pr) and thus,

dK(pq , pr) =
√

2c − 2K(pq , pr) (5)

where the normalization constant c = K(pq , pq) =
K(pr , pr) and is a constant not dependent on pq or pr .
Therefore, dK(pq , pr) decreases as K(pq , pr) increases,
and so dK(·, ·) is minimized when K(·, ·) is maximized.
However, the two problems can have very different answers
with unnormalized kernels, because dK(pq , pr) is not guar-
anteed to decrease as K(pq , pr) increases. As we dis-
cussed earlier in Section 1.2, unnormalized kernels are an
important class of kernels that we wish to consider. Thus,
although a reduction to nearest neighbor search is some-
times possible, it is only under the strict condition of a
normalized kernel.

3.2. Hardness of Max-Kernel Search

Even if max-kernel search can be reduced to nearest
neighbor search, the problem is still hard (�(N) for a
single query) without any assumption on the structure of
the metric or the dataset Sr . Here we present one notion of
characterizing the hardness in terms of the structure of the
metric [51]:

Definition 1 Let BS(p, �) be the set of points in S within
a ball of closed radius � around some p ∈ S with respect
to a metric d:

BS(p, �) = {r ∈ S : d(p, r) ≤ �}.

Then, the expansion constant of S with respect to the
metric d is the smallest c ≥ 2 such that

|BS(p, 2�)| ≤ c|BS(p, �)| ∀ p ∈ S, ∀ � > 0.

The expansion constant effectively bounds the number
of points that could be sitting on the surface of a hyper-
sphere of any radius around any point. If c is high,
nearest neighbor search could be expensive. A value
of c ∼ �(N) implies that the search cannot be better
than linear scan asymptotically. Under the assumption of
a bounded expansion constant, though, nearest-neighbor
search methods with sublinear or logarithmic theoretical
runtime guarantees have been presented [36,50,51].

Now, we extend the concept of the expansion constant
in order to characterize the difficulty of max-kernel search.

For a given query pq and Mercer kernel K(·, ·),
the kernel values are proportional to the length of the
projections in the direction of ϕ(pq) in H. While the
hardness of nearest neighbor search depends on how
concentrated the surface of spheres are (as characterized by
the expansion constant), the hardness of max-kernel search
should depend on the distribution of the projections in the
direction of the query. This distribution can be characterized
using the distribution of points in terms of distances:

If two points are close in distance, then their
projections in any direction are close as well.
However, if two points have close projections
in a direction, it is not necessary that the points
themselves are close to each other.

It is to characterize this reverse relationship between
points (closeness in projections to closeness in distances)
that we present a new notion of concentration in any
direction:

Definition 2 Let K(x, y) = 〈ϕ(x), ϕ(y)〉H be a Mercer
kernel, dK(x, y) be the induced metric from K (Equation 3),
and let BS(p, �) denote the closed ball of radius � around
a point p in H. Moreover, let

IS(v, [a, b]) = {r ∈ S : 〈v, ϕ(r)〉H ∈ [a, b]} (6)

be the set of objects in S projected onto a direction v in H
lying in the interval [a, b] along v. Then, the directional
concentration constant of S with respect to the Mercer
kernel K(·, ·) is defined as the smallest γ ≥ 1 such that
∀u ∈ H such that ‖u‖H = 1, ∀p ∈ S and ∀� > 0, the set

IS(u, [〈u, ϕ(p)〉H − �, 〈u, ϕ(p)〉H + �])

can be covered by at most γ balls of radius �.

The directional concentration constant is not a measure
of the number of points projected into a small interval,
but rather a measure of the number of “patches” of the
data in a particular direction. For a set of points to be
close in projections, there are at most γ subsets of points
that are close in distances as well. Consider the set of
points B = IS(q, [a, b]) projected onto an interval in some
direction (Figure 3(a)). A high value of γ implies that the
number of points in B is high but the points are spread out
and the number of balls (with diameter |b − a|) required
to cover all these points is high as well—with each point
possibly requiring an individual ball. Figure 3(c) provides
one such example. A low value of γ implies that either
B has a small size or the size of B is high and B can

Statistical Analysis and Data Mining DOI:10.1002/sam

234 Statistical Analysis and Data Mining, Vol. 7 (2014)

O

q

a

b

IS(q, [a, b]) Direction with
high concentration

Direction with
low concentration

(a) (b) (c)

Fig. 3 Concentration of projections. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

be covered with a small number of balls (of diameter
|b − a|). Figure 3(b) is an example of a set with low γ .
The directional concentration constant bounds the number
of balls of a particular radius required to index points that
project onto an interval of size twice the radius.

4. INDEXING POINTS IN H

Earlier, we discussed the use of space trees for max-
kernel search. The first problem, which is the lack of
distance metric, is addressed by the induced metric dK(·, ·)
in the space H. However, we now have another problem.
The standard procedure for constructing kd-trees depends
on axis-aligned splits along the mean (or median) of a
subset of the data in a particular dimension. In H this
does not make sense because we do not have access to the
mapping ϕ(·). Thus, kd-trees—and any tree that requires
knowledge of ϕ(·)—cannot be used to index points in H.
This includes random projection trees [35] and principal-
axis trees [52]4.

Metric trees [53] are a type of space tree that does
not require axis-aligned splits. Instead, during construction,
metric trees calculate a mean µ for each node [54]. In
general, µ is not a point in the dataset the tree is built
on. In our situation, we cannot calculate µ because it lies
in H and we do not have access to ϕ(·). However, we can
use the kernel trick to avoid calculating µ and evaluate
kernels involving µ (assume µ is the mean of node N ,
and Dp(N) refers to the set of descendant points of N):

K(q, µ) =
∑

r∈Dp(N) K(q, r)
|Dp(N)|

. (7)

This type of trick can also be applied to ball trees and
some other similar tree structures. However, it is clear that a
single kernel evaluation against the mean is now numerous
kernel evaluations, making the use of metric or ball trees

4 The explicit embedding techniques mentioned earlier [21,22]
could be used to approximate the mapping ϕ(·) and allow kd-trees
(and other types of trees) to be used. However, we do not consider
that approach in this work.

computationally prohibitive in our setting, for both tree
construction in H and max-kernel search.

Therefore, we consider the cover tree [36], a recently
formulated tree that bears some similarity to the ball
tree. The tree itself will not be detailed here due to its
complexity; consult [36] and [55] for details. In addition,
the mlpack machine learning library [56] presents a
documented reference implementation of cover trees.

The cover tree has the interesting property that explicit
object representations are unnecessary for tree construction:
the tree can be built entirely with only knowledge of the
metric function dK(·, ·) evaluated on points in the dataset.
Each node Ni in the cover tree represents a ball in H with
a known radius λi and its center µi is a point in the dataset.
Thus, we can evaluate the minimum distance between two
nodes Nq and Nr quickly:

dmin(Nq , Nr) = dK(µq , µr) − λq − λr . (8)

Our knowledge of K(·, ·) and its induced metric dK(·, ·)
in H, then, is entirely sufficient to construct a cover tree
with no computational penalty. In addition to this clear
advantage, the time complexities of building and querying a
cover tree have been analyzed extensively [36,50], whereas
kd-trees, metric trees, and other similar structures have been
analyzed only under very limited settings [29].

Although we have presented the cover tree as the best tree
option, it is not the only option for a choice of tree. What
we require of a tree structure is that it can be built only with
kernel evaluations between points in the dataset (or distance
evaluations)5. Therefore, we introduce some definitions and
notation from [32] in order to present our algorithm in a
tree-independent manner. The following notation will be
used throughout the paper, and a reference table is given in
Table 1.

• A node in a tree is denoted with the letter N .

5 Earlier, we mentioned kernels that work between abstract
objects. For our purposes, it does not make a difference if the
kernel works on abstract objects or points, so for simplicity we
use the term ‘points’ instead of ‘objects’ although the two are
essentially interchangeable.

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 235

Table 1. Notation for trees. See text for details.

Symbol Description

N A tree node
Ci Set of child nodes of Ni
Pi Set of points held in Ni
Dn

i Set of descendant nodes of Ni
Dp

i Set of points contained in Ni and Dn
i

µi Center of Ni (for cover trees, µi = pi)
λi Furthest descendant distance

• The set of child nodes of a node Ni is denoted C (Ni)
or Ci .

• The set of points held in a node Ni is denoted P(Ni)
or Pi . Each cover tree node only holds one point.

• The set of descendant nodes of a node Ni , denoted
Dn(Ni) or Dn

i , is the set of nodes C (Ni) ∪
C (C (Ni)) ∪ . . .6.

• The set of descendant points of a node Ni , denoted
Dp(Ni) or Dp

i , is the set of points {p : p ∈
P(Dn(Ni)) ∪ P(Ni)7.

• The center of a node Ni is denoted µi . For cover
trees, µi is the single point that Ni holds in H.
Therefore we also denote pi as the point such that
ϕ(pi) = µi .

• The furthest descendant distance for a node Ni and
a metric d(·, ·) is defined as

λ(Ni) = max
p∈Dp(Ni)

dK(pi, p). (9)

For cover trees, λ(Ni) (or λi) is computed at tree
construction time and cached.

5. BOUNDING THE KERNEL VALUE

To construct a tree-based algorithm that prunes certain
subtrees, we must be able to determine the maximum kernel
value possible between a point and any descendant point of
a node.

Theorem 1 Given a space tree node Ni with center
ϕ(pi) = µi and furthest descendant distance λi , the

6 By C (C (Ni)), we mean all the children of the children of
node Ni : {C (Nc) : Nc ∈ C (Ni)}.

7 The meaning of P(Dn(Ni)) is similar to C (C (Ni)).

maximum kernel function value between some point pq and
any point in Dp

i is bounded by the function

Kmax(pq , Ni) = K(pq , pi) + λi
√

K(pq , pq). (10)

Proof: Suppose that p∗ is the best possible match in Dp
i

for pq , and let �u be a unit vector in the direction of the line
joining ϕ(pi) to ϕ(p∗) in H. Then,

ϕ(p∗) = ϕ(pi) + ��u (11)

where � = dK(µi, p∗) is the distance between ϕ(pi) and
the best possible match ϕ(p∗) (see Figure 4). Then, we
have the following:

K(pq , p∗) = 〈ϕ(pq), ϕ(p∗)〉H

= 〈ϕ(pq), ϕ(pi) + ��u〉H

= 〈ϕ(pq), ϕ(pi)〉H + 〈ϕ(pq), ��u〉H

≤ 〈ϕ(pq), ϕ(pi)〉H + �
∥∥ϕ(pq)

∥∥
H , (12)

where the inequality step follows from the Cauchy-
Schwartz inequality (〈x, y〉 ≤ ‖x‖ · ‖y‖) and the fact that
‖�u‖H = 1. From the definition of the kernel function,
Equation 12 gives

K(pq , p∗) ≤ K(pq , pi) + �
√

K(pq , pq). (13)

We can bound � by noting that the distance dK(·, ·)
between the center of Ni and any point in Dp

i is less than
or equal to λi . We call our bound Kmax(pq , Ni), and the
statement of the theorem follows. �

In addition, to construct a dual-tree algorithm, it is
useful to extend the maximum point-to-node kernel value
of Theorem 1 to the node-to-node setting.

O

• ϕ (q)

•
ϕ (p)

ϕ (p∗)
•

∆ ⋅ u 2i+1

Fig. 4 Point-to-node max-kernel upper bound.

Statistical Analysis and Data Mining DOI:10.1002/sam

236 Statistical Analysis and Data Mining, Vol. 7 (2014)

Theorem 2 Given two space tree nodes Nq and Nr
with centers µq = ϕ(pq) and µr = ϕ(pr), respectively, the
maximum kernel function value between any point in Dp

q
and Dp

r is bounded by the function

Kmax(Nq , Nr) = K(pq , pr) + λq

√
K(pr , pr)

+ λr

√
K(pq , pq) + λqλr . (14)

Proof: Suppose that p∗
q ∈ Dp

q and p∗
r ∈ Dp

r are the best
possible matches between Nq and Nr ; that is,

K(p∗
q , p∗

r) = max
pq ∈Dp

q ,pr ∈Dp
r

K(pq , pr). (15)

Now, let �uq be a vector in the direction of the line
joining ϕ(pq) to ϕ(p∗

q) in H, and let �ur be a vector in the
direction of the line joining ϕ(pr) to ϕ(p∗

r) in H. Then
let �q = dK(pq , p∗

q) and �r = dK(pr , p∗
r). We can use

similar reasoning as in the proof for Theorem 1 to show
the following:

K(p∗
q , p∗

r) = 〈ϕ(p∗
q), ϕ(p∗

r)〉H

= 〈ϕ(pq) + �q �uq , ϕ(pr) + �r �ur〉H

= 〈ϕ(pq) + �q �uq , ϕ(pr)〉H

+ 〈ϕ(pq) + �q �uq , �r �ur〉H

= 〈ϕ(pq), ϕ(pr)〉H + 〈�q �uq , ϕ(pr)〉H

+ 〈ϕ(pq), �r �ur〉H + 〈�q �uq , �r �ur〉H

≤ 〈ϕ(pq), ϕ(pr)〉H + �q ‖ϕ(pr)‖H

+ �r
∥∥ϕ(pq)

∥∥
H + �q�r , (16)

where again the inequality steps follow from the Cauchy-
Schwarz inequality. We can then substitute in the kernel
functions to obtain

K(p∗
q , p∗

r) ≤ K(pq , pr) + �q

√
K(pr , pr)

+ �r

√
K(pq , pq) + �q�r . (17)

Then, as with the point-to-node case, we can bound �q by
λq and �r by λr . Call the bound Kmax(Nq , Nr), and the
statement of the theorem follows. �

For normalized kernels (K(x, x) = 1 ∀x)8, all the points
are on the surface of a hypersphere in H. In this case, the
above bounds in Theorems 1 and 2 are both correct but

8 Earlier we defined normalized kernels as K(x, x) = c for
some constant c, but here for simplicity we consider only c = 1.
Adapting the proof and bounds for c �= 1 is straightforward.

possibly loose. Therefore, we can present tighter bounds
specifically for this condition.

Theorem 3 Consider a kernel K such that K(x, x) = 1 ∀ x,
and space tree node Ni with center µi = ϕ(pi) and furthest
descendant distance λi . Define the following quantities:

αi =
(

1 −
1
2

λ2
i

)
, (18)

βi = λi

√
1 −

1
4

λ2
i . (19)

Then, the maximum kernel function value between some
point pq and any point in Dp

i is bounded from above by the
function

Kn
max(pq , Ni) =

K(pq , pi)αi + βi

√
(1 − K(pq , pi)2)

if K(pq , pi) ≤ αi
1 otherwise

(20)

Proof: Since all the points pq and Dp
i are sitting on the

surface of a hypersphere in H, K(pq , p) denotes the cosine
of the angle made by ϕ(pq) and ϕ(p) at the origin. If
we first consider the case where pq lies within the ball
bounding space tree node Ni (that is, if dK(pq , pi) < λi), it
is clear that the maximum possible kernel evaluation should
be 1, because there could exist a point in Dp

i whose angle
to pq is 0. We can restate our condition as a condition on
K(pq , pi) instead of dK(pq , pi):

dK(pq , pi) < λi,
√

K(pq , pq) + K(pi, pi) − 2K(pq , pi) < λi,

K(pq , pi) > 1 −
1
2

λ2
i ,

K(pq , pi) > αi .

Now, for the other case, let cos θpq pi = K(pq , pi) and p∗ =
arg maxp∈Dp

i
K(pq , p). Let θpip∗ be the angle between

ϕ(pi) and ϕ(p∗) at the origin, let θpq p∗ be the angle
between ϕ(pq) and ϕ(p∗) at the origin, and let θpq pi be
the angle between ϕ(pq) and ϕ(pi) at the origin. Then,

K(pq , p∗) = cos θpq p∗

≤ cos({θpq pi − θpip∗}+).

We know that dK(pi, p∗) ≤ λi , and also that dK(pi, p∗) =√
2 − 2 cos θpip∗ . Therefore, cos θpip∗ ≥ 1 − 1

2 λ2
i . This

means

θpip∗ ≤ | cos−1(1 −
1
2

λ2
i)|. (21)

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 237

Combining this with Equation 21, we get:

K(pq , p∗) ≤ cos
(
[θpq pi − θpip∗]+

)
(22)

Now, if we substitute | cos−1(1 − 1
2 λ2

i)|, the largest possible
value for θpip∗ , we obtain the following:

Kmax(pq , Ni) ≤ cos
([

θqpi −
∣∣∣∣cos−1(1 −

1
2

λ2
i)

∣∣∣∣

]

+

)

which can be reduced to the statement of the theorem by
the use of trigonometric identities. Combine with the case
where K(pq , pi) > αi , and call that bound Kn

max(pq , Ni).
Then, the theorem holds. �

We can show a similar tighter bound for the dual-tree
case.

Theorem 4 Consider a kernel K such that K(x, x) = 1 ∀ x,
and two space tree nodes Nq and Nr with centers ϕ(pq) =
µq and ϕ(pr) = µr , respectively, and furthest descendant
distances λq and λr , respectively. Define the following four
quantities:

αq =
(

1 −
1
2

λ2
q

)
,

αr =
(

1 −
1
2

λ2
r

)
,

βq = λq

√
1 −

1
4

λ2
q ,

βr = λr

√
1 −

1
4

λ2
r .

Then, the maximum kernel function value between any
point in Dp

q and Dp
r is bounded from above by the function

Kn
max(Nq , Nr) =

K(pq , pr)(αqαr − βqβr)
+

(√
1 − K(pq , pr)2

) (
γqδr + δrγq

)

if K(pq , pr) ≤ 1 − 1
2

(
λq + λr

)2

1 otherwise.

(23)

Proof: All of the points in Dp
q and Dp

r are sitting on the
surface of a hypersphere in H. This means that K(pq , pr)
denotes the cosine of the angle made by ϕ(pq) and ϕ(pr) at
the origin. Similar to the previous proof, we first consider
the case where the balls in H centered at ϕ(pq) and ϕ(pr)
with radii λq and λr , respectively, overlap. This situation

happens when dK(pq , pr) < λq + λr . In this case, it is clear
that the maximum possible kernel evaluation should be 1,
because there could exist a point in Dp

q whose angle to a
point in Dp

r is 0. We can restate the condition as a condition
on K(pq , pr):

K(pq , pr) > 1 −
1
2

(
λq + λr

)2 . (24)

Now, for the other case, assume that p∗
q and p∗

r are the
best matches between points in Dp

q and Dp
r . Let cos θpq pr =

K(pq , pr); let θpq p∗
q be the angle between ϕ(pq) and ϕ(p∗

q)
at the origin; similarly, let θpr p∗

r be the angle between ϕ(pr)
and ϕ(p∗

r) at the origin. Lastly, let θp∗
q p∗

r be the angle
between ϕ(p∗

q) and ϕ(p∗
r) at the origin. Then,

K(p∗
q , p∗

r) = cos θp∗
qp∗

r

≤ cos
([

θpq pr − θpq p∗
q − θpr p∗

r

]

+

)
. (25)

Using reasoning similar to the last proof, we obtain the
following bounds:

θpq p∗
q ≤

∣∣∣∣cos−1
(

1 −
1
2

λ2
q

)∣∣∣∣ (26)

θpr p∗
r ≤

∣∣∣∣cos−1
(

1 −
1
2

λ2
r

)∣∣∣∣ . (27)

We can substitute these two values into Equation 25 to
obtain

K(p∗
q , p∗

r) ≤ cos
([

θpq pr −
∣∣∣∣cos−1

(
1 −

1
2

λ2
q

)∣∣∣∣

−
∣∣∣∣cos−1

(
1 −

1
2

λ2
r

)∣∣∣∣

]

+

)
. (28)

This can be reduced to the statement of the theorem
by the use of trigonometric identities. Combine with the
conditional from earlier and call the combined bound
Kn

max(Nq , Nr). Then, the theorem holds. �

In the upcoming algorithms, we will not use the tighter
bounds for normalized kernels given in Theorems 3 and
4; however, it is easy to re-derive the algorithm with the
tighter bounds, if a normalized kernel is being used. Simply
replace instances of Kmax(·, ·) with Kn

max(·, ·).

6. SINGLE-TREE ALGORITHM

First, we will present a single-tree algorithm called
single-tree FastMKS that works on a single query pq and

Statistical Analysis and Data Mining DOI:10.1002/sam

238 Statistical Analysis and Data Mining, Vol. 7 (2014)

Algorithm 1 BaseCase(pq, pr) for FastMKS.

a reference set Sr . Following the tree-independent algorith-
mic framework of [32], we will present our algorithm as
two functions: a BaseCase(pq, pr) function that runs
on two points, and a Score(pq, Nr) function that runs
on the query point pq and a node Nr .9

Given those two functions, a single-tree algorithm can be
assembled using any space tree (with additional constraints
as given in Section 4) and any valid pruning single-tree
traversal [32]. In short, a pruning single-tree traversal
visits nodes in the tree, and calls the Score() function
to determine if the given node Nr can be pruned.
If the node can be pruned, Score() will return ∞,
and no descendants of Nr will be visited. Otherwise,
BaseCase() will be called with query point pq and each
point pr ∈ Pr .

In our problem setting, we can prune a node Nr if
no points in Dp

r can possibly contain a better max-kernel
candidate than what has already been found as a max-kernel
candidate for pq . Thus, any descendants of Nr do not need
to be visited, as they cannot improve the solution.

The BaseCase() function can be seen in Algorithm 1.
It assumes p∗ is a global variable representing the
current max-kernel candidate and k∗ is a global variable
representing the current best max-kernel value. The method
itself is very simple: calculate K(pq , pr), and if that kernel
evaluation is larger than the current best max-kernel value
candidate k∗, then store that kernel and pr as the new best
max-kernel candidate and K(pq , pr) as the new best max-
kernel value candidate.

The Score() function for single-tree FastMKS is given
in Algorithm 2. The intuition is clear: if the maximum
possible kernel value between pq and any point in Dp

i is
less than the current max-kernel candidate value, then Ni
cannot possibly hold a better candidate and it can be pruned
(return ∞). Otherwise, the kernel value itself is returned.
This return value is chosen because pruning single-tree
traversals may use the value returned by Score() to
determine the order in which to visit subsequent nodes [32].

The actual single-tree FastMKS algorithm is constructed
by selecting a type of space tree and selecting a pruning

9 In the original version of this paper, the algorithm was
presented specifically for cover trees. This formulation is much
more general and intuitive, and reduces exactly to the cover tree
formulation given in the original paper [20].

Algorithm 2 Score(pq, Nr) for FastMKS.

single-tree traversal with the BaseCase() function as in
Algorithm 1 and the Score() function as in Algorithm 2.
The algorithm is run by building a space tree Tr on the set
of reference points Sr , then using the pruning single-tree
traversal with point pq and tree Tq . At the beginning of
the traversal, p∗ is initialized to an invalid value and k∗ is
initialized to −∞.

Proving the correctness of the single-tree FastMKS
algorithm is trivial, but first, we will explicitly define a
pruning single-tree traversal as in [32].

Definition 3 A pruning single-tree traversal is a process
that, given a space tree, will visit nodes in the tree and
perform a computation to assign a score to that node. If the
score is above some bound (or ∞), the node is “pruned”
and none of its descendants will be visited; otherwise, a
computation is performed on any points contained within
that node. If no node is pruned, then the traversal will visit
each node in the tree once.

Theorem 5 At the termination of the single-tree FastMKS
algorithm for a given space tree and pruning single-tree
traversal,

p∗ = arg max
pr ∈Sr

K(pq , pr). (29)

Proof: First, assume that Score() does not prune any
nodes during the traversal of the tree Tr . Then, by the
definition of pruning single-tree traversal, BaseCase()
is called with pq and every pr ∈ Sr . This is equivalent to
linear scan and will give the correct result.

Then, by Theorem 1 (or Theorem 3 if K(·, ·) is normalized
and Kn

max(·, ·) is being used), a node is only pruned if it
does not contain a point pr where K(pq , pr) > k∗. Thus,
BaseCase() is only not called in situations where p∗

and k∗ would not be modified. This, combined with the
previous observation, means that p∗ and k∗ are equivalent
to the linear scan results at the end of the traversal—and
we know that the linear scan results are correct. Thus, the
theorem holds. �

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 239

Algorithm 3 The standard pruning single-tree traversal for
cover trees.

7. SINGLE-TREE RUNTIME ANALYSIS

For the runtime analysis of single-tree FastMKS, we
will restrict the type of space tree to the cover tree, due
to the desirable theoretical properties of the cover tree.
First, we will detail the cover tree datastructure more
comprehensively. For readers familiar with the cover tree
as described in [36], we are focusing only on the explicit
representation.

We already know that the cover tree is a space tree; it is
also a leveled tree: each node Ni holds one point pi and
has a scale si that represents its level in the tree. A large si
represents a node closer to the root of the tree; the root has
the largest scale of all nodes in the tree. Each child (if any)
of Ni has scale less than si . If Ni has no children, then
its scale is −∞. In addition, for a node Ni , λi ≤ 2si+1.
Therefore, we can bound the furthest descendant distance
at scale si from above with 2si+1.

The last important property of cover trees is the
separation invariant, which is integral to our proofs. There
cannot exist two nodes Ni and Nj at scale si such that
d(pi, pj) ≤ 2si . Alternately stated, for any Ni and Nj both
at scale si , d(pi, pj) > 2si .

Algorithm 3 describes the standard pruning single-tree
traversal used for cover trees, adapted to a tree-independent
form from the original formulation in [36]. Note that this
traversal will not work on arbitrary types of space trees
because it depends on the scale, which is specific to the
cover tree. The traversal itself is breadth-first; it maintains
a set R of nodes that have not been pruned, and iteratively
reduces the maximum scale present in R to −∞.

Now, we introduce a few useful results from [36]. Proofs
of each lemma can be found in that paper.

LEMMA 1: The number of children of any cover tree
node Ni is bounded by c4, where c is the expansion
constant of the dataset the cover tree is built on, as defined
in Definition 1.

LEMMA 2: The maximum depth of any point pr in a
cover tree Tr is O(c2 log N), where N is the number of
points in the dataset that Tr is built on.

The main result of this section is the search time
complexity of single-tree FastMKS in terms of the number
of points in the reference set Sr and the properties of the
kernel.

Theorem 6 Given a Mercer kernel K(·, ·), a query point
pq , and a dataset Sr of size N with expansion constant
c (Definition 1) with respect to the induced metric dK
(Equation 3) and directional concentration constant γ
(Definition 2), the single-tree FastMKS algorithm using
cover trees and the standard single-tree cover tree traversal
on pq and Sr requires O(c12γ 2 log N) time.

Proof: The first part of the proof is similar to the runtime
analysis of nearest neighbor search with cover trees [36].
Call Ri the set of nodes in R with scale si . Now, let s∗ be
the scale that has the greatest number of elements in R:

s∗ = arg max
s∈[−∞,∞)

|{Ni ∈ R : si = s}| . (30)

Define the set R∗ as the set of nodes in R with scale s∗.
By Lemma 2, the depth of any node in the tree is

at most k = O(c2 log N). Because |R−∞| ≤ |R∗|, we can
conclude that the maximum number of outer iterations on
s required (lines 8—18) is O(k|R∗|). Each inner iteration
(lines 10—17) considers a maximum of |R∗| points, and the
innermost loop that considers the children of each element
in Ni (lines 12—16) considers a maximum of c4 points
for each Ni (because of Lemma 1). Combining all of
these things, we obtain a runtime bound of O(kc4|R∗|2) =
O(c6|R∗|2 log N). Thus, the theorem will hold if we can
show that |R∗| ≤ c3γ .
To bound |R∗|, let u = ϕ(pq)/‖ϕ(pq)‖H. Then,

ISr (ϕ(pq), [a, b]) = ISr

(
u,

[
a

‖ϕ(pq)‖H
,

b
‖ϕ(pq)‖H

])
.

For any scale si , let Ri be the set of all nodes in R with
scale si when s = si (that is, Ri is the set of all nodes

Statistical Analysis and Data Mining DOI:10.1002/sam

240 Statistical Analysis and Data Mining, Vol. 7 (2014)

considered by line 10 when s = si):

Ri = {Ni : Ni ∈ R, si = s} .

But, for any node Ni to be in R, then we know that
Kmax(pq , Ni) ≥ k∗. Thus, we can express Ri differently:

Ri = {Ni : Ni ∈ R, si = s}

⊆
{
Ni : Ni ∈ Tr , Kmax(pq , Ni) ≥ k∗, si = s

}
.

Now, by Equation 6, any Ni in the set Ri satisfies

ϕ(pi) ∈ ISr

(
ϕ(pq),

[
k∗ − λi‖ϕ(pq)‖H, k̂

])

where k̂ is the true max-kernel value (that is, k̂ =
maxpr ∈Sr K(pq , pr)). Because λi ≤ 2si+1,

ϕ(pi) ∈ ISr

(
ϕ(pq),

[
k∗ − 2si+1‖ϕ(pq)‖H, k̂

])

⊆ ISr

(
ϕ(pq),

[
k̂ − 2si+2‖ϕ(pq)‖H, k̂

])

because k̂ ≤ k∗ + 2si+1‖ϕ(pq)‖H. Further,

ϕ(pi) ∈ ISr

(
ϕ(pq),

[
K(pq , pi) − 2si+2‖ϕ(pq)‖H,

K(pq , pi) + 2si+2‖ϕ(pq)‖H
])

= ISr

(
u,

[
〈u, ϕ(pi)〉H − 2si+2,

〈u, ϕ(pi)〉H + 2si+2])
.

Remember that this inclusion applies for all pi of nodes in
Ri . By the definition of directional concentration constant
(Definition 2), there exist γ points pj ∈ Sr such that

ISr

(
u,

[
〈u, ϕ(pr)〉H − 2si+2, 〈u, ϕ(pr)〉H + 2si+2])

⊆
γ⋃

j=1

BSr (pj , 2si+2).

Due to the separation invariant, Ri only has points pi that
are separated by at least 2si . Thus, |Ri | is less than or equal
to the number of balls of radius 2si−1 that can be packed
into the set

γ⋃

j=1

BSr (pj , 2si+2).

Consider each BSr (pj , 2si+2) individually. Using the defi-
nition of expansion constant (Definition 1), we have

|BSr (pj , 2si+2)| ≤ c3|BSr (pj , 2si−1)|

and |BSr (pj , 2si−1)| can only contain one point at scale si .
Hence, for all si , |Ri | ≤ γ c3, and thus |R∗| ≤ γ c3, giving
the statement of the theorem. �

Comparing to the query time O(c12 log n) for single-
tree cover tree nearest neighbor search [36], it is clear that
FastMKS has similar O(log n) scaling, but also has an extra
price of γ 2 to solve the more general problem of max-kernel
search.

It is also worth noting that the tighter bound given in
Theorem 3 for normalized kernels could be used to produce
a tighter runtime bound.

8. DUAL-TREE ALGORITHM

Now, we present a dual-tree algorithm for max-kernel
search, called dual-tree FastMKS. This algorithm, as with
the single-tree algorithm in Section 6, is presented in the
tree-independent framework of [32]. The BaseCase(pq,
pr) function is the same as the single-tree function
(Algorithm 1), and we present a dual-tree pruning rule with
a Score(Nq, Nr) function that runs on a query node
Nq and a reference node Nr .

Because the dual-tree algorithm solves max-kernel search
for an entire set of query points Sq , we must store a kernel
candidate p∗ and value k∗ for each query point pq ; call
these p∗(pq) and k∗(pq), respectively. At the initialization
of the algorithm k∗(pq) = ∞ for each pq ∈ Sq and p∗(pq)
is set to some invalid point.

The pruning rule is slightly more complex. In the
dual-tree setting, we can only prune a node combination
(Nq , Nr) if and only if Dp

r contains no points that can
improve p∗(pq) and k∗(pq) for any pq ∈ Dp

q . There are
multiple ways to express this concept, and we will use two
of them to construct a bound function to determine when we
can prune. This section is heavily based on the reasoning
used to derive the nearest neighbor search bound in [32].

First, consider the smallest max-kernel value k∗(pq) for
all points pq ∈ Dp

q ; call this B1(Nq):

B1(Nq) = min
pq ∈Dp

q

k∗(pq)

= min
{

min
pq ∈Pq

k∗(pq), min
Nc∈Cq

B1(Nq)
}

where the simplification is a result of expressing B1(Nq)
recursively. Now, note also that for any point pq ∈ Dp

q with
max-kernel candidate value k∗(pq), we can place a lower
bound on the true max-kernel value k̂(p′

q) for any p′
q ∈ Dp

r
by bounding K(p′

q , p∗(pq)). This gives

k̂(p′
q) ≥ k∗(pq) − (ρq + λq)

√
K

(
p∗(pq), p∗(pq)

)

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 241

Algorithm 4 Score(Nq, Nr) for FastMKS.

where ρq is the maximum distance from any p ∈ Pq to
the centroid of Nq (for cover trees, this value is always 0).
This inequality follows using similar reasoning as Theorem
1, except for that we are finding a lower bound instead of
an upper bound.

Considering all the points pq ∈ Dp
q , we find that the

minimum possible max-kernel value for any point pq can
be expressed as

max
pq ∈Dp

q

k∗(pq) − (ρq + λq)
√

K
(
p∗(pq), p∗(pq)

)
.

However, this is difficult to calculate in practice; thus, we
introduce a second bounding function that can be quickly
calculated by only considering points in Pq and not Dp

q :

B2(Nq) = max
pq ∈Pq

k∗(pq) − (ρq + λq)
√

K
(
p∗(pq), p∗(pq)

)
.

Now, we can take the better of B1(Nq) and B2(Nq) as
our pruning bound:

B(Nq) = max
{
B1(Nq), B2(Nq)

}
. (31)

This means that we can prune a node combination
(Nq , Nr) if

Kmax(Nq , Nr) < B(Nq),

and therefore we introduce a Score() function in
Algorithm 4 that uses B(Nq) to determine if a node
combination should be pruned.

As with the single-tree algorithm, we will explicitly
define a pruning dual-tree traversal as in [32] before proving
correctness.

Definition 4 A pruning dual-tree traversal is a process
that, given two space trees Tq (query tree) and Tr (reference
tree), will visit combinations of nodes (Nq , Nr) such that
Nq ∈ Tq and Nr ∈ Tr no more than once, and perform
an computation to assign a score to that combination. If
the score is above some bound (or ∞), the combination is

pruned and no combinations (Nqc, Nrc) such that Nqc ∈
Dn

q ∪ Nq and Nrc ∈ Dn
r ∪ Nr will be visited; otherwise, a

computation is performed between each point in Nq and
each point in Nr . If no node is pruned, a computation is
performed between each point in the query tree and the
reference tree.

Theorem 7 At the termination of the dual-tree FastMKS
algorithm for a given space tree and pruning dual-tree
traversal,

p∗(pq) = arg max
pr ∈Sr

K(pq , pr) ∀ pq ∈ Sq . (32)

Proof: First, assume that Score() does not prune any
node combinations during the dual traversal of the trees
Tq and Tr . Then, by the definition of pruning dual-tree
traversal, BaseCase() will be called with each pq ∈ Sq
and each pr ∈ Sr ; this is equivalent to linear scan and will
give the correct results.

We have already stated the validity of B(Nq) (Equation
31). Because of that, and also by Theorem 2 (or Theorem 4
if K(·, ·) is normalized and Kn

max(·, ·) is being used), a node
combination is only pruned if it does not contain a point
pr that would modify p∗(pq) or k∗(pq) for any pq ∈ Dp

q .
This, combined with the previous observation, means that
p∗ and k∗ are equivalent to the linear scan results for each
pq ∈ Sr , and thus, the theorem holds. �

9. DUAL-TREE RUNTIME ANALYSIS

As in Section 7, we will restrict the type of space
tree to the cover tree for the runtime analysis of dual-
tree FastMKS. For this analysis, we must introduce a few
quantities and useful lemmas.

LEMMA 3: Consider a set R of cover tree nodes from
the cover tree T . If each node Nr has a parent par(Nr) with
scale at least s∗, then for any two nodes Nx ∈ R, Ny ∈ R
with points px and py , respectively,

d(px, py) > 2(s∗−1). (33)

Proof: For this proof we will use the implicit representa-
tion of the cover tree T (see [36] for more details). Any
explicit cover tree node Nx will have an implicit parent
node (call this Ni) where si = sx + 1. Given Ni , either
pi = px or pi �= px .

If pi �= px , then Ni is also an explicit cover tree node;
that is, Ni = par(Nx), in which case we know that the only
possibility is that si = s∗ and therefore Nx has scale s∗ − 1.

Statistical Analysis and Data Mining DOI:10.1002/sam

242 Statistical Analysis and Data Mining, Vol. 7 (2014)

If pi = px , then Nx has a series of implicit parent nodes
each of which have point px . The last implicit node in this
series will have implicit parent par(Nx), which is also an
explicit node with scale at least s∗. Thus, an implicit node
with point pi and scale s∗ − 1 exists.

Consequently, for every node in R, there exists an implicit
node with the same point and scale s∗ − 1. Because the
separation invariant also applies to implicit nodes, each pair
of points is separated by greater than 2s∗−1, and the lemma
holds. �

Now, we define the maximum norms and minimum
norms of the query set Sq and reference set Sr :

ηq = max
pq ∈Sq

‖ϕ(pq)‖H, (34)

ηr = max
pr ∈Sr

‖ϕ(pr)‖H, (35)

τq = min
pq ∈Sq

‖ϕ(pq)‖H, (36)

τr = min
pr ∈Sr

‖ϕ(pr)‖H. (37)

Next, we use these quantities to place bounds on the
maximum distances dH(·, ·) between points in the dataset,
and place an upper bound on the maximum scale of cover
tree nodes.

LEMMA 4: For the query set Sq , the maximum distance
between any points in Sq ,

dmax
H (Sq) ≤ 2ηq . (38)

Proof: We can alternately write dmax
H (Sq) as

dmax
H (Sq) = max

pi∈Sq ,pj ∈Sq
dH(pi, pj)

(dmax
H (Sq))2 = max

pi∈Sq ,pj ∈Sq
‖ϕ(pi)‖2

H + ‖ϕ(pj)‖2
H

− 2〈ϕ(pi), ϕ(pj)〉H.

Note that 〈ϕ(pi), ϕ(pj)〉H is minimized when ϕ(pi)
and ϕ(pj) point opposite ways in H: ϕ(pi)/‖ϕ(pi)‖H =
−(ϕ(pj)/‖ϕ(pj)‖H). Thus,

(dmax
H (Sq))2 ≤ max

pi∈Sq ,pj ∈Sq
‖ϕ(pi)‖2

H + ‖ϕ(pj)‖2
H

− 2 max{〈ϕ(pi), −ϕ(pi)〉H,

〈ϕ(pj), −ϕ(pj)〉H}

≤ max
pi∈Sq ,pj ∈Sq

‖ϕ(pi)‖2
H + ‖ϕ(pj)‖2

H

+ 2 max{‖ϕ(pi)‖2
H, ‖ϕ(pj)‖2

H}

≤ 4η2
q .

Algorithm 5 The standard pruning dual-tree traversal for
cover trees.

This trivially reduces to the result. �

COROLLARY 1: The maximum distance between any
points in Sr is

dmax
H (Sr) ≤ 2ηr . (39)

LEMMA 5: The top scale sT
r in the cover tree Tr built

on Sr is bounded as

sT
r ≤ log2(ηr). (40)

Proof: The root of the tree Tr is the node with the largest
scale, and it is the only node of that scale (call this scale
sT
r). The furthest descendant distance of the root node is

bounded by 2sT
r +1; however, this is not necessarily the

distance between the two furthest points in the dataset
(consider a tree where the root node is near the centroid
of the data). This, with Corollary 1, yields 2sT

r +1 ≤ 2ηr
which is trivially reduced to the result. �

Algorithm 5 details the standard dual-tree traversal for
cover trees, adapted from [36]. The traversal is begun on
trees Tq and Tr by calling Algorithm 5 with root(Tq) and
{ root(Tr) }.

Note that the traversal given in Algorithm 5 attempts to
descend the two trees in such a way that the scales sq and
smax
r remain close to equal. Thus, the traversal’s running

time will depend on the differences in scales of each tree.
To quantify this difference, we introduce a definition based
on the degree of bichromaticity defined in [50].

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 243

Definition 5 Let Tq and Tr be two cover trees built on
query set Sq and reference set Sr , respectively. Now consider
a pruning dual-tree traversal (such as Algorithm 5 with
the property that the scales of nodes in Tq and Tr are
kept as close as possible—that is, the tree with the larger
scale is always descended. Then, the inverse degree of
bichromaticity ν of the tree pair (Tq , Tr) is the maximum
number of recursions in Tr following a recursion in Tq
before another recursion in Tq or the termination of the
algorithm (whichever happens first).

This quantity is related to the degree of bichromaticity
[50], which is the maximum number of recursions in Tq
between any two recursions in Tr .

Using these definitions and lemmas, we can show the
main result of this section.

Theorem 8 Given a Mercer kernel K(·, ·), a reference set
Sr of size N with expansion constant cr and directional
concentration constant γr , a query set Sq of size O(N), and
with α defined as

α = 1 +
2ηr

τq
, (41)

the dual-tree FastMKS algorithm using cover trees and the
standard dual-tree cover tree traversal on Tq (a cover tree
built on Sq) and Tr (a cover tree built on Sr) with inverse
degree of bichromaticity ν requires O(γrc

(7 log2 α)
r νN) time.

Proof: Consider a reference recursion (lines 4—11). The
work performed in the base case loop from lines 5–7 is
O(|R|). This is bounded as |R| ≤ |R∗|, where |R∗| is the
largest set |R| for any scale smax

r and any query node Nq
during the course of the dual-tree recursion.

Then, lines 9 and 10 take O(c4
r |Rr |) ≤ O(c4

r |R∗|) time;
this is due to the width bound (Lemma 1). So, one full
reference recursion takes O(c4

r |R∗|) time.
Now, note that there are O(N) nodes in Tq . Thus,

line 15 is visited O(N) times (remember, query nodes
cannot be pruned, so every one is visited). Each of these
O(N) visits to line 15 implies a recursion, in which
the reference set is descended up to ν times in lines
4—11 before the query node is descended or the algorithm
terminates. In addition, each O(N) recursion implies an
O(|R|) ≤ O(|R∗|) operation for the calculation of R′ (line
14). Thus, the full runtime of the algorithm is bounded as
O(c4

r |R∗|νN + |R∗|N) = O(c4
r |R∗|νN).

The next step is to produce a bound on |R∗|. Consider some
reference set R encountered with maximum reference scale
smax
r and query node Nq . Every node Nr ∈ R satisfies the

property enforced in line 10 that

Kmax(Nq , Nr) ≥ B(Nq). (42)

Remembering that
√

K(p, p) = ‖ϕ(p)‖H, we can relax
B(Nq) (Equation 31) for the cover tree (where ρi = 0 for
all Ni) to show

B(Nq) ≥ max
p∈Pq

(
k∗(p) + λq

∥∥ϕ(p∗(p))
∥∥

H

)

= k∗(pq) − λq
∥∥ϕ(p∗(pq))

∥∥
H (43)

which we can combine with Equation 42 to obtain

Kmax(Nq , Nr) ≥ k∗(pq) + λq‖ϕ(pq)‖H

K(pq , pr) ≥ k∗(pq) − λq
(
‖ϕ(pr)‖H +

‖ϕ(p∗(pq))‖H
)

− λr‖ϕ(pq)‖H − λqλr (44)

and, remembering that the scale of Nq is sq and the scale
of Nr is bounded above by smax

r , we simplify further to

K(pq , pr) ≥ k∗(pq) − 2sq +1(
‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H

)

− 2smax
r +1‖ϕ(pq)‖H − 2sq +smax

r +2. (45)

We can express this conditional as membership in a
set ISr by first defining the true maximum kernel value
for pq as

k̂(pq) = max
pr ∈Sr

K(pq , pr). (46)

The condition (Equation 45) can be stated as membership
in a set:

ϕ(pr) ∈ ISr

(
ϕ(pq),

[
bl, k̂(pq)

])
(47)

where

bl = k∗(pq) − 2sq +1(
‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H

)

− 2smax
r +1‖ϕ(pq)‖H − 2sq +smax

r +2. (48)

Now, we produce a lower bound for bl . Note that k̂(pq) ≤
k∗(pq) + 2smax

r +1‖ϕ(pq)‖H, and see

bl ≥ k̂(pq) − 2sq +1(
‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H

)

−2smax
r +2‖ϕ(pq)‖H − 2sq +smax

r +2

≥ k̂(pq) − 2smax
r +1(

‖ϕ(pr)‖H + ‖ϕ(p∗(pq))‖H
)

−2smax
r +2‖ϕ(pq)‖H − 22smax

r +2 (49)

which follows because sq < smax
r during a reference

recursion (see line 4). Using the maximum and minimum

Statistical Analysis and Data Mining DOI:10.1002/sam

244 Statistical Analysis and Data Mining, Vol. 7 (2014)

norms defined earlier, we can bound bl further:

bl ≥ k̂(pq) − 2smax
r +1(ηr + ηr) − 2smax

r +2‖ϕ(pq)‖H

− 22smax
r +2

= k̂(pq) − 2smax
r +2(

‖ϕ(pq)‖H + ηr + 2smax
r

)

≥ K(pq , pr) − 2smax
r +2(

‖ϕ(pq)‖H + ηr + 2smax
r

)

≥ K(pq , pr) − 2smax
r +2(

‖ϕ(pq)‖H + ηr + 2sT
r

)

≥ K(pq , pr) − 2smax
r +2(

‖ϕ(pq)‖H + 2ηr
)

where the last two bounding steps result from Lemma 5.
Now, note that

bl

‖ϕ(pq)‖H
≥ 〈u, ϕ(pr)〉H − 2smax

r +2

(

1 +
ηr + 2sT

r

τq

)

(50)

then set α = 1 + (2ηr/τq) (α is not dependent on the
scale smax

r ; this is important) and use the conditional from
Equation 47 to get

ϕ(pr) ∈ ISr (ϕ(pq), [bl, k̂(pq)])

⊆ ISr (ϕ(pq), [bl, K(pq , pr) + 2smax
r +1‖ϕ(pq)‖H])

⊆ ISr (u, [〈u, ϕ(pr)〉H − 2smax
r +2α,

〈u, ϕ(pr)〉H + 2smax
r +1])

⊆ ISr (u, [〈u, ϕ(pr)〉H − 2smax
r +2α,

〈u, ϕ(pr)〉H + 2smax
r +2α]). (51)

This is true for each point pi of each node Ni in Ri . Thus,
if we can place a bound on the number of points in the set
given in Equation 51, then we are placing a bound on |Ri |
for any scale si . To this end, we can use the definition of
directional concentration constant, to show that there exist
γr points pj ∈ Sr such that

ISr (u, [〈u, ϕ(pr)〉H − 2sr +2α, 〈u, ϕ〉(pr)H + 2sr +2α])

⊆
γr⋃

j=1

BSr (pj , 2sr +2α). (52)

By Lemma 3, each point pr of each node Nr ∈ R must be
separated by at least 2smax

r , because each point in R must
have a parent with scale at least smax

r + 1. Thus, we must
bound the number of balls of radius 2smax

r −1 that can be

packed into the set defined by Equation 52. For each pj ,
we have

|BSr (pj , 2smax
r +2α)|≤c2

r |BSr (pj , 2smax
r −1α)|

≤c3 log2 α
r |BSr (pj , 2smax

r −1)|.

This allows us to conclude that |R∗| ≤ γrc
(3 log2 α)
r

and therefore the total running time of the algorithm is
O(γrc

(7 log2 α)
r νN), and the theorem holds. �

Note that if dual-tree FastMKS is being run with the
same set as the query set and reference set, ν = 1, yielding
a tighter bound.

10. EMPIRICAL EVALUATION

We evaluate single-tree and dual-tree FastMKS with
different kernels and datasets. For each experiment, we
query the top {1, 2, 5, 10} max-kernel candidates and report
the speedup over linear search (in terms of the number
of kernel evaluations performed during the search). The
cover tree and the algorithms are implemented in C++ in
the mlpack machine learning library [56].

10.1. Datasets

We use two different classes of datasets. First, we
use datasets with fixed-length objects. These include the
MNIST dataset [57], the Isomap “Images” dataset, several
datasets from the UCI machine learning repository [58],
three collaborative filtering datasets (MovieLens, Netflix
[59], Yahoo! Music [6]), the LCDM astronomy dataset [60],
the LiveJournal blog moods text dataset [61] and a subset
of the 80 Million Tiny Images dataset [62]. The sizes of
the datasets are presented in Table 2.

The second class of dataset we use are those without
fixed length representation. We use protein sequences from
GenBank.10

10.2. Kernels

We consider the following kernels for the vector datasets:

• linear: K(x, y) = xT y

• polynomial: K(x, y) = (xT y)2

• cosine: K(x, y) = (xT y)/(‖xT ‖‖y‖)

• polynomial, deg. 10: K(x, y) = (xT y)10

• Epanechnikov: K(x, y) = max(0, 1 − ‖x − y‖2/b2)

10 See ftp://ftp.ncbi.nih.gov/refseq/release/complete.

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 245

Table 2. Details of the vector datasets. |Sq | and |Sr | denote the
number of objects in the query and reference sets respectively and
dims denotes the dimensionality of the sets.

Datasets |Sq | |Sr | dims

Y! Music 10000 624961 51
MovieLens 6040 3706 11
Opt-digits 450 1347 64
Physics 37500 112500 78
Homology 75000 210409 74
Covertype 100000 481012 55
LiveJournal 10000 10000 25327
MNIST 10000 60000 784
Netflix 17770 480189 51
Corel 10000 27749 32
LCDM 6000000 10777216 3
TinyImages 1000 1000000 384

While the Epanechnikov kernel is normalized and thus
reduces to nearest neighbor search, we choose it regardless
to show the applicability of FastMKS to a variety of kernels.
It is important to remember that standard techniques for
nearest neighbor search should be able to perform the task
faster—we do not compare with those techniques in these
experiments.

For the protein sequences, we use the p-spectrum string
kernel [1], which is a measure of string similarity. The
kernel value for two given strings is the number of length-p
substrings that appear in both strings.

10.3. Implementation

For maximum performance, the implementation in
mlpack does not precisely follow the algorithms we have
given. By default, the cover tree is designed to use a base
of 2 during construction, but following the authors’ obser-
vations, we find that a base of 1.3 seems to give better
performance results [36]. In addition, for both the single-
tree and dual-tree algorithms, we attempt to first score nodes
(and node combinations) whose kernel values K(pq , pr)
are higher, in hopes of tightening the bounds B(Nq) and
k∗(pq) more quickly.

Lastly, the Score() method as implemented in mlpack
is somewhat more complex: it attempts to prune the node
combination (Nq , Nr) with a looser bound that does not
evaluate K(pq , pr). If that is not successful, Score()
proceeds as in Algorithm 4 (or 2 in the single-tree case).
This type of prune seems to give 10–30% reductions in the
number of kernel evaluations (or more, depending on the
dataset).

The mlpack implementation can be downloaded from
http://www.mlpack.org/ and its FastMKS implementation
includes both C++ library bindings for FastMKS and each
kernel we have discussed as well as a fastmks executable
that can be used to run FastMKS easily from the command

line. In addition, a tutorial can be found on the website, and
the source code is extensively documented.

10.4. Results

The results for the vector datasets are summarized in
Figure 5 and detailed for k = 1 in Tables 3 and 4. The tables
also provide the number of kernel evaluations calculated
during the search for linear search, single-tree FastMKS,
and dual-tree FastMKS. Speedups over a factor of 100
are highlighted in bold. While the speedups range from
anywhere between 1 (which indicates no speedup) to 50000,
many datasets give speedups of an order of magnitude or
more. As would be expected with the O(log N) bounds for
single-tree FastMKS and the O(N) bounds for dual-tree
FastMKS, larger datasets (such as LCDM) tend to provide
larger speedups. In the cases where large datasets are
used but small speedup values are obtained, the conclusion
must be that the expansion constant cr and the directional
concentration constant γr for that dataset and kernel are
large. In addition, the Epanechnikov kernel is parameterized
by a bandwidth b; this bandwidth will seriously affect the
runtime if it is too small (all kernel evaluations are 0) or
too large (all kernel evaluations are 1). We have arbitrarily
chosen 10 as our bandwidth for simplicity in simulations,
but for each dataset, it is certain that a better bandwidth
value that will provide additional speedup exists.

Another observation is that the single-tree algorithm
tends to perform better than the dual-tree algorithm, despite
the better scaling of the dual-tree algorithm. There are
multiple potential explanations for this phenomenon:

• The single-tree bounds given in Theorem 1 (Equation
10) and Theorem 3 (Equation 20) are tighter than the
dual-tree bounds of Theorem 2 (Equation 14) and
Theorem 4 (Equation 23).

• The dual-tree algorithm’s runtime is also bounded by
the parameters ν, ηr , and τq , whereas the single-tree
algorithm is not. This could mean that N would need
to be very large before the dual-tree algorithm became
faster, despite the fact that the dual-tree algorithm
scales with c7

r and the single-tree algorithm scales
with c12

r .

• The single-tree algorithm scales considers each ele-
ment in the set |Sq | linearly, but the dual-tree algo-
rithm is able to obtain max-kernel bounds for many
query points at once thanks to the use of the sec-
ond tree. Thus, the dual-tree algorithm may require a
much larger Sq before it outperforms the single-tree
algorithm.

Statistical Analysis and Data Mining DOI:10.1002/sam

246 Statistical Analysis and Data Mining, Vol. 7 (2014)

single−tree dual−tree

1

102

104

1

102

104

1

102

104

1

102

104

1

102

104

linear
cosine

poly2
poly10

epan

C
o
re

l

C
o
v
e
rt

y
p
e

H
o
m

o
lo

g
y

L
C

D
M

L
iv

e
J
o
u
rn

a
l

M
N

IS
T

M
o
v
ie

L
e
n
s

N
e
tf
lix

O
p
td

ig
it
s

P
h
y
s
ic

s

T
in

y
Im

a
g
e
s

Y
!M

u
s
ic

C
o
re

l

C
o
v
e
rt

y
p
e

H
o
m

o
lo

g
y

L
C

D
M

L
iv

e
J
o
u
rn

a
l

M
N

IS
T

M
o
v
ie

L
e
n
s

N
e
tf
lix

O
p
td

ig
it
s

P
h
y
s
ic

s

T
in

y
Im

a
g
e
s

Y
!M

u
s
ic

S
pe

ed
up

 o
ve

r
Li

ne
ar

 S
ea

rc
h

Fig. 5 Speedups of single-tree and dual-tree FastMKS over linear scan with k = {1, 2, 5, 10}.

The results for the protein sequence data are shown in
Fig. 6 and Table 5. The table shows that for constant
reference set size (649), the dual-tree algorithm provides
better scaling as the query set grows. This agrees with
the better scaling of dual-tree FastMKS as exhibited in
Theorem 8.

However, in every case in Table 5, the single-tree
algorithm provides better performance than the dual-tree
algorithm. This implies that the query sets and reference
sets would have to be possibly several orders of magnitude
larger for the dual-tree algorithm to provide better speedups.
With larger datasets, the single-tree algorithm showed more
than 3000x speedup over linear scan. Other datasets may
exhibit better or worse scaling depending on the expansion
constant and directional concentration constant.

11. APPROXIMATE EXTENSIONS

For further scalability, we can develop an extension of
FastMKS that does not return the exact max-kernel value
but instead an approximation thereof. Even though we are
focusing on exact max-kernel search, we wish to demon-
strate that the tree based method can be very easily extended
to perform approximate max-kernel search. For any query
pq , we are seeking p̂(pq) = arg maxpr ∈Sr K(pq , pr). Let

K(pq , p̂(pq)) = k̂(pq) (as before). Then approximation can
be achieved in the following ways:

1. Absolute value approximation: for all queries pq ∈
Sq , find pr ∈ Sr such that K(pq , pr) ≥ k̂(pq) − ǫ for
some ǫ > 0.

2. Relative value approximation: for all queries pq ∈
Sq , find pr ∈ Sr such that K(pq , pr) ≥ (1 − ǫ)k̂(pq)
for some ǫ > 011.

3. Rank approximation: return pr ∈ Sr such that |{p′
r ∈

Sr : K(pq , p′
r) > K(pq , pr)}| ≤ τ .

The following three subsections present how single-tree
FastMKS can be easily extended for approximate max-
kernel search.

11.1. Absolute value approximation

From Theorem 1 and Algorithm 2, at any point in the
single-tree algorithm with query point pq and node Ni and

11 Here we are assuming that k̂(pq) > 0. In the case where
k̂(pq) < 0, we seek a pr ∈ Sr such that K(pq , pr) > k̂(pq) −
ǫ|k̂(pq)|

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 247

Table 3. Single-tree and dual-tree FastMKS on vector datasets with k = 1.

Kernel evaluations Speedup
Kernel Dataset Linear scan Single-tree Dual-tree Single-tree Dual-tree

linear Y! Music 6.249B 859.1M 1.056B 7.27 5.91
MovieLens 22.38M 2.635M 2.790M 8.49 8.02
Optdigits 606.1k 333.2k 366.6k 1.82 1.65
Physics 4.219B 628.8M 852.9M 6.71 4.95
Bio 20.36B 100.2M 8.174B 203.2 2.49
Covertype 48.10B 35.06M 160.9M 1372 299.0
LiveJournal 100.0M 13.88M 36.09M 7.21 2.77
MNIST 600.0M 229.6M 288.2M 2.62 2.08
Netflix 8.532B 2.632B 2.979B 3.12 2.86
Corel 277.5M 6.626M 44.02M 41.88 6.30
LCDM 64.66T 1.566B 2.778B 41282 23269
TinyImages 100.0M 22.30M 35.70M 4.48 2.80

polynomial Y! Music 6.249B 2.187B 2.221B 2.86 2.81
MovieLens 22.38M 1.865M 1.833M 12.00 12.21
Optdigits 606.1k 235.1k 296.5k 2.58 2.04
Physics 4.219B 823.9M 1.017B 5.12 4.15
Bio 20.36B 1.538B 10.87B 13.23 1.87
Covertype 48.10B 30.65M 629.7M 1569 76.39
LiveJournal 100.0M 12.91M 38.16M 7.75 2.62
MNIST 600.0M 202.8M 266.8M 2.96 2.25
Netflix 8.532B 2.528B 2.953B 3.37 2.89
Corel 277.5M 4.687M 60.30M 59.20 4.60
LCDM 64.66T 1.171B 14.98B 55204 4316
TinyImages 100.0M 6.957M 34.32M 14.37 2.91

polynomial-deg10 Y! Music 6.249B 4.296B 4.310B 1.45 1.45
MovieLens 22.38M 2.814M 2.826M 7.96 7.92
Optdigits 606.1k 212.3k 318.2k 2.86 1.91
Physics 4.219B 1.441B 1.481B 2.93 2.91
Bio 20.36B 6.018B 12.45B 3.38 1.63
Covertype 48.10B 361.1M 13.78B 133.2 3.49
LiveJournal 100.0M 12.75M 43.25M 7.84 2.31
MNIST 600.0M 205.4M 277.1M 2.92 2.17
Netflix 8.532B 2.977B 3.470B 2.87 2.46
Corel 277.5M 19.68M 131.1M 14.10 2.12
LCDM 64.66T 8.124B 485.2B 7959 133.3
TinyImages 100.0M 1.076M 42.23M 92.96 2.37

cosine Y! Music 6.249B 849.6M 1.586B 7.36 3.94
MovieLens 22.38M 4.044M 8.322M 5.54 2.69
Optdigits 606.1k 190.0k 319.8k 3.19 1.90
Physics 4.219B 28.82M 140.0M 146.3 30.14
Bio 20.36B 14.40B 15.54B 1.41 1.31
Covertype 48.10B 50.15M 3.119B 959.2 15.42
LiveJournal 100.0M 99.23M 98.78M 1.01 1.01
MNIST 600.0M 237.0M 376.7M 2.53 1.59
Netflix 8.532B 3.426B 5.344B 2.49 1.60
Corel 277.5M 16.22M 61.95M 17.10 4.48
LCDM 64.66T 1.058B 112.9B 61063 572.6
TinyImages 100.0M 50.49M 92.36M 1.98 1.02

best candidate kernel value k∗(pq), we know that we must
descend Ni if

Kmax(pq , Ni) ≥ k∗(pq) (53)

but with absolute value approximation for some ǫ, we can
loosen the condition to

Kmax(pq , Ni) ≥ k∗(pq) + ǫ (54)

which can be simplified:

K(pq , pi) + λi
√

K(pq , pq) ≥ k∗(pq) + ǫ

K(pq , pi) + λi
√

K(pq , pq) ≥ K(pq , pi) + ǫ

λi
√

K(pq , pq) ≥ ǫ. (55)

This yields that we can prune if ǫ > λi
√

K(pq , pq).
While this is looser than possible, it has the advantage
that K(pq , pi) does not need to be calculated to prune

Statistical Analysis and Data Mining DOI:10.1002/sam

248 Statistical Analysis and Data Mining, Vol. 7 (2014)

Table 4. Single-tree and dual-tree FastMKS on vector datasets with the Epanechnikov kernel with k = 1.

Kernel evaluations Speedup
Kernel Dataset Linear scan Single-tree Dual-tree Single-tree Dual-tree

Epanechnikov Y! Music 6.249B 3.439B 3.630B 1.82 1.72
MovieLens 22.38M 3.243M 4.471M 6.90 5.01
Optdigits 606.1k 606.1k 606.1k 1.00 1.00
Physics 4.219B 957.6M 1.213B 4.40 3.48
Bio 20.36B 20.25B 20.25B 1.01 1.01
Covertype 48.10B 48.10B 48.10B 1.00 1.00
LiveJournal 100.0M 99.57M 99.15M 1.00 1.01
MNIST 600.0M 600.0M 600.0M 1.00 1.00
Netflix 8.532B 7.602B 8.293B 1.12 1.03
Corel 277.5M 18.53M 119.9M 14.98 2.31
LCDM 64.66T 72.32B 119.0B 894.1 543.3
TinyImages 100.0M 42.49M 87.99M 2.35 1.14

single−tree dual−tree

1

10

102

103

Set size

S
pe

ed
up

 o
ve

r
Li

ne
ar

 S
ea

rc
h

391 1091 2635 8604 37606 63180 391 1091 2635 8604 37606 63180

Fig. 6 Speedups of single-tree and dual-tree FastMKS over linear scan for protein sequences with k = {1, 2, 5, 10}.

Ni . This yields a modified Score() algorithm, given in
Algorithm 6.

In the dual-tree case, we must descend (Nq , Nr) if

Kmax(Nq , Nr) ≥ B(Nq). (56)

Using absolute value approximation this condition
loosens to

Kmax(Nq , Nr) ≥ B(Nq) + ǫ (57)

but we cannot easily simplify this to eliminate the
evaluation of K(pq , pr) due to the complexity of B(Nq).

A modified Score() function for dual-tree
absolute value approximate FastMKS is given in
Algorithm 7.

11.2. Relative value approximation

Relative value approximation is a more useful form of
approximation, because the user does not need knowledge
of k̂(pq) to set ǫ reasonably. However, care has to be
taken for relative value approximation because there is no
guarantee that k̂(pq) > 0.

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 249

Table 5. Single-tree and dual-tree FastMKS on protein sequences with k = 1.

Kernel evaluations Speedup

|Sq | |Sr | Linear scan Single-tree Dual-tree Single-tree Dual-tree

391 649 253.8k 5.255k 43.27k 48.29 5.87
1091 649 708.1k 14.99k 122.7k 47.25 5.77
2635 649 1.710M 36.04k 327.7k 47.45 5.22
8604 649 5.584M 115.3k 832.9k 48.43 6.70
37606 649 24.41M 512.9k 3.763M 47.58 6.49
63180 649 41.00M 848.1k 4.999M 48.35 8.20
63180 391 24.70M 484.3k 3.511M 51.01 7.04
63180 1091 68.93M 834.9k 7.529M 82.56 9.16
63180 2635 166.5M 927.8k 22.95M 179.4 7.25
63180 8604 543.6M 692.5k 32.26M 785.1 16.85
63180 37606 2.376B 743.2k 65.09M 3197 36.50
63180 63180 3.992B 1.140M 150.2M 3500 26.59
391 391 152.8k 2.973k 30.68k 51.42 4.98
1091 1091 1.190M 14.96k 183.2k 79.56 6.50
2635 2635 6.943M 43.95k 1.689M 158.0 4.11
8604 8604 323.6M 104.4k 13.76M 783.2 12.79
37606 37606 1.414B 470.2k 39.70M 3007 35.62
63180 63180 3.992B 1.141M 150.2M 3500 26.59

Algorithm 6 Score(pq, Nr) for absolute value
approximation of FastMKS.

We can take Equation 53 and modify it for ǫ-relative-
value-approximate pruning. In this case, we must descend
Ni if

Kmax(pq , Ni) ≥ (1 + ǫ)k∗(pq) (58)

and similar algebraic manipulations yield

K(pq , pi) + λi
√

K(pq , pq) ≥ (1 + ǫ)k∗(pq)

K(pq , pi) + λi
√

K(pq , pq) ≥ K(pq , pi) + ǫk∗(pq)

λi
√

K(pq , pq) ≥ ǫk∗(pq)

implying that we can prune a node Ni when k∗(pq) >
(λi/ǫ)

√
K(pq , pq). This is looser than possible (like the

Algorithm 7 Score(Nq, Nr) for absolute value
approximation of FastMKS.

absolute-value approximation bound) but has the advantage
that K(pq , pi) does not need to be calculated to prune
Ni . This yields a modified Score() algorithm, given in
Algorithm 8.

Similar to absolute value approximation, we can loosen
the condition for recursion given in Equation 56 to obtain
the rule

Kmax(Nq , Nr) ≥ (1 + ǫ)B(Nq). (59)

This rule does not easily simplify, as in the case
of the single-tree relative value approximation rule; this
is attributed to the complexity of B(Nq). A modified
Score() function is given in Algorithm 9.

11.3. Rank Approximation

Rank approximation is a relatively new approximation
paradigm introduced by Ram et al. [14]. The idea is to

Statistical Analysis and Data Mining DOI:10.1002/sam

250 Statistical Analysis and Data Mining, Vol. 7 (2014)

Algorithm 8 Score(pq, Nr) for relative value approx-
imation of FastMKS.

return a max-kernel candidate p′
r for query pq , reference

set Sr , and parameter τ such that p′
r is in the top τ max-

kernel results with high probability. That is, for pq , Sr , and
τ , find an object pr ∈ Sr such that

∣∣{p′
r ∈ Sr : K(pq , p′

r) > K(q, pr)
}∣∣ < τ. (60)

This is often a better technique than absolute-value-
approximate search, which requires a tuned parameter ǫ for
each dataset, and relative-value-approximate search, which
may return useless results when the values of K(pq , pr) are
very close for all pr ∈ Sr .

The idea presented in [14] is to draw a set of samples S ′
r

large enough that the maximum kernel value between pq
and any point in S ′

r (call this k∗) is such that

Pr
(∣∣{p′

r ∈ Sr : K(pq , p′
r) > k∗}∣∣ < τ

)
≥ 1 − δ. (61)

Simplifying the formulation presented in [14], the
probability of always missing the top τ values for a given
query pq after k samples with replacement is given by
(1 − (τ/n))k , where |Sr | = n. If we want a (1 − δ) success
rate of sampling, then we want k to be such that

(
1 −

τ
n

)k
< δ, and

(
1 −

τ
n

)k−1
> δ,

which gives

k =

⌈
log δ

log
(
1 − τ

n
)

⌉

.

Following the logic of [14], if a node Ni contains more
than (n/k) points (|Dp

i | > (n/k)), then we can prune the
node after we randomly sample ⌈(k/n)|Dp

i |⌉ points from
|Dp

i |. In addition to that, the standard FastMKS pruning
rules still apply. An updated single-tree Score() function
is given in Algorithm 10.

Algorithm 9 Score(Nq, Nr) for relative value
approximation of FastMKS.

Algorithm 10 Score(pq, Nr) for rank approximation
of FastMKS.

An extension of this for a dual-tree algorithm is
straightforward; for a reference node Nr , if |Dp

r | > (n/k),
then we can sample it for each query point pq ∈ Dp

q and
prune the node combination. A Score() function is given
in Algorithm 11.

12. CONCLUSION

In this paper, we have described two general-purpose
algorithms for solving the max-kernel problem (Equation
1) when the kernel satisfies the non-restrictive condition
that it is positive semidefinite (a Mercer kernel). With the
exception of the publication this expanded work is based on
[20], there exists no technique as general as ours for max-
kernel search other than linear scan, which, for a query set
Sq and a reference set Sr both of size N , scales quadratically
O(N2).

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 251

Algorithm 11 Score(Nq, Nr) for rank approximation
of FastMKS.

We have detailed a generic tree-independent algorithm
called FastMKS based on the tree-independent framework
of [32] for both single-tree max-kernel search (Algorithms
1 and 2) and dual-tree max-kernel search (Algorithms 1
and 4). When the algorithm is using cover trees with
a query set Sq and a reference set Sr both of size N ,
we have shown scaling of O(N log N) for the single-
tree algorithm (Theorem 6) and O(N) for the dual-tree
algorithm (Theorem 8) though it should be remembered
that these bounds depend on both the expansion con-
stant and the directional concentration constant of the
dataset.

Our tree-independent algorithms can be applied to any
type of space tree that can be built using only distance
evaluations between points in the dataset. Thus, even
space trees designed after the publication of this paper
can be easily paired with a pruning single-tree traversal
or pruning dual-tree traversal and the base case and
scoring functions given in this paper to produce a provably
correct implementation of single-tree or dual-tree FastMKS
(Theorems 5 and 7).

The empirical performance of our algorithms were eval-
uated after their implementation in mlpack [56]. Both the
single-tree and dual-tree algorithms can produce speedups
of over 50000, but despite the better asymptotic scaling of
the dual-tree algorithm, it tends to be outperformed by the
single-tree algorithm. We suspect that larger datasets are
necessary to show the better scaling characteristics of the
dual-tree algorithm.

Our reference implementation of single-tree and dual-
tree FastMKS is open-source and available as part of the
mlpack machine learning library, starting with version
1.0.6. The implementation is extensively documented and
there is also a tutorial on the website (http://www.mlpack.
org/).

12.1. Future Improvements/Extensions

Though we have shown significant speedups for the
single-tree and dual-tree FastMKS algorithms, we believe
that there is room for further improvements and extensions.
Below we list two possible paths that are interesting and
warrant further investigation.

12.1.1. Tighter bounds for specific kernels

In Theorems 3 and 4 we described a tighter bound for
normalized kernels (K(x, x) = 1 ∀x). It is our intuition that
similar tighter bounds can be developed for other specific
types of Mercer kernels.

This may be especially applicable in domain-specific
kernels such as string kernels or graph kernels. Any kernel
that has some known structure on how points are mapped
to H may be bounded more tightly than the general Mercer
kernel bounds given in Equations 10 and 14.

12.1.2. Domain-specific applications

In the introduction, we mentioned the wide applicability
of max-kernel search, discussing its use in image retrieval,
document retrieval, collaborative filtering, and even finding
similar protein/DNA sequences. That list only contains a
few of the numerous max-kernel search problems that arise
ubiquitiously in countless fields (not just computing-related
fields).

In many of these fields, there are existing domain-specific
solutions. One example in genomics is BLAST (Basic
Local Alignment Search Tool) [7], a utility that searches
for similarity between biological sequences. Another tool
of this sort is the older FASTA algorithm [63]. Both of
these algorithms are improvements over linear scan with the
Smith-Waterman alignment score [8]. However, in contrast
with its large speedups, BLAST cannot guarantee exact
results.

The Smith-Waterman alignment score can easily be
shown to be a Mercer kernel; therefore, FastMKS could
be used to give speedups over linear scan and it would also
return provably exact results. Furthermore, approximation
extensions to FastMKS could provide additional speedups
by relaxing the exact result constraint, potentially making
FastMKS competitive with BLAST.

Statistical Analysis and Data Mining DOI:10.1002/sam

252 Statistical Analysis and Data Mining, Vol. 7 (2014)

12.1.3. Massive parallelism

The implementation of FastMKS that we have provided
requires that the datasets and trees both fit into memory.
However, with today’s datasets becoming larger and larger,
this is often not feasible. Thus, a massively parallel
implementation of FastMKS is desirable.

In the context of tree-independent dual-tree algorithms
(of which FastMKS is one), one parallelization strategy
is to parallelize the traversal [32]. Then, the parallel
traversal can be applied with a type of space tree and the
FastMKS BaseCase() and Score() functions; there is
no modification necessary to the base case and pruning rule.
One recent work that may be generalizable to a massively
parallel pruning dual-tree traversal is that of Lee et al. [47],
who proposed a distributed framework in the context of
kernel summations. Other related parallelism schemes could
likely be adapted to dual-tree FastMKS [32,64] to provide
significant speedup and enable FastMKS to be performed
on huge datasets.

REFERENCES

[1] C. Leslie, E. Eskin, and W. S. Noble, The spectrum
kernel: a string kernel for SVM protein classification, in
Proceedings of the Pacific Symposium on Biocomputing,
2002, 564–575.

[2] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vish-
wanathan, A. J. Smola, and H. P. Kriegel, Protein function
prediction via graph kernels, Bioinformatics 21(suppl. 1)
(2005), i47–i56.

[3] K. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmor-
gen, and V. Vapnik, Predicting time series with Support
Vector Machines, Proceedings of the 7th International Con-
ference on Artificial Neural Networks (ICANN ’97), 1997,
999–1004.

[4] M. Klaas, M. Briers, N. de Freitas, A. Doucet, S.
Maskell, and D. Lang, Fast particle smoothing: if I had
a million particles, in Proceedings of the 23rd International
Conference on Machine Learning (ICML ’06), ACM, New
York, NY, USA, 2006, 481–488.

[5] Y. Koren, R. M. Bell, and C. Volinsky, Matrix factorization
techniques for recommender systems, IEEE Comput 42(8)
(2009), 30–37.

[6] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, The
Yahoo! Music Dataset and KDD-Cup’11, J Machine Learn
Res 18 (2012), 8–18.

[7] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D.
J. Lipman, Basic local alignment search tool, J Mol Biol
215(3) (1990), 403–410.

[8] T. F. Smith and M. S. Waterman, Identification of
common molecular subsequences, J Mol Biol 147(1)
(1981), 195–197.

[9] V. J. Hodge and J. Austin, A comparison of standard spell
checking algorithms and a novel binary neural approach,
IEEE Trans Knowledge and Data Engineering 15(5) (2003),
1073–1081.

[10] K. Fukunaga and P. M. Nagendra, A branch-and-bound
algorithm for computing k-nearest-neighbors, IEEE Trans
Comput 100(7) (1975), 750–753.

[11] J. L. Bentley, Multidimensional binary search trees used
for associative searching, Commun ACM 18(9) (1975),
509–517.

[12] J. K. Uhlmann, Satisfying general proximity/similarity
queries with metric trees, Info Process Lett 40(4) (1991),
175–179.

[13] T. Liu, A. W. Moore, K. Yang, and A. G. Gray, An
investigation of practical approximate nearest neighbor
algorithms, In Advances in Neural Information Processing
Systems 18 (NIPS ’04), 2004, 825–832.

[14] P. Ram, D. Lee, H. Ouyang, and A. G. Gray, Rank-
approximate nearest neighbor search: retaining meaning
and speed in high dimensions, Adv Neural Information
Processing Systems 22 (NIPS ’09) 22 (2010), 1536–1544.

[15] M. Muja and D. G. Lowe, Fast approximate nearest neigh-
bors with automatic algorithm configuration, In Interna-
tional Conference on Computer Vision Theory and Appli-
cations (VISAPP), 2009.

[16] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu, An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions, JACM
45(6) (1998), 891–923.

[17] K. L. Clarkson, Nearest neighbor queries in metric spaces,
Discrete Comput Geom 22(1) (1999), 63–93.

[18] R. Krauthgamer and J. R. Lee, Navigating nets: simple
algorithms for proximity search, in Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’04), 2004, 798–807.

[19] K. L. Clarkson, Nearest-neighbor searching and metric
space dimensions. Nearest-Neighbor Methods for Learning
and Vision: Theory and Practice 2006, 15–59.

[20] R. R. Curtin, P. Ram, and A. G. Gray, Fast exact max-
kernel search. In SIAM International Conference on Data
Mining (SDM ’13), 2013, 1–9.

[21] A. Rahimi and B. Recht, Random Features for Large-
scale Kernel Machines, Adv Neural Information Processing
Systems 20 (NIPS ’07) 20 (2008), 1177–1184.

[22] P. Kar and H. Karnick, Random feature maps for dot prod-
uct kernels, in Proceedings of the 22nd International Con-
ference on Artificial Intelligence and Statistics (AISTATS
’12), Vol. 22, 2012, 583–591.

[23] A. Gionis, P. Indyk, and R. Motwani, Similarity search in
high dimensions via hashing, in Proceedings of the Twenty-
Fifth International Conference on Very Large Data Bases
(VLDB ’99), Vol. 99, 1999, 518–529.

[24] M. S. Charikar, Similarity estimation techniques from
rounding algorithms, in Proceedings of the 34th Annual
ACM Symposium on Theory of Computing (STOC ’02),
2002, 380–388.

[25] B. Kulis and K. Grauman, Kernelized locality-sensitive
hashing for scalable image search, in Proceedings of the
12th IEEE International Conference on Computer Vision
(ICCV ’09), 2009.

[26] P. Ram and A. G. Gray, Maximum inner-product search
using cone trees, in Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD ’12), 2012, 931–939.

[27] L. Cayton, Fast nearest neighbor retrieval for Bregman
divergences, in Proceedings of the 25th International
Conference on Machine Learning (ICML ’08), 2008,
112–119.

[28] R. A. Finkel and J. L. Bentley, Quad trees: a data structure
for retrieval on composite keys, Acta Informatica 4(1)
(1974), 1–9.

Statistical Analysis and Data Mining DOI:10.1002/sam

Ryan R. Curtin and Parikshit Ram: Dual-Tree Fast Exact Max-Kernel Search 253

[29] J. H. Friedman, J. L. Bentley, and R. A. Finkel, An
algorithm for finding best matches in logarithmic expected
time, ACM Trans Math Softw 3(3) (1977), 209–226.

[30] J. L. Bentley and J. H. Friedman, Data structures for range
searching, ACM Comput Surv, 11(4) (1979), 397–409.

[31] J. L. Bentley and J. H. Friedman, Fast algorithms for
constructing minimal spanning trees in coordinate spaces,
IEEE Trans Comput 100(2) (1978), 97–105.

[32] R. R. Curtin, W. B. March, P. Ram, D. V. Anderson,
A. G. Gray, and C. L. Isbell Jr, Tree-independent dual-
tree algorithms, in Proceedings of the 30th International
Conference on Machine Learning (ICML ’13), 2013.

[33] C. L. Jackins and S. L. Tanimoto, Oct-trees and their use
in representing three-dimensional objects, Comput Graphics
Image Process 14(3) (1980), 249–270.

[34] P. N. Yianilos, Data structures and algorithms for nearest
neighbor search in general metric spaces, in Proceedings
of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’93), Society for Industrial and Applied
Mathematics, 1993, 311–321.

[35] S. Dasgupta and Y. Freund, Random projection trees and
low dimensional manifolds, in Proceedings of the 40th
Annual ACM Symposium on Theory of Computing (STOC
’08), 2008, 537–546.

[36] A. Beygelzimer, S. M. Kakade, and J. Langford, Cover
trees for nearest neighbor, in Proceedings of the 23rd
International Conference on Machine Learning (ICML ’06),
2006, 97–104.

[37] D. Lee and A. G. Gray, Faster Gaussian summation: theory
and experiment, in Proceedings of the Twenty-Second
Conference on Uncertainty in Artificial Intelligence (UAI
’06), 2006.

[38] Y. Shen, A. Y. Ng, and M. Seeger, Fast Gaussian
process regression using kd-trees, Adv Neural Information
Processing Systems 18 (NIPS ’05) (2006), 1225–1232.

[39] W. L. G. Koontz, P. M. Narendra, and K. Fukunaga, A
branch and bound clustering algorithm. IEEE Trans Comput
100(9) (1975), 908–915.

[40] P. M. Narendra and K. Fukunaga, A branch and bound
algorithm for feature subset selection, IEEE Trans Comput
100(9) (1977), 917–922.

[41] A. W. Moore, Very fast EM-based mixture model clustering
using multiresolution kd-trees, Adv Neural Information
Processing Systems 11 (NIPS ’98) 11 (1999), 543–549.

[42] A. G. Gray and A. W. Moore, ‘N-Body’ problems in
statistical learning. Adv Neural Information Processing
Systems 14 (NIPS ’01) 4 (2002), 521–527.

[43] A. G. Gray and A. W. Moore, Nonparametric density
estimation: toward computational tractability, In SIAM
International Conference on Data Mining (SDM ’03), 2003,
203–211.

[44] M. P. Holmes, A. G. Gray, and C. L. Isbell Jr, QUIC-
SVD: Fast SVD using cosine trees, In Advances in Neural
Information Processing Systems (NIPS ’08), Vol. 21, 2009,
673–680.

[45] W. B. March, A. J. Connolly, and A. G. Gray, Fast
algorithms for comprehensive n-point correlation estimates,
in Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD ’12), 2012, 1478–1486.

[46] P. Wang, D. Lee, A. G. Gray, and J. M. Rehg, Fast mean
shift with accurate and stable convergence, in Workshop on
Artificial Intelligence and Statistics (AISTATS ’07), 2007.

[47] D. Lee, R. W. Vuduc, and A. G. Gray, A distributed ker-
nel summation framework for general-dimension machine
learning, In SIAM International Conference on Data Mining
(SDM ’12), 2012, 391–402.

[48] D. Lee and A. G. Gray, Fast high-dimensional kernel
summations using the Monte Carlo multipole method, Adv
Neural Information Processing Systems 21 (NIPS ’08), 21
(2009).

[49] W. B. March, P. Ram, and A. G. Gray, Fast Euclidean mini-
mum spanning tree: algorithm, analysis, and applications, in
Proceedings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD
’10), 2010, 603–612.

[50] P. Ram, D. Lee, W. B. March, and A. G. Gray, Linear-time
algorithms for pairwise statistical problems, Adv Neural
Information Processing Systems 22 (NIPS ’09) 23 (2010),
1527–1535.

[51] D. R. Karger and M. Ruhl, Finding nearest neighbors in
growth-restricted metrics, in Proceedings of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing
(STOC ’02),. ACM (2002), 741–750.

[52] J. McNames, A fast nearest-neighbor algorithm based on
a principal axis search tree, IEEE Trans Pattern Analysis
Machine Intell 23(9) (2001), 964–976.

[53] F. P. Preparata and M. I. Shamos, Computational Geometry:
An Introduction. Springer, New York, NY, USA, 1985.

[54] A. W. Moore, The anchors hierarchy: using the triangle
inequality to survive high dimensional data, in Proceedings
of the Sixteenth Conference on Uncertainty in Artificial
Intelligence (UAI ’00), Morgan Kaufmann Publishers Inc.,
Burlington, MA, USA, 2000, 397–405.

[55] A. Beygelzimer, S. M. Kakade, and J. C. Langford, Cover
trees for nearest neighbor (longer version). Paper URL
http://hunch.net/∼jl/projects/cover_tree/paper/paper.pdf
[Last accessed March 10, 2014].

[56] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram,
N. A. Mehta, and A. G. Gray, MLPACK: a scalable C++
machine learning library, J Machine Learn Res 14 (2013),
801–805.

[57] Y. LeCun, C. Cortes, and C. J. C. Burges, MNIST dataset,
2000. http://yann.lecun.com/exdb/mnist/.

[58] K. Bache and M. Lichman, UCI Machine Learning
Repository, 2013, http://archive.ics.uci.edu/ml.

[59] J. Bennett and S. Lanning, The Netflix prize, in Proceedings
of the KDD Cup and Workshop, 2007, 3–6.

[60] R. Lupton, J. E. Gunn, Z. Ivezic, G. R. Knapp, S. Kent,
and N. Yasuda, The SDSS imaging pipelines, Astron Data
Analysis Software Syst X 238 (2001), 269–278.

[61] S. Kim, F. Li, G. Lebanon, and I. Essa, Beyond sentiment:
the manifold of human emotions, in Proceedings of the
23rd International Conference on Artificial Intelligence and
Statistics (AISTATS ’13), 2013, 360–369.

[62] A. Torralba, R. Fergus, and W. T. Freeman, 80 Million Tiny
Images: a large data set for nonparametric object and scene
recognition, IEEE Trans Pattern Anal Machine Intell 30(11)
(2008), 1958–1970.

[63] W. R. Pearson and D. J. Lipman, Improved tools for bio-
logical sequence comparison, Proceedings of the National
Academy of Sciences 85(8) (1988), 2444–2448.

[64] L. Cayton, Accelerating nearest neighbor search on many-
core systems, in Proceedings of the IEEE 26th International
Parallel and Distributed Processing Symposium (IPDPS
’12), 2012, 402–413.

Statistical Analysis and Data Mining DOI:10.1002/sam

